Dermal Uptake of Benzophenone-3 from Clothing

Morrison, Glenn C.; Bekö, Gabriel; Weschler, Charles J.; Schripp, Tobias; Salthammer, Tunga; Hill, Jonathan; Andersson, Anna-Maria; Toftum, Jørn; Clausen, Geo; Frederiksen, Hanne

Published in:
Environmental Science and Technology

Link to article, DOI:
10.1021/acs.est.7b02623

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Dermal uptake of benzophenone-3 from clothing

Glenn C. Morrison1,*, Gabriel Bekö2, Charles J. Weschler2,3, Tobias Schripp4,5, Tunga Salthammer4, Jonathan Hill1, Anna-Maria Andersson6,7, Jørn Toftum2, Geo Clausen2, Hanne Frederiksen6,7

1 Missouri University of Science and Technology, Civil, Architectural and Environmental Engineering, Rolla, MO, 65409, USA
2 Technical University of Denmark, International Centre for Indoor Environment and Energy, Department of Civil Engineering, Lyngby, Denmark
3 Rutgers University, Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
4 Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany
5 German Aerospace Center, Institute of Combustion Technology, Stuttgart, Germany
6 Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
7 International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark

*Corresponding author
Glenn C. Morrison
Missouri University of Science and Technology
221 BCH, 1401 N. Pine St.
Rolla, MO 65409
Phone: 573 341-7192
Email: gcm@mst.edu
Abstract
Benzophenone-3 (aka BP-3, oxybenzone) is added to sunscreens, plastics and some coatings to filter UV radiation. The suspected endocrine disruptor BP-3 has been detected in the air and settled dust of homes and is expected to redistribute from its original sources to other indoor compartments, including clothing. Given its physical-chemical properties, we hypothesized that dermal uptake from clothing could contribute to the body burden of this compound. First, cotton shirts were exposed to air at an elevated concentration of BP-3 for 32 days; the final air concentration was 4.4 μg/m3. Then three participants wore the exposed shirts for 3 hours. After this 3-h exposure, participants wore their usual clothing while collecting urine samples for the next 48 hours. Urine was analyzed for BP-3 and a metabolite, BP-1, and six other UV filters. The rate of urinary excretion of the sum of BP-1 and BP-3 increased for all participants during and following the 3-hour exposure. The summed mass of BP-1 and BP-3 excreted during the first 24 hours attributable to wearing exposed t-shirts were 12, 9.9 and 82 μg for participants 1, 2 and 3 respectively. Analysis of these results coupled with predictions of steady-state models suggest that dermal uptake of BP-3 from clothing could meaningfully contribute to overall body burden.

Introduction
2-Hydroxy-4-methoxybenzophenone commonly known as benzophenone-3 (BP-3), is an ultraviolet (UV) light filter used in sunscreen, cosmetics and other personal care products. It is also added to plastics and coatings to reduce UV damage in industrial and consumer products. BP-3 and its metabolites have been found in blood and urine of people in the US, Europe and China$^{2-5}$. Based on its weak estrogenic activity as shown in several in vitro and in vivo studies,
BP-3 has been flagged as a suspected endocrine disruptor and is on the EU-commission priority list of potential endocrine disrupting chemicals. The endocrine disrupting ability of BP-3 was recently confirmed in a study showing a skewed sex ratio favoring females in zebrafish following developmental exposure. In addition, recent in vitro studies have shown that BP-3 and some other chemical UV filters mimic the effect of progesterone on the CatSper Ca\(^{2+}\) channel in human sperm cell, triggering multiple sperm cell functions essential for fertilization of the egg and exposure to BP-3 is therefore suspected to impact on male fertility. Furthermore, the major metabolite of BP-3, 2,4-dihydroxybenzophenone or benzophenone-1 (BP-1), is a suspected endocrine disruptor and is included on the Substitute it Now (SIN) list. In vitro studies have identified both estrogenic and anti-androgenic activity for BP-1, and urinary BP-1 has been shown to be associated with endometriosis in US women.

