Influence of Niche-Specific Nutrients on Secondary Metabolism in Vibrionaceae

Giubergia, Sonia; Phippen, Christopher; Gotfredsen, Charlotte Held; Nielsen, Kristian Fog; Gram, Lone

Published in:
Applied and Environmental Microbiology

Link to article, DOI:
10.1128/AEM.00730-16

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Influence of niche-specific nutrients on secondary metabolism in Vibrionaceae.

Sonia Giubergia1,2, Christopher Phippen3, Charlotte H. Gotfredsen4, Kristian Fog Nielsen3 and Lone Gram2

1NovoNordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm;
2Department of Systems Biology, Technical University of Denmark, Matematiktorvet bldg. 301, DK-2800 Kgs. Lyngby.
3Department of Systems Biology, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs. Lyngby.
4Department of Chemistry, Technical University of Denmark, Kemitorvet bldg. 207-210, DK-2800, Kgs. Lyngby

address correspondence to: gram@bio.dtu.dk

Running title: Bioprospecting in Vibrionaceae.

Keywords: bioprospecting, chitin, Vibrionaceae, antibacterial compounds

List of abbreviations: GlcNAc: N-acetylglucosamine; ChiS: Chitin catabolic cascade Sensor histidine kinase; WGS: Whole Genome Sequence; SSBC Sea Salt Broth and Chitin medium WDA: Well Diffusion Assay; CAS assay: Chrome Azurol S assay; AHL: Acyl-Homoserine Lactones.
ABSTRACT

Many factors, such as substrate and growth phase, influence biosynthesis of secondary metabolites in microorganisms. Therefore, it is crucial to consider these factors when establishing a bioprospecting strategy. Mimicking the conditions of the natural environment has been suggested as a means of inducing or influencing microbial secondary metabolite production. The purpose of the present study was to determine how bioactivity of Vibrionaceae was influenced by carbon sources typical of their natural environment. We determined how mannose and chitin as compared to glucose influenced the antibacterial activity of a collection of Vibrionaceae strains isolated because of their ability to produce antibacterial compounds, but that in subsequent screenings seemed to have lost this ability. The number of bioactive isolates was two and 3.5 folds higher when strains were grown on mannose and chitin, respectively, as compared to glucose. As secondary metabolites are typically produced during late growth, potential producers were also allowed 1-2 days of growth before exposure to the pathogen. This strategy led to three-fold increase in the number of bioactive strains on glucose and eight-fold increase on both chitin and mannose. We selected two bioactive strains belonging to species where antibacterial activity had not previously been identified. Using UHPLC-HRMS and bio-assay-guided fractionation, we found that the siderophore fluvibactin was responsible for the antibacterial activity of Vibrio furnissii and Vibrio fluvialis. These results suggest a role of chitin in the regulation of secondary metabolism in vibrios and demonstrate that considering bacterial ecophysiology during development of screening strategies will facilitate bioprospecting.

249 words
SIGNIFICANCE

A challenge in microbial natural product discovery is the elicitation of the biosynthetic gene clusters that are silent when microorganisms are grown under standard laboratory conditions. We hypothesized that since the clusters are not lost during proliferation in the natural niche of the microorganisms, they must, under such conditions, be functional. Here, we demonstrate that an ecology-based approach in which the producer organism is allowed a temporal advantage and where growth conditions are mimicking the natural niche remarkably increases the number of Vibrionaceae strains producing antibacterial compounds.
INTRODUCTION

Following the first era of discovery of bioactive compounds from natural sources, high throughput screenings of compound libraries produced by combinatorial chemistry and rational drug design were preferred over natural product discovery (1). Disappointingly, the discovery rate of this approach was much lower than expected and the lack of new leads triggered a return to search for novel bioactive molecules from microorganisms (1, 2).

Recent progress in genome sequencing and mining has demonstrated a significant number and degree of diversity in microbial biosynthetic gene clusters. However, this potential can often not be unfolded and detected under standard laboratory conditions (3, 4) and, today, one challenge in discovery of natural products is to elicit these silent/cryptic biosynthetic gene clusters. The One Strain MAny Compounds (OSMAC) method, where strains are cultivated in a range of growth conditions, has been suggested as a solution (5).

