Materials for Catalysis, Synthetic Fuels and Chemical Energy Conversion

Joya, Khurram Saleem; Kammer Hansen, Kent; Holtappels, Peter

Published in:
Book of Abstracts Sustain 2017

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Materials for Catalysis, Synthetic Fuels and Chemical Energy Conversion

Khurram Saleem Joya*1,2, Kent Kammer Hansen1 and Peter Holtappels1

1: Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark
2: Department of Chemistry, University of Engineering and Technology, GT Road 54890 Lahore, Pakistan

*Corresponding author email: khsa@dtu.dk, khurramdtu@gmail.com

Functional thin-film nanomaterials are becoming increasingly significant for many important applications in industry, for essential catalytic processes and for solar & chemical energy conversion schemes.[1,2] In this pursuit, developing robust and high activity electrocatalytic materials for water oxidation and CO2 conversion, and their synergistic interfacing with competent light-harvesting modules is very important to progress the construction of solar to fuel conversion system.[3] We have exploited various functional nanoscale materials for catalytic water splitting, CO2 reduction, and recently for biomass catalysis and solar energy conversion.[3,4] We implemented several molecular, inorganic nanomaterials and metal-oxides displaying great potential to be used in electrocatalysis. Their effective interfacing with semiconductor photo-responsive materials and/or CO2 reduction systems can provide a potential scheme to make renewable energy supplies.[5] Further we are also exploring catalysis for biomass conversion into chemicals and synthetic fuels opening new ventures for chemicals and energy conversion.

![Figure 1. Proposed solar-driven device for catalysis, synthetic fuels and chemical energy conversion.](image)

References