Dermal uptake from personal care products and cosmetic products is believed to constitute the major exposure pathway for BP-3. A number of studies have documented dermal uptake of BP-3 following its topical application. In a human subject trial, Janjua et al. observed a rapid rise in the BP-3 concentration in plasma and urine after applying a BP-3 containing cream to 2 m\(^2\) of body area. Median urine concentrations after 24 h (12 ng/ml for females; 81 ng/ml for males) were within the 25-75th percentile range observed in the US population (5.8-94 ng/ml), but somewhat higher than the 25-75th percentile range observed in Danish pregnant women (1.1-14 ng/ml) and young Danish men from the general population (1.3-7.8 ng/ml). Zamoiski et al. observed a positive correlation between self-reported sunscreen use and urinary BP-3. In an intervention study, Harley et al. observed an average 36% decrease in urinary BP-3 concentrations in adolescent girls after being encouraged to use BP-3-free personal care products.
provided by the researchers. BP-3 was found in most personal care products tested by Liao et al. and they estimated that 80% of dermal exposure is due to skin lotions and face creams.

Dermal uptake of BP-3 may also occur from contaminated air and clothing, although uptake from either has not been directly observed. Weschler and Nazaroff predicted that dermal uptake to bare skin from indoor air could contribute substantially to the body-burden of many semi-volatile organic compounds (SVOCs). Weschler et al. supported these predictions by demonstrating the dermal uptake of two phthalates from air for six bare-skinned subjects.

Applying the Weschler and Nazaroff model, Morrison et al. predicted that dermal uptake of BP-3 from the gas phase is probable, if it is present in indoor air. Wan et al. observed BP-3 concentrations in the air of US homes ranging from 0.19 to 72 ng/m³. Although they estimated that inhalation would not be an important pathway, they did not consider the potential for dermal uptake from air or clothing.

Dermal uptake from air can also be influenced or even enhanced by wearing clothing that had been exposed to, or impregnated with, skin-permeable chemicals. Xue et al. detected BP-3 in 70% of newly purchased infant clothing and estimated a mean dermal dose of about 7 ng/kg body weight /day. Clothing can also have a high sorptive capacity for SVOCs present in homes and other buildings, resulting in high-intensity sources of exposure close to the skin.

Therefore, BP-3 adsorbed to clothing from indoor air may meaningfully contribute to overall body-burden of BP-3. While cosmetics and other personal care products can contribute significantly to exposure, we are concerned about the persistent, all-year background exposure which is seemingly independent of sunscreen or personal care product application. Efforts to reduce BP-3 in these products may have a limited effect if substantial amounts are also absorbed from indoor air and clothing.
The objective of this research is to investigate the hypothesis that dermal uptake can occur for individuals wearing clothing that has had the opportunity to sorb BP-3 from air.

Methods.

Shirt dosing and participant exposure experiments took place at the Technical University of Denmark (DTU), Lyngby, Denmark. Plasma and blood analysis took place at the Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark. BP-3 air samples were collected at DTU and analyzed at Fraunhofer, WKI Braunschweig, Germany. The research protocol was approved by the Capital Region of Denmark Committee for Research Ethics (case no. H-16018670).

Shirts. Five new, dark blue, long-sleeve t-shirts were purchased on May 4, 2016 from a local department store in Lyngby, Denmark. They were made of 100% cotton according to the attached tag. They were identical except for size (one small, one medium, two large). The measured density and thickness were 0.28 g/cm3 and 0.062 cm, respectively. They were washed in a mechanical washer with hot water and a fragrance-free detergent. They were dried with an electric hot air dryer. Four of the t-shirts were then transferred to the dosing chamber, while the fifth was kept as an unexposed control.

BP-3. BP-3 of 98+ % purity was purchased from Alfa Aesar, Thermo Fisher GmbH, Karslruhe, Germany. The properties of BP-3 can be found in Supporting Information, Table S1.

Shirt dosing chamber and shirt preparation. A small closet-sized, sealed dosing chamber was constructed to expose shirts to an elevated air concentration of BP-3. The chamber was constructed of foam-board covered in aluminum foil with a metal internal support frame. Approximately 20 g of BP-3, a solid at room temperature, was heated until melted and brushed
onto three clean 0.15 m2 aluminum sheet pans to increase the exposed surface area. These pans were placed on the floor of the chamber and a small muffin fan was installed to enhance air movement. Four shirts were hung inside-out on plastic hangers in the sealed chamber for 32 days. On day 27, the pans coated with BP-3 were removed from the chamber, but the shirts were not removed, and the chamber was re-sealed. Removing the pans for several days allows shirts to equilibrate with the surrounding air without an emission source driving sorption. Chamber concentrations were measured (see Air concentrations section) on day 31 and shirts were worn by participants immediately after being removed from the dosing chamber on day 32.