Secondary metabolites are likely to play many different roles in natural bacterial behavior, including antagonistic interactions and intercellular communication (6, 7). Hence, elicitation of the expression of silent biosynthetic gene clusters could rely on re-creating the natural environmental conditions in the research laboratory (8–10). With this in mind, Seyedsayamdost (11) demonstrated that two previously silent biosynthetic gene clusters in Burkholderia thailandensis could be elicited by low concentrations of molecules of microbial origin. Also, antibacterial compounds have been shown to be produced by marine bacteria only when they were cultivated under conditions mimicking their natural intertidal environment (12–14).
Following the increasing interest in natural products from the marine environment during the last decades of the 20th century, several groups are now pursuing methods for the identification and production of natural products in marine microorganisms (15, 16). Our group took part in the global marine research expedition Galathea 3 (http://www.galathea3.dk) with the aim of, on a global scale, isolating marine bacteria with bioactivity potential. We cultured microorganisms on marine agar and subsequently screened all colonies for antagonism against the fish pathogen *Vibrio anguillarum*, which is very sensitive to antibacterial compounds produced by marine bacteria. We isolated approximately three hundred bioactive *Vibrionaceae* strains (17). During re-screening, only 39 strains retained their antagonistic activity (18). We isolated the potent antibiotics holomycin and andrimid from *V. coralliilyticus* and *Photobacterium galatheae*, respectively (9, 18), as well as modulators of virulence in *Staphylococcus aureus*, such as ngercheumicins F, G, H, I (19), nigribactin (20) and solonamide B (21). However, we were challenged by the marked reduction in bioactivity during re-screening.

We reasoned that one cause for this loss of activity could be that significant secondary metabolite production mostly occurs during the late exponential and in the stationary phase of microbial growth, and we hypothesized that the bio-discovery rate could be increased if the producing organisms were allowed more time to grow before being exposed to the target organism. In the initial screening and isolation, colonies were allowed to grow for 3-5 days before being tested (17), but this temporal advantage was not given during the re-screening (18). We also questioned whether the use of naturally co-occurring substrates such as mannose and chitin would restore bioactivity. Mannose is ubiquitous in the marine environment where it is commonly used by algae for protein glycosylation and production of extracellular polysaccharides (22, 23). Chitin is the most abundant organic molecule in the marine environment, being a component of the exoskeleton of crustacean and zooplankton (24). It is a
polysaccharide composed of N-acetylglucosamine (GlcNAc) units. *Vibrionaceae* are considered among the major actors in marine chitin catabolism and the chitin utilization pathway is conserved within the family (25, 26). In *V. cholerae* chitin and derivatives can regulate the expression of genes involved in chitin metabolism (27) but also in biofilm formation and in virulence (28). In *V. coralliilyticus*, growth on chitin doubles the yield of the antibiotic andrimid in comparison to glucose (9).

The aim of this study was to determine to which extent the use of substrates naturally present in the niche of isolation and the growth phase of the producer could restore (or induce) the biosynthesis of antibacterial compounds in a collection of 295 *Vibrionaceae* isolates. The number of antagonizing strains was greatly increased when the assay was performed on chitin and up to eight folds higher when the potential producers were given a temporal advantage over the target strain.

MATERIAL AND METHODS

Bacterial strains. Two hundred and ninety-five *Vibrionaceae* strains were isolated during the Danish Galathea 3 global research expedition (17). Strains were selected based on their ability to inhibit the growth of *Vibrio anguillarum* and identified as *Vibrionaceae* based on their 16S rRNA gene sequences (17). Species affiliation of strains producing antibacterial extracts (see below), which had not been previously assigned to a species by multilocus sequence analysis, was carried out by analysis of the *fur* gene (29). The *fur* gene sequences were retrieved from whole genome sequences (WGSs) or sequencing of PCR products obtained as described elsewhere (29).

Preparation of colloidal chitin. Colloidal chitin was prepared following a modified version of the method published by Hsu and Lockwood (30). Ten grams of practical grade shrimp shell chitin (Sigma...
C9213) was added to 400 mL of 37% HCl at 4°C and stirred at this temperature for 6 hours. The solution was poured into 4 L of cold H₂O and incubated overnight at 4°C, before it was neutralized with solid NaOH. After centrifugation (6000 g for 10 minutes), supernatant was discarded and the chitin pellet was suspended in 500 mL of H₂O and autoclaved. The concentration of colloidal chitin was calculated from the dry weight (100°C) of a subsample.

Screening of Vibrionaceae strains for antibacterial activity. Square Petri dishes containing 20 g/L Sea Salts (Sigma S9883), 3 g/L casamino acids (BD 223050), 15 g/L agar (AppliChem A0949) and either 2 g/L of colloidal chitin or 2 g/L of mannose were prepared. As control, the same was done with the same medium used in the original screening procedure (30 g/L Instant Ocean, 3 g/L casamino acids, 4 g/L glucose, 10 g/L agar) (17). Bacterial strains were grown overnight, aerated (200 rpm) at room temperature in half strength YTSS (½ YTSS) (31). One microliter of each culture was spotted onto the three media. On each plate 35 strains were spotted in rows, where the distance between two strains was 20 mm horizontally and 15 mm vertically. Each plate was produced three times. On one plate, 1 μL of an overnight culture of the target strain *Vibrio anguillarum* 90-11-287 grown in ½ YTSS was spotted simultaneously at a distance of 5 mm from the potential producers of antimicrobial compound. On the second copy of each plate an identical process was performed after 24 hours and on a third plate after 48 hours. Plates were incubated at 25°C and examined 24/48 hours after the target strain had been spotted. A biological replicate was performed for the isolates being bioactive in the first screening.

