IR spectroscopy with pyrolytic carbon string resonator as a tool for particle detection

Nguyen, Quang Long; Larsen, Peter Emil; Schmid, Silvan; Boisen, Anja; Keller, Stephan Sylvest

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
INTRODUCTION

MEMS String Resonator

Pyrolytic Carbon

- Isotropic properties
- Conductive material
- Controlable properties

Pyrolytic Carbon String Resonator

Infrared Spectroscopy

RESULTS AND DISCUSSION

SEM image of pyrolytic carbon string

- Length 500µm
- Thickness 700nm

Resonance Frequency

![Graph showing resonance frequency vs. inverse length](image)

- $\sigma = 723,2 \text{ MPa}$
- String Width 15µm

Quality Factor

![Graph showing quality factor vs. string width](image)

IR Absorption

- An absorption peak at 1760cm\(^{-1}\)

Allan Deviation

- Minimum AD of 10ppm at 10 seconds

CONCLUSION

We demonstrate the fabrication of the pyrolytic carbon string resonators with optimized process. The carbon string resonators are then characterized by interferometry to obtain the resonance frequency and Q factor. A resonant photothermal IR absorption measurement shows the absorption spectrum of the materials. The results show the potential of the pyrolytic carbon string resonators as a tool for particle detection.