Participant exposure chamber. The participant exposure chamber has been described in detail elsewhere23. Briefly, the 55 m3 chamber is a converted room with a controllable ventilation system operated at an air exchange rate of 0.7/h. Unlike prior dermal uptake experiments23,28, the concentration of the target analyte was not intentionally elevated in the chamber and participants did not wear breathing hoods during the three-hour exposure period. Even though the participants were wearing shirts with sorbed BP-3, we anticipated that the breathing zone concentration would be low because the chamber was well ventilated and well mixed with fans. As a check of this assumption, the air concentration near the breathing zone was measured to determine if inhalation contributed significantly to total dose (see Air concentrations section). The temperature was between 20-23ºC during the exposure period.

Participants. Prior to the exposure, the 3 male participants, all with normal characteristics (Table 1) were asked not to apply any sunscreen or any other personal care products that may have contained UV filters two days before and two days after the three-hour exposure period. The participants were also asked not to shower after exposure until the following morning. Each participant chose a shirt that they felt fit them best. The shirts were normal-to-close fitting, but
neither skin-tight nor very loose. See Supporting Information Figure S1 for images of participants wearing shirts.

Table 1. Personal characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Participant 1</th>
<th>Participant 2</th>
<th>Participant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>27</td>
<td>36</td>
<td>51</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>73</td>
<td>71</td>
<td>84</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.80</td>
<td>1.80</td>
<td>1.84</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>22.5</td>
<td>21.9</td>
<td>24.8</td>
</tr>
<tr>
<td>BSA (m(^2))</td>
<td>1.92</td>
<td>1.89</td>
<td>2.08</td>
</tr>
</tbody>
</table>

BMI; body mass index is calculated as \((\text{body weight (kg)})/(\text{height (m)})^2\)

BSA; body surface area (based on method of DuBois and DuBois\(^42\))

Urine sample collection. The participants collected the total volume of three consecutive first-morning urine voids, the first one on the morning prior to exposure (day 1). During the period between the first-morning urination on the exposure day and the first-morning urination the following day (day 2), they also collected the total volume of each spot urine voids separately. Finally, during the period between the first-morning urination on day 2 and the first-morning urination on day 3 they collected all spot urine voids as one pool (Figure 1). All urine samples were collected in 1 L or 2.5 L polyethylene bottles.
In the chemical laboratory, urine samples were handled immediately after being received. All urine samples were weighed and 5 ml aliquots of all samples were stored. Subsequently a 24-hour urine pool for day 1 was prepared by pooling the remaining volume of all spot urine samples of day 1 together with the first-morning urine of day 2. For a 24 hour urine pool of day 2 the remaining volume of the spot urine pool from day 2 was combined with the first-morning urine of day 3. Aliquots of all urine samples were stored at -20°C until chemical analysis.

Shortly before exposure began, a peripheral venous catheter (venflon) was placed in the antecubital vein of each participant. Through this catheter a blood sample was collected immediately before the start of the exposure period and five additional blood samples were collected one hour apart over the next five hours after which the catheter was removed. Additionally, blood samples were taken in the morning of day 2 and 3 by venipuncture of the cubital vein (Figure 1). Blood samples were allowed to clot and serum was obtained by
centrifugation for 10 min at 2000g and subsequently aliquoted and stored at -20°C until chemical analysis.

Chemical analyses. All urine and serum samples were analyzed for the free and total (sum of free and conjugated) content of eight different UV filters (Supporting Information, Table S2) by a recently developed method for UV filters analyzed in urine using isotope dilution TurboFlow-liquid chromatography – tandem mass spectrometry (LC-MS/MS) with prior enzymatic deconjugation. In addition, the method was optimized and validated for analysis of UV filters in serum. The limit of detections (LOD) for BP-1 and BP-3 were respectively 0.25 and 0.28 ng/ml in urine and 0.13 and 0.12 ng/ml in serum. Other LODs are shown in Supporting Information, Table S2.

In short, the samples were analyzed in four batches for, respectively, urine and serum samples with and without enzymatic deconjugation. Each batch included standards for calibration curves, 24 urine or 27 serum samples, three blanks, and control material of respectively urine or serum containing three samples pooled unspiked, three samples pooled spiked with native UV filter standards at a low level and three samples pooled spiked at a high level.