In silico analysis of the distribution of chiS and (GlcNAc)₂ operon. The *chiS* (VC0622) gene and the (GlcNAc)₂ operon (VC0611-VC0620) of *Vibrio cholerae* were searched against a custom-built
database using MultiGeneBlast (32). For the preparation of the database, genome sequences were downloaded from the GenBank database (Figures 2 and 3).

Extraction of bioactive compounds from liquid cultures. All strains showing a consistent bioactivity were grown aerated (200 rpm) in 10 ml of 2% Sigma Sea Salts solution with 0.3% casamino acids and 0.2% colloidal chitin (SSBC) for 48 hours at 25°C. Cultures were extracted with an equal volume of HPLC-grade ethyl acetate (EtOAc) for 20 minutes. The organic phase was transferred to fresh vials and evaporated until dryness under a stream of nitrogen. Extracts were dissolved in 250 μL methanol (MeOH) and stored at -20°C until further analysis. The activity of the extracts against *Vibrio anguillarum* 90-11-287 was tested in a well diffusion agar (WDA) assay (33).

Genome sequencing and bioinformatics analysis. High purity DNA was obtained for *V. furnissii* S0821 and *V. fluvialis* S1110 by repeated phenol:chloroform:isoamyl alcohol purification followed by RNase treatment and DNA precipitation, as described previously (34). Quantification was performed on a NanoDrop Spectrometer (Saveen Werner, Sweden) and a Qubit 2.0 Analyzer (Invitrogen, United Kingdom). Construction of 500 bp libraries and 100 bp paired-end sequencing of genomes were performed by the Beijing Genome Institute (Hong Kong) on a HiSeq2000. Sequencing data were assembled to contigs in CLC Genomic Workbench (CLC Bio, Aarhus, Denmark) using the *de novo* assembly algorithm. The draft genomes of strains S0821 and S1110 were annotated with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (35) and submitted to antiSMASH 2.0 (36) and BAGEL3 (37) for analysis of biosynthetic gene clusters.

UHPLC-HRMS. Ultra-high Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) was performed on an Agilent Infinity 1290 UHPLC system (Agilent
Technologies, Santa Clara, CA, USA) equipped with a diode array detector. Separation was obtained on an Agilent Poroshell 120 phenyl-hexyl column (2.1 × 250 mm, 2.7 μm) with a linear gradient consisting of H₂O (A) and acetonitrile (B) both buffered with 20 mM formic acid, starting at 10% B and increased to 100% in 15 min where it was held for 2 min, returned to 10% in 0.1 min and remaining for 3 min (0.35 mL/min, 60 °C). An injection volume of 1 μL was used. MS detection was performed on either an Agilent 6545 QTOF MS equipped with Agilent Dual Jet Stream electrospray ion source with a drying gas temperature of 160 °C, gas flow of 13 L/min, sheath gas temperature of 300 °C and flow of 16 L/min, or an Agilent 6540 QTOF MS equipped with Agilent Dual Jet Stream electrospray ion source with a drying gas temperature of 250 °C, gas flow of 8 L/min, sheath gas temperature of 300 °C and flow of 12 L/min. Capillary voltage was set to 4000 V and nozzle voltage to 500 V. Mass spectra were recorded at 10, 20 and 40 eV as centroid data for m/z 85–1700 in MS mode and m/z 30–1700 in MS/MS mode, with an acquisition rate of 10 spectra/s. Lock mass solution in 70:30 MeOH:H₂O was infused in the second sprayer using an extra LC pump at a flow of 15 μL/min using a 1:100 splitter. The solution contained 1 μM tributylamine (Sigma-Aldrich) and 10 μM Hexakis(2,2,3,3-tetrafluoropropoxy)phosphazene (Apollo Scientific Ltd., Cheshire, UK) as lock masses. The [M + H]⁺ ions (m/z 186.2216 and 922.0098 respectively) of both compounds was used.

