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Transformations Based on Continuous
Piecewise-Affine Velocity Fields

Oren Freifeld , Member, IEEE, Søren Hauberg, Member, IEEE,
Kayhan Batmanghelich, Member, IEEE, and Jonn W. Fisher III, Member, IEEE

Abstract—We propose novel finite-dimensional spaces of well-behaved Rn ! Rn transformations. The latter are obtained by (fast and
highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive,
effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling
choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood
evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using
Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization
over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration;
real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.

Index Terms—Spatial transformations, continuous piecewise-affine velocity fields, diffeomorphisms, tessellations, priors, MCMC

Ç

1 INTRODUCTION

DIFFEOMORPHISMS are important in many fields such as
computer vision, medical imaging, graphics, and robot-

ics. Unfortunately, current representations of highly-expressive
diffeomorphism spaces are overly complicated. Thus, despite
their potential and mathematical beauty, their applicability is
limited, especially in large datasets or when computing time
is restricted. Moreover, in such spaces, owing to their com-
plexity, using powerful inference tools, e.g., Monte Carlo
Markov Chain (MCMC), still presents challenges, although
some encouraging recent progress has been made in this
active field of research (e.g., [1], [2], [3]). Lastly, seemingly-for-
midable mathematical preliminaries render these spaces
accessible to only a small group of geometry experts. This hin-
ders the exchange of ideas between communities and unnec-
essarily limits the potential impact of diffeomorphism-based
methods; e.g., while certain machine-learning areas can bene-
fit from such methods, little work has been done in this direc-
tion, partly since practical computational tools have yet to
become available.

Motivated by practicalities of probabilistic modeling and
statistical inference as well as a desire to make diffeomor-
phisms broadly accessible, in this work, which expands [4],
we propose a representation that (as we will show in

Section 4) combines simplicity, expressiveness, and effi-
ciency. Particularly, we propose new spaces of transformations
that are based on (fast, highly-accurate) integration of Continuous
Piecewise-Affine (CPA) velocity fields. Importantly, as we will
show, their benefits go beyond speed and accuracy.

Possible applications of the proposed representation are
numerous, as we demonstrate here with: image editing and
shape manipulation; unconstrained optimization over
monotonic functions; modeling of Cumulative Distribution
Functions (CDFs) and histograms with order-preserving
geometry; time warping; image registration; landmark-based
image warping/animation; “prettifying” results of (non-
diffeomorphic) dense-correspondence tools. Moreover, we
recently used the proposed representation as a key compo-
nent in a learned data-augmentation scheme [5], improving
the results of image classifiers. Finally, our code is available at
https://github.com/freifeld/cpabDiffeo.

2 RELATED WORK

Pattern Theory and Differential Geometry. Representing objects
via transformations acting on them is a Pattern-Theoretic cor-
nerstone [6]. Our work is influenced by many impressive
works in this field, primarily in the geometry-oriented areas
of computer vision and medical imaging. Due to space limits,
we can mention only a few: [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19]. Most of these works are based on
complicated, usually1-dimensional, spaces, and the associ-
ated representations and computations are, in practice, discre-
tized and/or otherwise approximated. We take a more
practical approach and start from a finite-dimensional space,
in which discretizing the representation is unneeded, while
computations require no approximations in the 1D case and
almost no approximations in higher dimensions. The result is
a simple, efficient, and practical machinery for working with
a rich space of diffeomorphisms. The rapidness and high
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accuracy of Algorithm 1 (see Section 4), together with the fact
that the machinery is easily implemented on GPU, let us eval-
uate transformations fast. This, in turn, together with the fact
that the representation effortlessly supports coarse-to-fine
analysis and the use of smoothness priors, allows the use of
general-purpose powerful inference methods such as
MCMC. See also other recent approaches for MCMC on dif-
feomorphisms, e.g., [1], [2], [3].

In applications involving landmark pairs, most methods
above can deal with only a small number of landmarks as
their inference complexity grows super-linearly with the
number of landmarks. Consequently, they cannot leverage
the success of popular tools for dense-correspondence
extraction (e.g., [20], [21]), highlighting a disconnect with
the larger computer-vision community. Our algorithms
have linear complexity and are (embarrassingly) paralleliz-
able, yielding sub-linear running times in practice.

Note that our representation, despite the fact it involves
tessellations, is not not based on control points (such as, e.g.,
[2], [19]); e.g., in cases where we either impose volume

preservation or use type-II tessellations (see Section 4), one
cannot simply define arbitrary velocities at the tessellation
vertices as there are too few degrees of freedom.

PA and CPA Affine Maps in Computer Vision. Cootes
et al. [22] use PA transformations. The latter, while simple
and efficient, are neither continuous nor invertible. Several
other works use CPA transformations (e.g.,[23]; see also [24]),
sometimes with additional constrains (e.g., [25]). Common to
those works is the direct use of PA (or CPA) maps as transfor-
mations. Those are not differentiable (and are often not invert-
ible), hence not diffeomorphisms. In contrast, by integrating
CPA velocity fields, we obtain transformations–which them-
selves are not PA (hence not CPA)–that are (orientation-
preserving) diffeomorphisms. Lin et al. [26] work with CPA
velocity fields but, rather than integrating them, they use
them to model motion pattens.

