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Nonlocal effects have been shown to be responsible for a variety of nontrivial optical effects in small-size plasmonic
nanoparticles, beyond classical electrodynamics. However, it is not clear whether optical mode descriptions can be
applied to such extreme confinement regimes. Here, we present a powerful quasinormal mode description of the
nonlocal optical response for three-dimensional plasmonic nanoresonators. The nonlocal hydrodynamical model
and a generalized nonlocal optical response model for plasmonic nanoresonators are used to construct an intuitive
modal theory and to compare to the local Drude model response theory. Using the example of a gold nanorod, we
show how an efficient quasinormal mode picture is able to accurately capture the blueshift of the resonances, the
higher damping rates in plasmonic nanoresonators, and the modified spatial profile of the plasmon quasinormal
modes, even at the single mode level. We exemplify the use of this theory by calculating the Purcell factors of
single quantum emitters, the electron energy loss spectroscopy spatial maps, and the Mollow triplet spectra of
field-driven quantum dots with and without nonlocal effects for different size nanoresonators. Our nonlocal quasi-
normal mode theory offers a reliable and efficient technique to study both classical and quantum optical problems
in nanoplasmonics. © 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (240.6680) Surface plasmons; (160.4236) Nanomaterials; (270.0270) Quantum optics.
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1. INTRODUCTION

Fundamental studies of light-matter interactions using plasmonic
devices continue to make considerable progress and offer a wide
range of applications [1–7]. For spatial positions very close to
metal resonators, the local Drude model is known to fail, which
challenges many of the usual modeling techniques that use the
classic Maxwell equations. In particular, charge density oscilla-
tions become relevant, causing frequency shifts of the localized
surface plasmon (LSP) resonance, as well as the appearance of ad-
ditional resonances above the plasmon frequency [8–13]. Such
investigations have been performed using both density functional
theory (DFT) at the atomistic level [14] and using macroscopic
nonlocal Maxwell’s equations in the form of the hydrodynamical
model (HDM) [13] and a generalized nonlocal optical response
(GNOR) model [15]. However, so far, with the exception of
the simple cases of spherical or cylindrical nanoparticles, nonlocal
investigations have been primarily done using purely numerical
simulations [16–18], which is not only computationally very ex-
pensive for arbitrary shaped plasmonic systems but can also lack
important physical insight; most of these calculations are also
restricted to 2D geometries or simple particle shapes. Thus, there

is now a need for more intuitive and efficient formalisms with
nonlocal effects included, for arbitrarily shaped metal resonators
in a numerically feasible way.

In optics and nanophotonics, one of the most successful ana-
lytical approaches to most resonator problems is to adopt a modal
picture of the optical cavity (e.g., in cavity-QED and coupled
mode theory). Recently, it has been also shown that quasinormal
modes (QNMs) can quantitatively describe the dissipative modes
of both dielectric cavities and LSP resonances [19] and even hy-
brid structures of metals and photonic crystals [20]. In contrast to
“normal modes,” which are solutions to Maxwell’s equations sub-
jected to (usually) fixed or periodic boundary conditions, QNMs
are obtained with open boundary conditions [21], and they are
associated with complex frequencies whose imaginary parts quan-
tify the system losses. These QNMs require a more generalized
normalization [21–26], allowing for accurate mode quantities to
be obtained such as the effective mode volume or Purcell factor
[27], that is, the enhanced spontaneous emission (SE) factor of a
dipole emitter. These QNMs are typically computed numerically
from the Helmholtz equation with open boundary conditions, for
example, with perfectly matched layers (PMLs), whose solution
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can then be used to construct the full photon Green function
(GF) of the medium—a function that is well known to con-
nect to many useful quantities in classical and quantum optics
[28–38]. The GF can also be used (and indeed is required) to
compute electron energy loss spectroscopy (EELS) maps for plas-
monic nanostructures [39–50], which is a notoriously difficult
problem in computational electrodynamics, especially for nano-
particles or arbitrary shape. Despite these successes with QNMs,
in the presence of nonlocal effects, it is not known whether such
a mode description even applies.