Influence of culture conditions on bioactivity and characterization of the antibacterial compound. Extracts from the cultures *V. furnissii* S0821 and *V. fluvialis* S1110 were analyzed by UHPLC-HRMS as described above. Extracts from the strains grown in SSBC supplemented with 0.1 g/L ferric citrate were also prepared and analyzed. For the bioassay-guided fractionation, fifty cultures of strain S0821 grown in 10 mL SSBC for 48 hours were extracted with equal volume of EtOAc, extracts were pooled together and evaporated until dryness under nitrogen. Portions of the pooled
S0821 culture extracts were fractionated by Mixed-Mode Anion Exchange SPE on an Oasis MAX cartridge (Waters, Milford, MA, 30 μm, 30 mg, 1 mL). The sample was dissolved in 400 μL of 3:1 H₂O:MeOH containing 2% ammonium hydroxide then directly loaded onto a conditioned SPE column. The column was sequentially eluted with 2 mL of 3:1 H₂O:MeOH (F1), 2 mL of 1:1 H₂O:MeOH (F2), 2 mL of MeOH (F3), 1 mL of H₂O and 1 mL of 3:1 H₂O:MeOH containing 1% formic acid (F4), 2 mL of 1:1 H₂O:MeOH containing 1% formic acid (F5) and finally 2 mL of MeOH containing 1% formic acid (F6). The fractions were dried under a stream of nitrogen before being resuspended in 200 μL MeOH. Fractions were tested for antibacterial activity in a WDA assay and for siderophore activity in a Chrome Azurol S (CAS) assay (38). Extracts were mixed with CAS solution in 1:1 ratio and the color change from blue to orange, indicating siderophore activity, was checked after 15 minutes and 24 hours.

Nucleotide sequences accession numbers. Sequence data generated in this study were deposited in GenBank under accession numbers LKHS00000000 (WGS of strain S0821), LKHR00000000 (WGS of strain S1110) and KT952522-26 (fur gene sequences of strains S1162, S1732, S2054, S2056 and S2150, respectively).

RESULTS

Screening of strains for antibacterial activity. Of the 295 Vibrionaceae strains, four isolates antagonized V. anguillarum when grown on the glucose medium, six when grown on the mannose medium and eleven when grown on the chitin medium using a procedure where the potential producers were not given any temporal advantage over the target strain. When the target strain was spotted
twenty-four hours after the potential bioactive strains, six isolates were bioactive on glucose, nineteen on mannose and seventy-eight on chitin. Twenty-six, forty-nine and ninety-one strains were bioactive on glucose, mannose and chitin, respectively, when the target strain was spotted with a forty-eight hour delay (Figure 1). Examples of one plate and of the behavior of one strain (V. furnissii S0821) over time on the mannose and the chitin-based media are shown in Figure S1.

Ethyl acetate extracts from the 91 antagonizing strains grown in chitin containing liquid medium for 48 hours were tested in a well-diffusion assay against V. anguillarum. Extracts from V. coralliilyticus (strains S2043, S2052, S2054, S2056 and S4053), V. nigripulchritudo (S2601, S2600 and S2604), V. fluvialis (S1110 and S1162), V. furnissii (S0821) and two Vibrio sp. (S1732 and S2150) inhibited the growth of V. anguillarum (Table 1). The strongest inhibition (i.e. the largest inhibition zone) was observed in extracts from the V. coralliilyticus strains. The extracts from the V. furnissii and V. fluvialis strains were moderately growth inhibitory based on the size of the clearing zone. The remaining extracts exhibited a weak antibacterial activity.

Distribution of chiS and (GlcNAc)₂ operon. Given the pronounced increase in bioactivity when chitin was used as growth substrate, we speculated that this could be due to simple substrate change (e.g. catabolite repression) or to a direct involvement of chitin in the regulation. Since chitin is indeed involved in regulation of phenotypes in Vibrio species (27, 39–41), we addressed the possible chitin-dependent regulation of secondary metabolism in Vibrionaceae, possibly through the ChiS regulatory system (see discussion). Therefore, we investigated the distribution of the chiS gene and of the (GlcNAc)₂ operon in thirty-three genomes of vibrio species belonging to eight of the seventeen proposed Vibrio clades (42) and to three of the four proposed Photobacterium clades (42). In total, twenty-two Vibrio and eleven Photobacterium genomes were included in the analysis. This choice was
driven by the quantity and the quality of the publicly available genome sequences. MultiGeneBlast-based analysis showed that the \textit{chIS} gene and the complete (GlcNAc)$_2$ operon are widely distributed in both \textit{Vibrio} and \textit{Photobacterium} species, both being present in all analyzed species (Figure 2 and 3).

\textbf{Genome mining of \textit{Vibrio furnissii} and \textit{Vibrio fluvialis}}. Contig-based draft genomes of \textit{V. furnissii} S0821 and \textit{V. fluvialis} S1110 were obtained by assembling the sequencing data in CLC Genomics Workbench. The genome size was 5.0 Mb for \textit{V. furnissii} S0821 and 4.5 Mb for \textit{V. fluvialis} S1110. antiSMASH analysis of the genomes found six putative biosynthetic gene clusters in \textit{V. furnissii} S0821 and five in \textit{V. fluvialis} S1110 (Table 2). Due to the phylogenetic relatedness of \textit{V. furnissii} and \textit{V. fluvialis} (42) and the similarity of the antiSMASH results for the two strains, we thought it likely that the antibacterial activity of the two extracts could be due to the same compound(s).