Closer to ours is the elegant log-Euclidean polyaffine method
proposed by Arsigny et al. [27] (see also [28], [29]) that, similar
to ours, uses finitely-many affine building blocks to build flexi-
ble velocity fields. They use a spatial averaging with smoothly-
decaying weights of the blocks to ensure a smooth velocity
field whose integration yields trajectories that define a diffeo-
morphism. However, as their integral has no closed form they
must use an approximation throughout; i.e. they must numeri-
cally approximate the entire trajectory. This is computationally
demanding and can cause substantial approximation errors.
Their method is based on approximating the integral of a
weighted sum of affine velocity fields via a weighted sum of
the affine diffeomorphisms associated with these fields. To
reduce errors, they divide the field by a large 2#steps as the
approximation holds only for near-zero velocity. To keep the
number of steps not too large, they smartly generalize the scal-
ing-and-squaring method. The result is, however, still exact
only if a single affine component is used. For expressiveness,
however, a larger number is needed, and accuracy drops. It is
thus unsurprising they focus on a small number of affine com-
ponents, and that to achieve reasonable timings, they use their
method only in the last stage of inference; till then they resort
to a non-diffeomorphic fusion. In contrast, we use affine build-
ing blocks in a different way; i.e., we use them in a piecewise
manner, but, using linear constraints, force them to yield

everywhere-continuous velocity fields. This seemingly-subtle
difference has profound implications. In 1D, it yields a closed-
form integration; in higher dimensions it lets us integrate
almost the entire trajectory in closed form using large (hence
few) steps which are exact, and only in small portions of the
trajectory do we resort to a numerical solver. This virtually
eliminates numerical issues and allows construction of sub-
stantially more expressive transformations; e.g., Arsigny
et al. [27] report using 7 affine blocks, while we routinely use
tens or hundreds while neither accuracy nor computational
cost becomes an issue. Though this indirect comparison of
integration methods (as their method is inapplicable to our
velocity fields and vice versa, a direct comparison is impossi-
ble) favors ours, it is just part of the story. Our representation
has additional advantages over theirs, including simplicity,
better suitability for a GPU implementation, trivial handling
of boundary constraints and volume preservation, and sim-
pler encoding of statistical priors and coarse-to-fine analysis.

Discrete Representations and Approximations. Allassonni�ere
et al. [13] efficiently approximate diffeomorphisms. Unlike our
transformations, their non-differentiable transformations are
not diffeomorphisms. While we focus on a general-purpose
representation, diffeomorphic demons [16] is a registration
method, popular due to its speed, based on discretely-defined
fields. As its authors note, these may be inconsistent with a
diffeomorphic framework and may not preserve orientation.
They also cannot easily impose volume preservation, though
some success was reported [30]. Also, a computer representa-
tion of a discrete-field sequence needs plenty of memory.
These issues can be obviated by adapting their method to use
our compact and continuously-defined fields. More generally,
approximations based on discretely-defined fields and/or
discrete diffeomorphisms are widely used, e.g., in medical
imaging [16], [31], robotics [32], [33], [34], geometric model-
ing [35] and fluid dynamics [36]. Unlike these works, both our
fields and transformations are continuously-defined and
more compact.

Statistics on Manifolds and Tangent Spaces. Like many
authors (including of some aforementioned works), we han-
dle the nonlinearity of a space via the linearity of the tangent
space at the identity [11], [27], [29], [37], [38], [39], [40], [41].
Other tools (not explored here) for statistics on manifolds
that either use other tangent spaces or work on the manifold
itself [42], [43], [44], [45], [46], [47], [48] may also be applied
to our spaces. Particularly, parallel-transport tools may be
especially relevant here [49], [50], [51], [52], [53], [54], [55].

CDF/Histogram Modeling. In modeling distributions, it is
better to work with cummulative distribution functions over
densities since the latter might not exist and inter-density
Lp (or sphere-based) distances can be arbitrarily large even
if their probability measures are essentially the same. One
approach to CDF representation uses p-Wasserstein spaces,
usually p 2 f1; 2g, the p … 1 case is tied to Earth Mover’s
Distance [56]. A limitation of this approach is that it needs
bounded pth-moments and hard computations. 1-Wasser-
stein methods also lack easy synthesis of new points that
are valid histograms/CDFs. While it is less of an issue for
spherical methods [57], they suffer from two issues. 1) They
do not respect the ordering of the bins or of R. While, for
histograms, bin ordering is sometimes immaterial, the order-
ing of R matters. 2) Large moves on the sphere lead to
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CDFs/histograms with negative values. The problems
above do not exist in our representation.

Image Warping and Shape Manipulation. Related to ours are
works on image warping ([58], [59], [60], [61], [62]) and
shape manipulation (e.g., [63]). Unlike most methods, ours
is fast, invertible and handles constraints effortlessly.

