IR spectroscopy with pyrolytic carbon string resonator as a tool for particle detection

Nguyen, Quang Long; Larsen, Peter Emil; Schmid, Silvan; Boisen, Anja; Keller, Stephan Sylvest

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Pyrolytic Carbon

MEMS String Resonator

Pyrolytic Carbon

- Isotropic properties
- Conductive material
- Controlable properties

Pyrolytic Carbon String Resonator

Infrared Spectroscopy

INTRODUCTION

MEMS String Resonator

Pyrolytic Carbon

- Isotropic properties
- Conductive material
- Controlable properties

Pyrolytic Carbon String Resonator

Infrared Spectroscopy

RESULTS AND DISCUSSION

SEM image of pyrolytic carbon string

Length 500µm
Thickness 700nm

Resonance Frequency

\[f = \frac{c}{2l} \]

Quality Factor

\[Q = \frac{f}{Q} \]

IR Absorption

An absorption peak at 1760 cm\(^{-1}\)

Allan Deviation

Minimum AD of 10ppm at 10 seconds

CONCLUSION

We demonstrate the fabrication of the pyrolytic carbon string resonators with optimized process. The carbon string resonators are then characterized by interferometry to obtain the resonance frequency and Q factor. A resonant photothermal IR absorption measurement shows the absorption spectrum of the materials. The results show the potential of the pyrolytic carbon string resonators as a tool for particle detection.