The recovery for all analytes spiked in urine or serum in both spike levels was ≥90%, except for 5-chloro-2-hydroxybenzophenone (BP-7) at low (70%) and high (75%) spike levels in serum and at both spike levels (>79%) in urine.

Air concentrations. Air samples were collected by drawing 10-20 L of air through sorbent tubes containing Tenax-TA (Buchem, BV) with a calibrated sampling pump set at 0.1-0.2 L/min. Three samples were taken from the shirt dosing chamber one day before the participant exposure experiments, and a field blank was set aside for later analysis. The field blank was treated exactly
as other tubes except that no air sample was collected. Air samples were also collected from the breathing zone of two participants during the 3 h exposure period. The sample tube was attached to the participant’s work desk, with the inlet approximately 20-30 cm from the nose and mouth region. The tubes were analyzed for BP-3 via thermal desorption (TD-100, Markes Int.) and gas chromatography (7890B GC, Agilent Technologies) coupled with mass spectrometry (5977A MSD, Agilent Technologies). Separation was performed on a DB-5MS column (60 m x 0.25 mm x 0.25 µm). The mass spectrometer was operated in selected ion monitoring mode using m/z 227 as quantifier and m/z 151 as qualifier mass. Calibration information and determination of LOD is shown in Supplementary Information (Section S1 and Figures S2 and S3). We did not quantify airborne BP-1 in the shirt dosing chamber or in breathing zone.

Extraction from fabrics. After exposure, each shirt was placed into separate, cleaned glass jars and shipped to Missouri S&T for analysis. Four square pieces, approximately 10 cm² each, were cut from four quadrants of the back of each shirt. Each piece was extracted in 5 ml of acetonitrile, sonicated for 30 min and filtered. The extract was analyzed by injecting 15 µl into a Phenomenex Syrenzi 4u Hydro-RP 80A column on a LabTech UV-600 HPLC using 10% water and 90% acetonitrile in gradient mode with detection at 325 nm. A seven point calibration was performed between 0.5 µg/ml and 25 µg/ml. The limit of detection was estimated to be 0.06 µg/ml, which corresponded to approximately 1.7 µg/g of shirt material.

Calculation of excretion mass and rates. Excreted mass was calculated by multiplying the urine concentration by the urine mass and density (assumed to be 1 g/cm³). The excretion mass rate for each interval was calculated by dividing the excreted mass for each urination by the elapsed time since the previous urination. The time of urination on the evening prior to the first morning urination was not recorded. We assume that this time is identical to the time interval
between second morning urination and the last urination of the previous evening. To estimate the mass excreted that is attributable to wearing the exposed t-shirt, the excretion mass rate was integrated over the first 24 hours (up to and including the 2nd morning urination) after subtracting out the background rate associated with the first morning urination. For results in which BP-1 and BP-3 are combined, such as summed concentration, excreted mass and excretion rate, the BP-1 result is converted to BP-3 equivalents by multiplying it by the ratio of the molecular weights: (228.2 g BP-3/mol)/(214.2 g BP-1/mol).

Results and discussion

Air concentrations in the dosing chamber and breathing zone

Based on three replicate samples, the BP-3 air concentration in the shirt dosing chamber on day 31 was 4.4±0.5 µg/m³. At 25°C, based on vapor pressure estimates from SPARC, the saturation air concentration over pure BP-3 is 9.3 µg/m³; based on estimates from EPI Suite, 81 µg/m³ (Table S1). In either case, the shirt dosing chamber concentration was a significant fraction of the saturation concentration under these conditions. During the human subject exposure experiments, the air concentration in the breathing zone was below the limit of detection (0.3 µg/m³).