In this work, we show that, somewhat surprisingly, QNMs
can indeed be obtained and used to construct the full system
GF for complex 3D plasmonic nanoresonators with nonlocal
effects, and even a single mode description is accurate over a wide
range of frequencies and spatial positions. We start by redefining
the Helmholtz equation that is usually solved to obtain the local
QNMs [37], and then we extend this approach to the case of
nonlocal systems using a generalized Helmholtz equation, which
is applicable to both HDM and GNOR models. A semi-analytical
modal GF is then used to perform Purcell factor calculations
of dipole emitters positioned nearby plasmonic gold nanorods
(a structure for which there is no known analytical GF). We then
show the accuracy of the modal Purcell factors against fully
vectorial dipole calculations, also computed in the presence of
the nonlocal corrections. The calculated QNMs are also used
to accurately quantify the effective mode volume associated with
coupling to quantum emitters and can be used, for example,
for quantifying single photon source figures of merit [6,51].
Additionally, we examine the size dependence of the nonlocal
behavior by investigating nanorods of different sizes, verifying the
anticipated LSP blueshifts [11], and damping with decreasing
nanoparticle size [15]. Next, we use our QNM technique to
efficiently calculate the EELS maps for different sizes of nanopar-
ticles [40,47,48]. Finally, to more rigorously show the benefit of
our nonlocal modal picture for use in quantum theory of light-
matter interaction, we study the behavior of the Mollow triplets
of field-driven quantum dots (QDs) coupled to plasmonic reso-
nators [52], under the influence of nonlocal effects.

2. CAVITY MODE APPROACH TO NONLOCAL
PLASMONICS

Without nonlocal corrections to the metal, the QNMs, f̃ ��r�,
can be defined as the solution to the Helmholtz equation with
open boundary conditions (such as PMLs),

� × � × f̃ ��r� �
�

�̃�

c

�
2
��r; ��f̃ ��r� � 0; (1)

where ��r; �� is the relative dielectric function of the system, and
�̃� � �� � i�� is the complex resonance frequency that can also
be used to quantify the QNM quality factor, Q� � ���2��. For
metallic regions, the dielectric function can be described using
the local Drude model, �MNP�r; �� � 1 � �2

p���� � i�p�, with
��p � 8.29 eV and ��p � 0.09 eV for the plasmon frequency
and collision rate of gold [53], respectively. However, when con-
sidering the nonlocal nature of the plasmonic system, the electric
field displacement relates to the electric field through an integral
equation rather than a simple proportionality [12,54]. In this
nonlocal case, a modified set of equations [13,15] can be used
to define nonlocal QNMs, f̃ nl

� �r�, from

� × � × f̃ nl
� �r� �

�
�̃nl

�

c

�2
f̃ nl

� �r� � i�̃nl
� �0J�; (2)

�2��� · J�� � �̃nl
� ��̃nl

� � i�p�J� � i�̃nl
� �2

p�0 f̃ nl
� �r�; (3)

where J� is the induced current density and � is a phenomeno-
logical length scale associated with the nonlocal corrections
[15]. Indeed, �2 � �2 � D��p � i��, where � is the hydrody-
namic parameter proportional to the electron Fermi velocity,
vF � 1.39 × 106 m�s, and D � 2.9 × 10�4 m2�s [55] is the dif-
fusion constant associated with the short-range nonlocal response.
While � in its full form represents the GNOR model, we can
simply switch to the HDM by neglecting the diffusion.