Both genomes harbored a biosynthetic gene cluster for the production of the quorum sensing autoinducer molecules acyl-homoserine lactones (AHLs) and biosynthetic gene clusters with a relatively high gene similarity to those for the biosynthesis of ectoine, vibriobactin and aryl polyenes. A cluster for bacteriocin production was identified in both strains, but the bacteriocin prediction tool BAGEL3 was not consistent with the antiSMASH results. Although BAGEL3 did predict the presence of one bacteriocin gene cluster, it differed from the one predicted by antiSMASH. A BLAST-based homology search using the bacteriocin amino acid sequences predicted in the two genomes (Table S1) as queries revealed a high similarity (E value=0, homology>98%) with endopeptidases from the M23 superfamily involved in cell wall biogenesis.

\textbf{Investigation on the antibacterial compound produced by \textit{Vibrio furnissii} and \textit{Vibrio fluvialis}}.

There are no reports in the literature describing antibacterial compounds in \textit{V. furnissii} and \textit{V. fluvialis}.
Given the importance of these two species as human pathogens (43, 44), we focused on these strains to determine the nature of the compound(s) responsible for the activity. Working under the hypothesis that these closely related species likely produced similar antimicrobial compounds, the bioactive extracts were dereplicated through a two phase approach: first, by comparison with extracts from cultures of related strains, which did not display bioactivity in the well diffusion assay. Compounds that were found in both the active and inactive strains were assumed to not be responsible for the observed antibacterial activity. The remaining unassigned compounds were further dereplicated by searching for all known compounds produced by *Vibrio* species found in AntiBase 2012, MarinLit 2012 and The Dictionary of Natural Products. Analysis of the dereplicated UHPLC-HRMS data revealed the presence of an abundant compound with ions at \(m/z \) 623.2342 [M+H]+ and 645.2158 [M+Na]+ in extracts from cultures of *V. furnissii* S0821 and *V. fluvialis* S1110 which was tentatively identified as the siderophore fluvibactin based on the accurate mass (mass deviation 0.96 ppm). Subsequent MS/MS analysis, comparison with the literature UV spectrum as well as isolation and NMR analysis confirmed this assignment (Figures S2-S5 and Tables S2-S3). The UHPLC-HRMS analysis also found another abundant ion with \(m/z \) 404.1818, which was assigned to the known compound 4 (N,N-bis-(2,3-dihydroxybenzoyl)-norspermidine (mass deviation 0.49 ppm) (Figure 4A and 4B).

These compounds (fluvibactin and compound 4) were not detected when extracts were prepared from *V. furnissii* S0821 and *V. fluvialis* S1110 grown in chitin medium supplemented with 0.1 g/L of ferric citrate (Figure S6). These extracts were not inhibitory against *V. anguillarum* 90-11-287 (Figure S7). The bioactive extract was then divided into fractions by Mixed-Mode Anion Exchange SPE. Only the extract fraction containing the putative fluvibactin was inhibitory to *V. anguillarum* (Table 3 and...
Figure S8). A Chrome Azurol S assay performed on the same fraction confirmed the siderophoric nature of the compound (Table 3). The use of anion exchange chromatography allowed for the separation of fluvibactin from N-(3-oxo-decanoyl-L)-homoserine lactone (O-C10-HSL), which co-eluted under the reverse phase conditions used for UHPLC-HRMS analysis. Fractions containing the AHL (F3) (Figure S6) did not show bioactivity and the AHL was also found to be present in non-bioactive iron supplemented cultures (Figure S7). O-C10-HSL was identified based on accurate mass, retention time and the characteristic homoserine fragment ion at m/z 102.0549 ion (45).

DISCUSSION

We investigated to what extent culture parameters could affect (restore or induce) the production of antibacterial compounds in a collection of marine Vibrionaceae whose members were initially isolated based on their ability to antagonize the fish pathogen V. anguillarum. However, in later re-screenings, only approximately 10% of them retained the activity. With the use of substrates typical to the natural niche of isolation and allowing potential producer strains to reach a late growth phase, we could restore the bioactivity in one third of the strains. Allowing V. fluvialis and V. furnissii to reach a late growth phase before exposure to the target strain led to the identification of the siderophore fluvibactin as responsible for their antibacterial activity.