Clothing extraction

The BP-3 concentrations in clothing are shown in Table 2 for an unworn shirt and for shirts after they were worn by subjects. In all dosed shirt samples the concentrations were well above the limit of detection, ranging from 61 to 132 µg/g. Participant 1 wore the shirt with the highest average concentration and lowest relative standard deviation (RSD). The shirt concentrations were about 40% lower for participants 2 and 3 but the RSD was much higher indicating that the
sorption from the dosing chamber air was not as complete or as uniform for their shirts. The
dosed but unworn shirt absorbed less than half of BP-3 compared with the shirt worn by
participant 1. Non-uniformities in mixing within the chamber or spacing between the shirts may
have accounted for the observed variation among and within shirt samples. Xue et al. observed
a mean BP-3 concentration in fabrics of 12.6 ng/g, which is about 10^4 times lower than measured
here. The shirts in the current study were exposed to BP-3 at a concentration far greater than
those reported by Wan et al. for air in buildings. To provide an approximate (order-of-
magnitude) estimate of the anticipated concentrations in the shirts exposed to BP-3 in a residence
we first assume linear sorption, then we multiply the observed range in the current study (61 to
132 µg/g) by the ratio of the mean value reported by Wan et al. (1.18 ng/m3 for public places) and the air concentration in the exposure chamber (4400 ng/m3). The resulting range, 16-35
ng/m3, is centered in the range reported by Xue et al. (<2.2 – 41.8 ng/m3). This suggests that
the BP-3 identified by Xue et al. may have derived from building air instead of from the
manufacturing process. This is supported by the observation of Xue et al. that there was no
significant difference between raw fabrics and purchased clothing, or among fabric materials
(e.g. cotton vs. polyester) in their study. In other words, the BP-3 concentration in clothing may
be more dependent on its most recent environmental conditions, such as room air, than its
composition or manufacturing process.

Table 2. Concentration of BP-3 in t-shirts, averages of 4 samples of each shirt. Limits of
detection (LOD) were 1.7 µg/g, 0.03 µg/cm2, and 0.48 µg/cm3.

<table>
<thead>
<tr>
<th></th>
<th>mass BP-3/ mass cloth (µg/g)</th>
<th>mass BP-3/ area shirt (µg/cm²)</th>
<th>mass BP-3/ volume shirt (µg/cm³)</th>
<th>RSD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>132</td>
<td>2.3</td>
<td>37</td>
<td>0.04</td>
</tr>
<tr>
<td>Participant 2</td>
<td>81</td>
<td>1.4</td>
<td>23</td>
<td>0.26</td>
</tr>
<tr>
<td>Participant 3</td>
<td>80</td>
<td>1.4</td>
<td>22</td>
<td>0.30</td>
</tr>
<tr>
<td>Exposed but not worn</td>
<td>61</td>
<td>1.1</td>
<td>17</td>
<td>0.13</td>
</tr>
<tr>
<td>----------------------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Unexposed (blank)</td>
<td><LOD</td>
<td><LOD</td>
<td><LOD</td>
<td></td>
</tr>
</tbody>
</table>

* RSD = relative standard deviation for 4 samples of same shirt

Urine

Of the eight target analytes, only BPU1 and BPU3 were detected consistently in both first-morning and spot urine. Major results for these two analytes are shown in Table 3. The concentration of 3-benzylidene camphor (3-BC) was above detection limit in all samples from subject 1, suggesting a unique source for that subject. All other analytes were below detection limits in most urine samples (Supplementary Information, Table S3).
Table 3. Urinary concentrations, mass and excretion rates

<table>
<thead>
<tr>
<th></th>
<th>Participant 1</th>
<th>Participant 2</th>
<th>Participant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BP-1</td>
<td>BP-3</td>
<td>BP-1</td>
</tr>
<tr>
<td>First morning urination (ng/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morning 1</td>
<td>7.07</td>
<td>29.6</td>
<td>2.23</td>
</tr>
<tr>
<td>Morning 2</td>
<td>7.39</td>
<td>22.4</td>
<td>1.65</td>
</tr>
<tr>
<td>Morning 3</td>
<td>4.58</td>
<td>16.5</td>
<td>0.71</td>
</tr>
<tr>
<td>24 h urine (ng/kg bw/24h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool 1</td>
<td>108</td>
<td>346</td>
<td>64.6</td>
</tr>
<tr>
<td>Pool 2</td>
<td>68.1</td>
<td>168</td>
<td>24.8</td>
</tr>
<tr>
<td>First morning excretion rate (µg/h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>0.74</td>
<td>0.09</td>
</tr>
<tr>
<td>Total excreted after exposure up to and including second morning urination (µg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual</td>
<td>7.9</td>
<td>25</td>
<td>4.6</td>
</tr>
<tr>
<td>Sum of BP-1 and BP-3 (BP-3 equiv.)</td>
<td>34</td>
<td>19</td>
<td>110</td>
</tr>
<tr>
<td>Mass excreted** (µg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum of BP-1 and BP-3 (BP-3 equiv.)</td>
<td>12</td>
<td>9.9</td>
<td>82</td>
</tr>
<tr>
<td>Normalized mass excreted** (µg/(m^2))/(µg/m^3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum of BP-1 and BP-3 (BP-3 equiv.)</td>
<td>2.7</td>
<td>2.4</td>
<td>18</td>
</tr>
<tr>
<td>Average ratio of the concentrations of BP-1 and BP-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-1/BP-3</td>
<td>0.31</td>
<td>0.35</td>
<td>0.15</td>
</tr>
</tbody>
</table>