Traditionally in cavity physics, the concept of effective mode
volume, V eff , plays a key role in characterizing the mode proper-
ties; historically, V eff quantifies the degree of light confinement in
optical cavities, and it is normally defined at the modal antinode
where, for example, a quantum emitter is typically placed. Even
though for plasmonic dimers one can reasonably choose the gap
center as the place to calculate the mode volume, for plasmonic
resonators in general, this simple picture of mode volume is
ambiguous. However, one can still quantify an effective modal
volume, V nl

eff �r� � Ref1�n2
b �f̃ nl

� �r��2g (same definition holds for
the local QNM, only one uses f̃ �) [19], for rigorous use in
Purcell’s formula, which is associated with coupling to emitters
at different locations outside (but typically near) the metal nano-
particle within a background medium of refractive index nb.
Such a position-dependent mode volume can then be used in
a generalized Purcell factor,

FP�r� �
3

4�2

�
	c

nb

�
3 Q

V eff �r�
; (4)

to obtain the SE enhancement rate of a dipole emitter placed at r
around a cavity with the resonance wavelength of 	c and quality
factor of Q. The quantum emitter is assumed to be on resonance
and aligned in polarization with the LSP mode.

Recent work has shown that QNMs, when obtained in nor-
malized form (as done in this work), accurately describe lossy
plasmonic resonators using the local Drude model [20,37,56].
Here, we extend such an approach to include the nonlocal effects
by introducing the expansion

Gnl
sc�r1; r2; �� �

X

�

�2

2�̃nl
� ��̃nl

� � ��
f̃ nl

� �r1�f̃ nl
� �r2�; (5)

for the scattered GF, which is extremely useful, as it can be
immediately used to obtain the full position and frequency
dependence of the generalized Purcell factor (SE enhancement
factor) for a dipole emitter polarized along n: [32]

F �r; �� � 1 �
6�c3

�3nb
n · ImfGnl

sc�r; r; ��g · n; (6)

where we include a factor of 1 for emitters outside the resonator
[37]. Note that in a single mode regime, if at the peak of the res-
onance frequency, � � 2�c�	c , then Eq. (6) reduces to Eq. (4).

3. RESULTS AND EXAMPLE APPLICATIONS

In this section, a selection of applications are presented to
demonstrate the power and reliability of the QNM theory for
light-matter investigations of plasmonic resonators, into the
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nonlocal regime. We emphasize that, once the QNMs are calcu-
lated, as discussed in subsection A, all example studies are per-
formed in seconds, owing to the analytical power of the technique.

A. Local Versus Nonlocal Quasinormal Modes

To obtain the system QNMs for the nonlocal HDM/GNOR
model defined via Eqs. (2) and (3), we employ the frequency do-
main technique discussed in Ref. [25] (used for the local Drude
model), where an inverse GF approach is used to return the
QNM in normalized form without having to carry out any spatial
integral. We extend this method by incorporating nonlocal cor-
rections, both for the HDM method [57], as well as the more
complete GNOR model [15,58]. While the system GF using the
notation of [25] finds a different form, for consistency, we follow
the approach of Eq. (5) to briefly explain the technique.

The basic idea is to use a dipole excitation at the location
of interest, r0, having a dipole moment of d, to numerically
obtain the scattered GF (as explained in more detailed later),
Gsc�r0; r0; ��, and then reverse Eq. (5) to obtain

f̃ c�r0� · d �

��������������������������������������
d · Gsc�r0; r0; �̃c� · d

A��̃c�

s

; (7)

where a single QNM, f̃ c�r�, with the complex frequency �̃c is
considered, and we have defined A��� � �2�2�̃c��̃c � �� for
convenience. The above quantity is in fact all one needs to per-
form an integration-free normalization for the QNM, and in
practice, it is calculated at frequencies very close to the QNM
frequency [so is the QNM of Eq. (8)] [25]. When inserted back
into Eq. (5), one arrives at

f̃ c�r� �
Gsc�r; r0; �̃c� · d

����������������������������������������������������
A��̃c��d · Gsc�r0; r0; �̃c� · d�

p ; (8)

which provides the full spatial profile of the QNM, given that one
also keeps track of the system response at all other locations,
Gsc�r; r0; ��, within the same simulation.