Different carbon sources can lead to significantly different profiles in microbial secondary metabolism (5, 9, 46). In our investigation, we used three molecules (glucose, mannose and chitin) that are abundant in the marine environment (22, 24) as substrate for marine Vibrionaceae. The number of...
bioactive (antibacterial) strains was nearly two and 3.5-fold higher when mannose and chitin were used as carbon-source, respectively, as compared to glucose.

The high efficacy of chitin in restoring (or inducing) the production of antibacterial compounds in the tested strains is in agreement with the ecology and lifestyle of *Vibrionaceae* that are adapted to live in marine niches richer in this polysaccharide than in other carbohydrates (25, 26). Indeed, vibrios are well known for their association with chitin-rich biotic surfaces, such as zooplankton (24, 47).

Chitinase genes and the chitin utilization pathway are conserved in *Vibrionaceae* (25, 26), and natural competence is induced by chitin in *V. vulnificus* (48) and *V. cholerae* (49). In the latter, chitin affects also chitin catabolism (27), biofilm formation and virulence (28, 50).

Chitin-dependent regulation of secondary metabolism mediated by the transcriptional regulator DasR occurs in the soil bacterium *Streptomyces coelicolor* A3(2) (51). In vibrios, one possible mechanism for a similar regulation could be through the two-component histidine kinase sensor ChiS, which has been characterized in *Vibrio cholerae* and is activated by chitin derived oligosaccharides (27). In the proposed model, a putative cognate receptor regulates the expression of target genes involved in the above-mentioned phenomena (27). Hunt and colleagues (25) suggested that genes with high homology to *chiS* (VC0622) and to some of the genes from the downstream (GlcNAc)2 operon (VC0611-VC0613 and VC0616-VC0619) are widespread among *Vibrionaceae*. However, their genome analysis included a limited number (ten) of species, possibly due to low availability of genome sequences at the time the study was conducted. We performed a broader analysis and showed that, indeed, both *chiS* and the complete (GlcNAc)2 operon (VC0611-VC0620), which were detected in all analyzed genomes, are very conserved and maintain their topological organization in *Vibrio* and *Photobacterium* species (Figures 2 and 3). The (GlcNAc)2 operon includes the gene encoding for the periplasmic (GlcNAc)2...
binding protein which inactivates ChiS when chitin is not present in the environment (27). Given its importance in *V. cholerae*, such a degree of conservation of genes hypothesized to be involved in the ChiS regulatory system in *Vibrionaceae* indicates that chitin could serve a regulatory role in the whole family. Certainly, chitin-dependent regulation of phenomena such as biofilm formation and biosynthesis of antibacterial compounds would be advantageous during competition for nutrients with other microorganisms in the marine environment.

Although the use of chitin restored or induced the production of antibacterial compounds in approximately one third of the isolates, this approach was not effective with the majority of the strains, even when they were allowed longer time before exposure to the target strain. Induction of silent/cryptic biosynthetic gene clusters has been achieved by exposing bacteria or fungi to small molecules produced by naturally co-occurring microorganisms (11, 52, 53). Similarly, it is likely that molecules that were present in the local seawater used to prepare the medium for the original screening/isolation procedure or that were produced by strains that were tested on the same plate (“co-cultivated”) might have elicited the biosynthesis of antibacterial compounds. Co-cultivation could therefore also be a strategy to be used to induce the production of antibacterial compounds in our strain collection.

Extracts of cultures from *V. furnissii* S0821 and *V. fluvialis* S1110 had antibacterial activity against *V. anguillarum*. The bioactivity was present in all tested media, however on chitin the antagonistic activity could be observed earlier than on the other media (data not shown). Genome analysis of the strains provided a list of four biosynthetic gene clusters potentially responsible for the biosynthesis of the
antibacterial compound. Three of them (AHL, ectoine and arylpolyenes) could be excluded as the cause of bioactivity through testing of pure standards in WDA and analysis of UV/Vis spectra of the extracts (Figures SI8- SI9).

The remaining predicted biosynthetic gene cluster had 72% gene similarity to the biosynthetic gene cluster for the catechol siderophore produced by *V. cholerae* vibriobactin(54). Due to the phylogenetic relatedness of *V. furnissii* and *V. fluvialis* with *V. cholerae* (42), we hypothesized that the identified biosynthetic gene cluster encodes for the fluvibactin non-ribosomal peptide synthetase. Fluvibactin is a siderophore produced by *V. fluvialis* (55), which differs from vibriobactin only in that it contains a single L-threonine residue rather than two (Figure 4). Siderophores similar to fluvibactin can inhibit bacterial and fungal growth (20, 56), and catechol iron chelators have also been suggested to protect bacteria from oxidative stress (57, 58). Hence, beside the competitive advantage during surface colonization due to the antibacterial activity of fluvibactin, producers of this compound might as well be protected from oxidative stress, which is a prevalent phenomenon in the marine environment (59).