*Mass excreted, corrected for background excretion rate during first 24 h up to and including second morning urination, (µg)

**Mass excreted during first 24 h, normalized by shirt-covered surface area (0.5*BSA) and dosing BP-3 air concentration, (µg/(m^2))/(µg/m^3)

Concentrations and accumulated urinary excretion of BP-1 and BP-3 are shown in Figure 2. Pre-exposure (background) BP-3 first-morning urine concentration from participants 1, 2 and 3 were 30, 7 and 17 ng/ml, respectively. Their individual peak concentrations in subsequent spot urines were 38, 32 and 79 ng/ml, respectively. These values are comparable to values within the 25-
75th percentile of the US population (5.8-94 ng/ml)17, mostly lower than the mean for an
Australian population (61.5 ng/ml)44, but much higher than values reported for Danish young
men (25-75th percentile = 1.3-7.8 ng/ml) and other Danish population groups such as
kindergarten children, school children and adolescents, pregnant women and children and their
mothers18,40,43. Chinese young adults (0.55 ng/ml median; 0.26 ng/ml geometric mean)4,45 or
Belgian adults (1.3 ng/ml mean)46. The median peak urine concentration of BP-3 after whole-
body application of a BP-3 containing lotion was 44 and 81 ng/ml for female and male subjects,
respectively16.

There are fewer published measurements of urinary BP-1 available for comparison with subjects
in this study. Background BP-1 urine concentration from participants 1, 2 and 3 in the current
study were 7.1, 2.2 and 3.4 ng/ml, respectively. Their peak concentrations were 10.1, 8.6 and
14.5 ng/ml respectively. In Chinese adults, Zhang et al.4 reported a geometric mean of 0.28
ng/ml. Frederiksen et al.43 observed a median concentration in Danish children and adolescents
of 0.54 ng/ml in 24 h urine.
Figure 2. Urine concentration of BP-1 (a) and BP3 (b), and accumulated urinary excretion of BP-1 (c) and BP-3 (d). The x-axis shows the elapsed time from when the participant began wearing the exposed t-shirt, i.e. start of exposure.

Urine concentrations of, and mass excreted per urination for, BP-1 and BP-3 were highly correlated (see Figures S4a and S4b of Supplementary Information). For all participants R^2 values were 0.8 or greater. Although BP-1 has other possible sources and is also per se used as a UV filter in consumer products, the correlation suggests that the measured BP-1 here is mainly present as a metabolite of BP-3, similar to the metabolism of BP-3 in rats shown in pharmacokinetic studies47,48. Both compounds exhibit peak concentrations within 4-8 hours of the start of the exposure for subjects 1 and 2. A second peak is observed for subject 3 which is due to a larger void volume of the previous sample (i.e. dilution) and accumulation overnight. It
is also possible that there was some secondary exposure to BP-3 in the evening of the intervention exposure. In all three subjects, the accumulated urinary excretion of BP-1 (Figure 2c) and BP-3 (Figure 2d) occurs faster during the 24h period after exposure.