The numerical implementation is done using the frequency
domain finite-element solver COMSOL [59], where an electric
current dipole source is used to excite the system and iteratively
search for the QNM frequencies by monitoring the strength of
the system response [25]. To obtain the QNM, one obtains the
scattered GF as the difference between two dipole simulation
GFs at frequencies very close to the QNM frequency, with
and without the metal nanoparticles [25], either in local or non-
local case. The computed QNM can then provide the full spectral
and spatial shape of the resonances involved. In our calculations, a
computational domain of 0.5 �m3 was used for all simulations
with a maximum element size of 0.2 nm on the nanoparticle sur-
face and 0.6 nm inside. The maximum element size elsewhere is
set to 33 nm to ensure convergent results over a wide range of
frequencies, and 10 layers of PML were used. We have checked
that these parameters provide accurate numerical convergence for
both local and nonlocal simulations done in this work.

Depicted in Fig. 1 are the computed QNMs for three different
gold cylindrical nanorods with the same aspect ratio, varying from
20 nm to 4 nm in length (see figure caption for details). The left
panels represent the local Drude model QNMs, while the right
panels show the QNMs using the nonlocal GNOR model. As
seen, the main QNM shapes are similar but a redistribution of
the localized field clearly occurs due to the inclusion of the

nonlocal corrections. While the local Drude model predicts a sim-
ilar mode shape for the different nanoparticle sizes, the nonlocal
corrections introduce a pronounced degree of mode reshaping for
smaller nanoparticles. Indeed, even for the largest nanoparticle
shown in Figs. 1(a) and 1(b), higher field values are seen both
inside as well as outside (but near) the metallic region.

B. Purcell Factors from Coupled Dipole Emitters

Figure 2 shows the computed QNM Purcell factors using the lo-
cal Drude model and the two different nonlocal models for the
h � 20 nm nanorod. As can be seen, both HDM and GNOR
models predict the known blueshift of the plasmonic resonance
[12–14]. However, the nonlocal prediction of the peak enhance-
ment strongly depends on the model chosen. The GNOR model,
in particular, predicts a considerably lower Purcell factor due to
the inclusion of diffusion, which accounts for surface-enhanced
Landau damping [15]. Indeed, as will be discussed shortly, includ-
ing the nonlocal effects modifies both the quality factor and the
mode volume associated with QNMs. The inset also shows the
validity of our Purcell factor calculations against full dipole
numerical calculations, only shown here for the nonlocal GNOR
response. However, a similar degree of very good agreement is
observed for all other calculations both in Fig. 2 and what follows.

In Fig. 2, in the bottom panel, we additionally plot the cor-
responding effective mode volume for a range of dipole locations,
from the nanorod surface (at z � 10 nm) up to 10 nm away.
A comparison between the local Drude model (solid-blue) and
the nonlocal GNOR (dashed-red) is shown, where a nontrivial
difference is observed. Closer to the metallic surface, smaller

20 nm

(a) local (b) nonlocal

z

x

(c)

10 nm

(d)

(e)

5 nm

(f)

Fig. 1. Comparison between the local QNM (a, c, e), jf̃ �x; z; y0�j2 and
nonlocal GNOR QNM (b, d, f ), jf̃ nl�x; z; y0�j2 for nanorods of different
heights, h � 20 nm, h � 10 nm, and h � 5 nm, where y0 � 0 is at the
center of the nanorods. Same geometrical aspect ratio of 2 is used cor-
responding to a radius of r � 5 nm for the largest resonator. Double
arrow in (a) shows the location of the dipole emitter at 10 nm away from
the metallic surface that is kept the same for all QNM calculations, and
the green box represents the metallic border.
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effective mode volumes are predicted by the nonlocal corrections,
while further away, the opposite takes place. The difference at
larger distances, however, is mainly due to nonlocal corrected
resonant wavelengths that are used to normalize the mode
volumes.

We also consider enhanced SE from the three different gold
nanoparticles discussed in Fig. 1. Plotted in Fig. 3 are the QNM
calculations of the Purcell factors for dipole emitters located
10-nm away from nanorods, on the z-axis. In each case, the local
Drude results are compared with the nonlocal GNOR results.
Clearly, nonlocal corrections result in larger resonance blueshifts
and larger damping rates (lower quality factors).