Conclusion. We have shown that a rational choice of substrates typical of the niche of isolation of microorganisms is a valid cultivation strategy to enhance the numbers of bioactive strains in a screening step. Our results suggest a role of chitin in the production of secondary metabolism in *Vibrionaceae*. The genomes of members of this family of bacteria harbor great potential for chitin catabolism. Hence, genomic studies could predict which substrates other families of microorganisms might prefer and, subsequently, lead to the elicitation of biosynthetic gene clusters. Also, allowing the potential producing strain a temporal advantage (reaching stationary phase) is an important aspect to consider when designing a screening strategy.
FUNDING INFORMATION

SG was supported by an Early Stage Researchers Grant from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7-People-2012-ITN, under grant agreement No. 317058, “BacTory”. CP was supported by a grant from the Villum foundation (VKR023285). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. This work was carried out as part of the Galathea 3 expedition under the auspices of the Danish Expedition Foundation. This is Galathea 3 contribution no. P116.

ACKNOWLEDGMENT

We thank Jette Melchior for assistance with DNA extraction and the CAS assay. We are grateful to Agilent Technologies for the Thought Leader Donation of the UHPLC-qTOF UHPLC-QqQ system.
REFERENCES

18. **Wietz M, Mansson M, GotfredSEN CH, Larsen TO, Gram L.** 2010. Antibacterial Compounds...

coupled with chitin-based natural transformation enables rapid mutagenesis of *Vibrio vulnificus*.

Table 1. Antibacterial activity of 13 ethyl acetate extracts against *V. anguillarum* shown as the
diameter of clearing zones (+: between 1 and 15 mm; ++: between 16 and 25 mm; +++: over 25 mm).

Table 2 Potential for the production of secondary metabolites from *V. furnissii* S0821 and *V. fluvialis*
S1110 based on AntiSMASH (upper part of the table) and Cluster Finder algorithms (lower part of the
table). In the “Similarity” column, the percentages on the left and on the right sides of each slash refer
to *V. furnissii* S0821 and to *V. fluvialis* S1110, respectively. BGC: biosynthetic gene cluster; NRPS:
non-ribosomal peptide synthetase

Figure 1. Number of bioactive *Vibrionaceae* strains (of 295 in total) on glucose (rhombus), mannose
(square) and chitin (triangle) allowing 0, 24 and 48 hours pre-growth of the potential producer before
exposing the target strain, *Vibrio anguillarum*.

Figure 2. Distribution of the *chiS* gene and of the (GlcNAc)_2 operon among *Vibrio* spp..
GenBank/EMBL/DDBJ accession numbers of the used genomes are indicated in brackets.

Figure 3. Distribution of the *chiS* gene and of the (GlcNAc)_2 operon (VC0611-VC0620) among
Photobacterium spp.. GenBank/EMBL/DDBJ accession numbers of the used genomes are indicated in
brackets.

