Determination of the activation energy of Martensite formation in steel during heating from 77 K

Villa, Matteo; Hansen, Mikkel Foug; Somers, Marcel A. J.

Publication date:
2017

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Determination of the activation energy of martensite formation in steel during heating from 77K

Matteo Villa1, Mikkel F. Hansen2, Marcel A.J. Somers1

1. Technical University of Denmark, Department of Mechanical Engineering, DK 2800 Kongens Lyngby, Denmark
2. Technical University of Denmark, Department of Micro and Nanotechnology, DTU Nanotech, DK 2800 Kongens Lyngby, Denmark

matv@mek.dtu.dk, mikkel.hansen@nanotech.dtu.dk; somers@mek.dtu.dk

ABSTRACT

Fe-based alloys and steels were austenitized and quenched to room temperature and additionally to boiling nitrogen temperature to investigate the kinetics of martensite formation on (re)heating with magnetometry. In precipitation hardenable stainless steels of types 17\%Cr-7\%Ni and 15\%Cr-7\%Ni-2\%Mo, wherein lath martensite develops, transformation was fully suppressed during immersion in boiling nitrogen. The kinetics of lath martensite formation was followed for the following conditions: (i) isochronal (re)heating at different heating rates; (ii) isothermal holding at different temperatures. The activation energy of martensite formation as quantified by a Kissinger-like method equals 8–12 kJ/mol, independent of the type of test performed. In Fe-C, Fe-N, Fe-Cr-C and Fe-Cr-Ni alloys forming (lath and) plate martensite, transformation cannot be prevented during immersion in boiling nitrogen. Isochronal heating tests showed that the activation energy of the martensite that forms during heating depends on the fraction of interstitials in austenite and ranges in the interval 8–25 kJ/mol.

KEYWORDS

Isothermal martensite; cryogenic treatments; steel;