Shown in Figure 3 are excretion rates for the sum of BP-1 and BP-3. This figure shows more clearly than Figure 2 the effect of wearing dosed shirts. Excretion rates peak 4-8 hours after donning the dosed shirts, then decay. Although Participant 3 has a much higher excretion rate than Participants 1 or 2, the dose pattern and the decay in the excretion rate is similar. While it is possible that Participant 3 encountered a source of BP-3 prior to or after the experimental exposure, the similarity in the pattern of the excretion rate suggests that this individual absorbed most of the excreted BP-3 during the experiment. Excretion continues for 20+ hours after exposure, suggesting that skin acts as a reservoir for BP-3 that accumulated during the 3 h that BP-3 exposed shirts were worn. This is consistent with a recent study contrasting oral and dermal uptake of bisphenol-A (BPA). After dermal exposure, Liu and Martin observed that cumulative excretion increased linearly for 2 days, and half the participants still had detectable urinary total BPA-d16 after 1 week. The rates shown in Figure 3 are based on the urination that takes place at the end of an averaging period. Therefore, the first urination after exposure is averaged over the entire period since the previous urination, which took place prior to exposure. This makes it appear that elevated excretion occurs prior to wearing shirts; this is instead an artifact of the method.
Figure 3. Urinary excretion rates (µg/h) of the sum of BP-1 and BP-3 for each participant. The x-axis shows the elapsed time, with “0” indicating when the participant dons the exposed t-shirt, i.e. start of exposure.

The summed masses of BP-1 and BP-3 (BP-3 equivalent) excreted during the first 24 hours attributable to wearing exposed t-shirts were 11, 9.9 and 82 µg for participants 1, 2 and 3 respectively. We believe these values represent a lower-bound on the amount absorbed during the experiment. This value only accounts for the first 24 h, whereas there is evidence that excretion of BP-3 can occur for several days after exposure11,16. Additionally, other metabolites of BP-3 may not be accounted for with this method. Uptake by inhalation during the exposure is estimated to be negligible. The air concentrations in the breathing zone were below detection limits. Using the detection limit as the upper limit on the air concentration in the exposure
chamber, and an average inhalation rate of 0.7 m3/h, uptake of BP-3 is less than 0.6 µg by
inhalation.

It is apparent from the results shown in Table 3 and Figures 2-3 that participant 3 had
substantially larger dermal uptake of BP-3 than the other two participants. When corrected for
the pre-exposure excretion rates, participant 3’s uptake is about 7-9 times greater than that of
participants 1 and 2. Gonzalez et al.11 observed a wide range of excretion rates due to whole-
body application of sunscreen containing BP-3 for 25 subjects (male and female); the highest
percent excretion was 7.3 times greater than the lowest. In our study, this difference is not due to
differences in dosing of BP-3 to the shirts since the concentration in the shirt worn by participant
3 was lower than that worn by participant 1 and similar to that worn by participant 2. Participant
3 was 24 and 15 years older than participants 1 and 2, respectively. In a previous study
examining dermal uptake of diethylphthalate and di(n-butyl)phthalate directly from air33, older
subjects had substantially greater uptake than younger subjects. The authors speculated that this
may have been due to the thinner stratum corneum and reduced lipid content of older skin
compared to younger skin50. The reduced lipid content may be especially important for lipophilic
compounds such as phthalate esters and BP-3. In support of this, BP-3 has been shown to
accumulate in adipose (lipid) tissue51. Additionally, the shirt worn by participant 3 had noticeable
amounts of dry skin flakes, whereas the other shirts did not. Participant 3 may suffer from dry
skin, which is known to compromise the skin’s barrier function52.

The higher transdermal uptake of subject 3 may also indicate that he had a different skin type
than the other two participants. Filaggrin is an epidermal protein that is crucial for skin barrier
function. We have recently shown that carriers of a filaggrin gene (FLG) loss-of function
mutation have a significantly higher urinary excretion of several of the most common phthalate
metabolites and parabens and a tendency to increased urinary excretion of both BP-3 and BP-1 compared to controls with no mutations. Up to 10% of Europeans and Asians are heterozygotes for FLG-loss-of-function mutations, which causes dry skin, and are likely to experience facilitated transfer of allergens such as nickel and chromium across the epidermis.

Table 3 also shows the average ratio of the urine concentrations of BP-1 and BP-3 for the participants. Participant 3 had a lower value for BP-1/BP-3 (0.15) than participant 1 (0.31) and participant 2 (0.35). This indicates less metabolism of the BP-3 absorbed through the skin of participant 3 compared to the younger participants. As adults age, a decrease in the rate of metabolism for chemicals such as BP-3 is not unusual and for BP-3 this is supported by higher ratios reported in the urine of children: the value of BP-1/BP-3 was 0.75 and 0.55 for Danish kindergarten children and adolescents respectively. These results may also reflect differences among the subjects in the amount of metabolism occurring in the skin compared to metabolism that occurs after BP-3 enters the bloodstream.

