Thermofluid topology optimization of heat sinks

Haertel, Jan Hendrik Klaas; Lei, Tian; Alexandersen, Joe; Engelbrecht, Kurt; Lazarov, Boyan Stefanov; Sigmund, Ole

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Thermofluid topology optimization of heat sinks

Jan Haertel1*, Tian Lei1, Joe Alexandersen2, Kurt Engelbrecht1, Boyan Lazarov2, Ole Sigmund2

1 Department of Energy Conversion and Storage, Technical University of Denmark
2 Department of Mechanical Engineering, Technical University of Denmark
* jhkh@dtu.dk

Acknowledgments
This work was supported by the TOpTEn project sponsored through the Sapere Aude Program of the Danish Council for Independent Research (DFF – 4005-00320).

References

Conclusions and outlook
It is shown that topology optimization models can be used to generate practical heat sink designs with improved performance compared to standard benchmark structures. Current and future work in the field of thermofluid topology optimization involves, among others, large-scale 3D optimization, RANS-modelling, and transient problems.

Danish Days on Caloric Materials and Devices, 2-3 October 2017, Technical University of Denmark, Risø Campus