Benefits of the Proposed Representation. To summarize,
existing spaces of diffeomorphisms offer only subsets of the
following list: 1) high expressiveness; 2) ease of implemen-
tation; 3) modest mathematical preliminaries (basic linear
algebra and ODE); 4) ease of handling optional constraints
(e.g., volume preservation); 5) convenient modeling choices
(coarse to fine, easy-to-use smoothness priors); 6) finite
dimensionality; 7) fast and highly-accurate computations.
These benefits, especially the last three, render more tracta-
ble the use of inference tools that are usually too expensive
in the context of rich diffeomorphisms.

3 HIGH-LEVEL SUMMARY

The section provides a summary of the proposed representa-
tion, laying the ground for the formal treatment (Section 4).
Let V be either Rn or a certain type, to be defined later, of a
proper subset of Rn (i.e., VzRn). A popular way to obtain a
diffeomorphism, T : V! V, is via the integration of velocity
fields; see Fig. 1a. The choice of velocity-field family affects
the dimensionality, structure, and expressiveness of the
space of the resulting diffeomorphisms, as well as the accu-
racy and computational complexity of the integration. Thus,
this choice crucially affects which probabilistic models can
be used and the tractability of the statistical inference.

CPA Velocity Fields. We base our representation on spaces
of V! Rn CPA velocity fields (Fig. 1). The term ‘piecewise’
is w.r.t. a certain tessellation (Section 4.1), denoted by P. Let

VV;P be such a space. While VV;P depends on V and P, we
will usually notationally suppress these dependencies, and
will just write V. One appeal of these spaces is that they are
finite-dimensional and linear (although their elements, i.e., the
velocity fields, are usually nonlinear). Let d … dimðVÞ. The
spaces Rd and V are identified with each other (as we will
explain in Section 4.2, Eq. (11)), where every u 2 Rd is identi-
fied with exactly one element of V, denoted by vu, and vise
versa. Symbolically, we write

u$ vu where vu 2 V ; u 2 Rd : (1)

Likewise, u þ u0 $ vu þ vu0 , vuþu0 and au$ avu , vau where
u; u0 2 Rd and a 2 R. Note that d depends on P (and typi-
cally grows with n). A finer P implies a higher d and richer
velocity fields and vice versa (Figs. 4, 2, and 3).

Remark 1. There are many finite-dimensional linear spaces
of continuous velocity fields (e.g., [27] or other spaces
based on splines). We will show that CPA spaces, how-
ever, have additional useful properties in our context.

From CPA Velocity Fields to Trajectories. Modulo a detail
(to be explained in Section 4.4) related to the case VzRn,
any continuous V! Rn velocity field, whether Piecewise-
Affine (PA) or not, defines differentiable R! V trajectories.
If x 2 V then vu 2 V defines a trajectory, t 7! fuðx; tÞ, such
that fuðx; 0Þ … x and fuðx; tÞ solves the integral equation

fuðx; tÞ … xþ
Z t

0
vuðfuðx; tÞÞ dt where vu 2 V : (2)

The equivalent ODE (with an initial condition x) is

dfuðx; tÞ=dt … vuðfuðx; tÞÞ : (3)

Remark 2. Eq. (2), whose unknown fuðx; �Þ is both inside
and outside the integral, should not be confused with the
piecewise-quadratic V! Rn map, y 7!

R y
0n�1

vuðxÞ dx. The
latter, a popular tool in computer-vision [24] and numeri-
cal analysis, is unrelated to our work. Particularly, both
x 7! fuðx; tÞ and t 7! fuðx; tÞ are not piecewise quadratic.

CPA-Based (CPAB) Transformations. Modulo that detail,
any continuous V! Rn velocity field, whether PA or not,
defines a transformation; i.e., a map whose input and output
are viewed as points, not vectors. Letting x vary and fixing
t, x 7! fuðx; tÞ is an V! V transformation. Without loss of
generality (Section 4), we may set t … 1 and define

T uð�Þ , fuð�; 1Þ; u 2 Rd : (4)

Fig. 1. (a) Integration of sufficiently-nice velocity fields is widely used to
generate well-behaved nonlinear transformations. The choice of using
CPA velocity fields, among other benefits, reduces computational costs,
increases integration accuracy, and simplifies modeling and inference. A
CPAB transformation, x7!fuðx; tÞ, is one that is based (via integration) on a
CPA velocity field, vu. (b) A 1D example. (c-d) Two 2D examples, where in
(d) there are also additional constraints. Top row: a continuously-defined vu

in select locations. Middle: Visualizing the horizontal (vu
h, left) and vertical

(vu
v, right) components as heat maps highlights the CPA property; blue=��,

green=0, and red=� where �=maxx2Vmaxðjvu
hðxÞj; jv

u
vðxÞjÞ. Bottom:

Isrc � fuð�; 1Þ.

Fig. 2. Several type-I tessellations of a 2D region.

Fig. 3. Several type-II tessellations of a 2D region.
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