C. Computing EELS Spatial Maps

For our next application of the nonlocal QNM theory, we calcu-
late the spatial maps associated with EELS experiments that are
obtained by nanometer-scale resolution in microscopy of LSP res-
onances [40,41,44,49,50]. Since the GF is available at all loca-
tions (near the resonator) through QNM expansion of Eq. (5),
the EELS spectra in the xz plane subjected to an electron beam
propagating along the y axis can be easily obtained from [40,48]

��x; z; �� � �
4e2v2

�

Z
dtdt 0 Imfei��t 0�t�Gyy�re�t�; re�t 0�; ��g;

(9)

where v is the speed of electrons, and the single mode expansion
for our Green function—that is already confirmed to be very
accurate—is used. The EELS calculations for all three nano-
particles (of Fig. 1) are shown in Fig. 4, all computed at the

1.8 1.9 2 2.1 2.2 2.3 2.4
0

200

400

600

800

1.9 2.1 2.3
0

200

400

600

10 12 14 16 18 20
0

0.5

1

1.5

10 15 20
0

0.5

1

Fig. 2. Top: generalized Purcell factor for a dipole emitter placed
10-nm away form a gold nanorod of height h � 20 nm and radius of
r � 5 nm, using Drude QNM, nonlocal HDM QNM, and nonlocal
GNOR QNM. The inset shows the agreement between full dipole
calculations (with no approximations) and GNOR QNM results.
Bottom: corresponding QNM effective mode volume, Veff , is shown
for a range of locations above the nanorod. Note that z � 10 nm is
at the surface of the metallic nanoparticle. Inset shows the modal absolute
magnitude for completeness.

1.8 2 2.2 2.4 2.6

70

140

200

400

350

700

Fig. 3. Size-dependent discrepancy in Purcell factor between the local
Drude model and nonlocal GNOR model. Results are derived from ana-
lytical QNM calculations when the dipole emitter is kept 10-nm away
along the z-axis. Complex resonance frequencies for both models are
also shown in each case.

20 nm

(a) local (b) nonlocal

(c)

10 nm

(d)

(e)

5 nm

(f)

Fig. 4. Comparison between the EELS map of the plasmonic nano-
rod using the local Drude model, (a, c, e) and nonlocal GNOR model,
(b, d, f ), where each map is calculated at the corresponding plasmonic
peak frequency. Same geometries as in Fig. 1 are used, and green box
represents the metallic border.
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corresponding plasmonic peak frequencies. Note that there are
some noticeable numerical issues around the sharp corners of
the metallic nanorod when using the conventional Drude model
theory on the left (which is a known problem [60,61]). Using the
same meshing scheme, however, the nonlocal description evi-
dently helps to avoid such nonphysical effects. More importantly,
as the nanoparticle size decreases, the EELS map becomes brighter
at the maximum location which originates from the higher modal
amplitudes of the QNMs discussed in Fig. 1. We stress again that
with the computed QNMs, such EELS maps are calculated
instantaneously, which is a far cry from the many brute force
numerical solvers.

D. Field-Driven Mollow Triplets and Quantum Optics
Regime

Finally, in addition to the previous discussions on Purcell factor
and mode volume that are important for building quantum
optical models of light-matter interaction [62], we discuss the
quantum regime of field-driven Mollow triplets for QDs coupled
to plasmonic nanoparticles. In the dipole and rotating wave
approximations, the total Hamiltonian of the coupled system
is [52,63]

H � �
Z

dr
Z

�

0
d��f̂ †�r; ��f̂ �r; �� � ��x
�
�

�
�

�

Z
�

0
d�d · Ê�rd ; �� � H:c:

�

�
��
2

�
�e�i�L � 
�ei�L�; (10)

where � � hÊpump�rd �i · d�� is the effective Rabi field, 
�; 
�

are the Pauli operators of the two-level atom (or exciton), �x is
the resonance of the exciton, d is the dipole of the exciton, and
f̂ ; f̂ † are the boson field operators. Following the approach in
Ref. [52] and using the interaction picture at the laser frequency
�L, one can derive a self-consistent generalized master equation in
the 2nd-order Born–Markov approximation:

��
�t

�
1
i�

�HS; �� �
Z

t

0
d�fJ̃ph�����
�
������

� 
������
�� � H:c:g; (11)

where J̃ph��� �
R

�
0 d�Jph���ei��L����, with the photon-reservoir

spectral function given by Jph��� � d·Im�G�rd ;rd ;���·d
���0

, and the
time-dependent operators are defined through 
����� �
e�iHS ���
�eiHS���, with HS � ���x � �L�
�
� � ���
2�
� � 
��, which results in a complex interplay between the
values of the local density of states at the field-driven dressed
states. Solving the master equation and exploiting the quantum
regression theorem, one can compute the incoherent spectrum
of the QD emission from [52]

S0��� � lim
t��

Re
�Z

�

0
d��h
��t � ��
��t�i

� h
��t�ih
��t�i�ei��L����
�
; (12)

as well as the detected spectrum, which includes quenching and
propagation from QD at r0 to a point detector at rD, from [52]

S�rD; �� �
2
�0

jG�rD; r0; �� · dj2S0���: (13)

For example calculations, we assume a QD with the dipole
moment of jdj � 50 Debye at 10-nm away from the nanopar-
ticle surface, at x � 0. In particular, as with the calculations
above, we compare the local Drude model versus the nonlocal
GNOR model, as shown in Fig. 5. As can be recognized, includ-
ing the nonlocal effects, in general, predicts narrower linewidths
for the Mollow triplets (see Table 1), where the relative strength of
the side peaks are also increased. This is attributed to the modified
plasmonic enhancement in the nonlocal description as confirmed
in Fig. 3, which can be also rigorously confirmed using analytical
equations for the linewidths derived in Ref. [52]. It should be
noted that, in general, the detected spectrum S for the Mollow
triplet problem can be different than the emitted S0, as discussed
in Ref. [52]; however in our particular case, under the resonant
excitation, we find that they have the same qualitative shape (and
differ only quantitatively). We also stress that these spectral
calculations, at any detector position, can be trivially performed
using a standard desktop through use of semi-analytical GF of

0

0.4

0.8

0

0.4

0.8

0

0.4

(a) (b)

(c) (d)

(e)0.8

-50 0 50 -50 0 50

(f)

Fig. 5. Detected spectra (S evaluated at rD � 200 nm) of a field-
driven QD coupled to plasmonic nanoparticles, where the same ordering
of the particle size and QD location as in Fig. 1 is followed, and we use
an effective Rabi field of � � 50 meV. Plasmonic enhancement is also
shown in dashed-gray in background. Nonlocal investigations on the
right predict relatively stronger side peaks for the Mollow triplet with
narrower linewidths.

Table 1. Linewidth of the Central Mollow Peak for the
Three Nanoparticles, Using Both Drude Model and
GNOR Modela

h (nm) Drude FWHM (meV) GNOR FWHM (meV)

20 1.28 1.21
10 0.74 0.61
5 0.45 0.42

aSame trend holds for the side peaks.
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Eq. (5), demonstrating the power of our approach for carrying out
complex problems in quantum optics.

4. CONCLUSIONS

We have presented an efficient and accurate modal description of
the nonlocal response of arbitrarily shaped metallic nanoparticles,
using a fully 3D model. We have shown how semi-analytical non-
local QNMs can be used to accurately construct the system GF
from which modal quantities of interest such as Purcell factor and
effective mode volume can be derived. As anticipated, we first
observe the blueshift, as well as the larger damping rate for the
LSP as a consequence of nonlocal effects. We further confirmed
the validity of our approach for different nanoparticle sizes with
full dipole solutions of the modified Maxwell equations, allowing
us to predict the size-dependent nonlocal modifications with ease.
As example applications of the theory, we described how our non-
local QNMs can be used to efficiently model Purcell factors of
quantum dipole emitters, EELS spatial maps, and Mollow triplet
spectra of field-driven QD. The presented model has many ap-
plications in both classical and quantum nanoplasmonics, offers
considerable analytical insight into complex nonlocal problems,
and could help pave the way for a quantum description of both
light and matter in nonlocal coupling regimes.
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