Figure 4 (A) Structures of vibriobactin (1) (54), fluvibactin (2) (55), 3 and 4. (B) UHPLC-HRMS Total
Ion Chromatogram (TIC) of the culture extract from *V. furnissii*. The peaks assigned to fluvibactin (2)
and compound 4 are highlighted.
Table 1. Antibacterial activity of 13 ethyl acetate extracts against *V. anguillarum* shown as the diameter of clearing zones (+: between 1 and 15 mm; ++: between 16 and 25 mm; +++: over 25 mm).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Species</th>
<th>Inhibition of V. anguillarum</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0821</td>
<td>V. furnissii</td>
<td>++</td>
</tr>
<tr>
<td>S1110</td>
<td>V. fluvialis</td>
<td>++</td>
</tr>
<tr>
<td>S1162</td>
<td>V. fluvialis</td>
<td>++</td>
</tr>
<tr>
<td>S1732</td>
<td>Vibrio sp.</td>
<td>+</td>
</tr>
<tr>
<td>S2043</td>
<td>V. coralliilyticus</td>
<td>+++</td>
</tr>
<tr>
<td>S2052</td>
<td>V. coralliilyticus</td>
<td>+++</td>
</tr>
<tr>
<td>S2054</td>
<td>V. coralliilyticus</td>
<td>+++</td>
</tr>
<tr>
<td>S2056</td>
<td>V. coralliilyticus</td>
<td>++</td>
</tr>
<tr>
<td>S2150</td>
<td>Vibrio sp.</td>
<td>+</td>
</tr>
<tr>
<td>S2600</td>
<td>V. nigripulchritudo</td>
<td>+</td>
</tr>
<tr>
<td>S2601</td>
<td>V. nigripulchritudo</td>
<td>+</td>
</tr>
<tr>
<td>S2604</td>
<td>V. nigripulchritudo</td>
<td>+</td>
</tr>
<tr>
<td>S4053</td>
<td>V. coralliilyticus</td>
<td>+++</td>
</tr>
</tbody>
</table>
Table 2 Potential for the production of secondary metabolites from *V. furnissii* S0821 and *V. fluvialis* S1110 based on AntiSMASH (upper part of the table) and Cluster Finder algorithms (lower part of the table). In the “Similarity” column, the percentages on the left and on the right sides of each slash refer to *V. furnissii* S0821 and to *V. fluvialis* S1110, respectively. BGC = biosynthetic gene cluster; NRPS = non-ribosomal peptide synthetase.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Type of cluster</th>
<th>V. furnissii S0821</th>
<th>V. fluvialis S1110</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AntiSMASH</td>
<td>Hserlactone</td>
<td>1</td>
<td>1</td>
<td>66/66% ectoine BGC</td>
</tr>
<tr>
<td></td>
<td>Ectoine</td>
<td>1</td>
<td>1</td>
<td>72/72% vibriobactin BGC</td>
</tr>
<tr>
<td></td>
<td>NRPS</td>
<td>1</td>
<td>1</td>
<td>90/75% APE BGC</td>
</tr>
<tr>
<td></td>
<td>Arylpolyene</td>
<td>1</td>
<td>1</td>
<td>5% lipopolysaccharide BGC</td>
</tr>
<tr>
<td>Cluster Finder</td>
<td>Saccharide</td>
<td>2</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Putative</td>
<td>8</td>
<td>9</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>Fatty acid</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saccharide-Fatty acid</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* for *V. furnissii* S0821: two clusters with 29% gene similarity to the O&K antigen BGC; for *V. fluvialis* S1110: two clusters with 3 and 18% gene similarity to the O&K antigen BGC. □ for *V. furnissii* S0821: one cluster with 4% gene similarity to the xantholipin BGC; for *V. fluvialis* S1110: one cluster with 14% gene similarity to the O-antigen BGC and one cluster with 36% gene similarity to the vibrioferrin BGC.
Table 3. Siderophore (column “CAS assay”) and antibacterial activity of the raw extract from a culture of *V. furnissii* S0821 and of the six derived fractions (F1-F6). The addition of a siderophore to the CAS solution causes a change in color from dark blue to orange-yellow. Activity against *V. anguillarum* is measured as the diameter of inhibition zones.

<table>
<thead>
<tr>
<th>Sample</th>
<th>CAS assay</th>
<th>Inhibition zone (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw extract</td>
<td>Yellow</td>
<td>20</td>
</tr>
<tr>
<td>F1</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>F2</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>F3</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>F4</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td>F5</td>
<td>Dark orange</td>
<td>9</td>
</tr>
<tr>
<td>F6</td>
<td>Yellow</td>
<td>23</td>
</tr>
<tr>
<td>Blank</td>
<td>Blue</td>
<td>-</td>
</tr>
</tbody>
</table>
Spotting of target strains
(hours from spotting of Vibrios)

Number of bioactive strains

- Glucose
- Mannose
- Chitin
<table>
<thead>
<tr>
<th>Organism</th>
<th>Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrio cholerae O1 biovar El Tor N16961 (NC_002505)</td>
<td>A-L:VC0611-VC0620 M:chiS (VC0622)</td>
</tr>
<tr>
<td>Photobacterium aquae CGMCC 1.12159 (LDOT01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium damsela subsp. damsela CIP 102761 (ADBS01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium sp. AK15 (AMZO01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium leiognathi ATCC 33979 (JZSL01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium gaetbulicola AD005a (JWLZ01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium profundum S59 (CR354331)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium profundum 3TCK (AAPH01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium ganghwense DSM 22954 (LOU01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium damsela subsp. damsela ATCC 33539 (JZSI01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium angustum ATCC 33977 (JZSN01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium angustum S14 (AAOJ01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium kishitanii ATCC BAA-1194 (JZSP01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium kishitanii GCRL-A1-2 (JZTD01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium kishitanii GCRL-A1-3 (JZTC01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium kishitanii GCRL-A1-4 (JZTB01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium aphoticum DSM 25995 (LOV01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium phosphoreum ANT-2200 (CCAR02)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium gaetbulicola Gung47 (CP005974)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium sp. SKA34(AAOU01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium iliopiscarium ATCC 51761 (JZSR01)</td>
<td></td>
</tr>
<tr>
<td>Photobacterium phosphoreum ATCC 11040 (JZSJ01)</td>
<td></td>
</tr>
</tbody>
</table>
A

1

2

3

4

B

Counts vs. Acquisition Time (min)

AEM

Applied and Environmental Microbiology