Serum

Serum concentrations of total BP-3 (sum of free and conjugated forms) are shown in Figure 4. We found conjugated BP-3 in almost all samples and free BP-3 in about half of the samples (Supplementary Table S3); the correlation between free and conjugated BP-3 was poor. BP-1 concentrations in the serum were below detection limits in all three participants. 4-HBP, a possible metabolite of BP-3, was observed in all serum samples and a weak correlation between the free and conjugated form was observed. There was no correlation between total BP-3 and 4-HBP in serum, suggesting that the source for 4-HBP exposure may be different from that of BP-3. Free and total 4-MBP was measured in some of the serum samples, but again there was
no correlation with BP-3, and it may derive from a different source. Total BP-3 was elevated soon after initiating exposure, with concentrations peaking 2 – 5 hours after putting on the shirts. However, the impact of wearing BP-3 exposed shirts is not as obvious in blood samples as in the urine samples. Considering all participants, the average concentration of the samples taken each hour during and 2 hours after wearing the shirt was 0.26±0.13 ng/ml, while the average over the samples taken at 24 and 48 hours after exposure was 0.13±0.16 ng/ml. As was the case in the urine samples, participant 3 had higher total BP-3 serum concentrations than participants 1 and 2.

Figure 4. Serum concentrations of BP-3. The x-axis shows the elapsed time from when the participant dons the exposed t-shirt, i.e. start of exposure.

Implications for population exposure

Dermal uptake is a dynamic and complex process. An airborne chemical first transfers to the skin surface, then accumulates and transports through the skin layers to dermal capillaries. The
compound or its metabolites are eventually excreted. Because of these dynamics, it is challenging to extrapolate the results of this 3h exposure to predict uptake associated with daily residential exposure to BP-3 that has sorbed to clothing from indoor air. Since uptake had not reached equilibrium, our observed excretion may be considered a lower-bound estimate of the steady-state uptake under these conditions. The background-corrected excreted mass of the sum of BP-3 and BP-1 during the first 24 h, normalized by shirt-covered surface area (0.5*BSA) and dosing BP-3 air concentration (4.4 µg/m3) ranges from 2.7 to 18 µg/(m2)/(µg/m3) (Table 3). This corresponds to a mass-normalized excretion rate of 52 to 330 ng/kg/hr. The steady-state uptake from a shirt equilibrated with air in the dosing chamber, at a BP-3 concentration of 4.4 µg/m3, can be estimated using the model described in Morrison et al. If the gap between skin and shirt is 1 mm, the model predicts a steady-state BP-3 uptake of about 1000 ng/kg/h. Therefore, in only a 3 h exposure, the mass (summed BP-1 and BP-3) excreted is 5-30% of the steady-state estimate of BP-3 uptake; as noted earlier, the excreted mass is an underestimate of the mass absorbed.

The steady-state uptake model can be used to predict uptake of BP-3 from clothing that has equilibrated with air in residences. Wan et al. reported residential airborne concentrations that ranged between 0.07 and 18 ng/m3. Here, we assume that a reasonable airborne concentration range is ½ to twice the median reported concentration of 1.64 ng/m3 (0.82 to 3.28 ng/m3), which is consistent with the range of exposure estimates provided in Wan et al. Using the same method as above and an adult surface area to mass ratio of 0.025 m2/kg, steady-state uptake from equilibrated clothing is estimated to range between 8.8 to 35 ng/kg/day. This is similar to the 6-7 ng/kg/day estimated by Xue et al., using a US EPA exposure estimation method, for dermal uptake of BP-3 for infants wearing newly purchased clothing. (Although BP-1 has been
measured in house dust59, we were unable to find measured indoor airborne concentrations of BP-1. Therefore, we did not estimate dermal uptake of BP-1 by the airborne route.)

The range of 8.8 to 35 ng/kg/day is consistent with the lower daily dose estimates in various populations. Based on concentrations in urine, Gao et al.45 estimated the mean daily excretion rate in a Chinese population to be 27 ng/kg/day of BP-3. In Denmark, the median daily excretion rate in kindergarten children was estimated to be 136 ng/kg/day at summer time and 32 ng/kg/day at winter40, while the median daily excretion rate in Danish adolescents (17-21 year old, boys and girls) was estimated to be 33 ng/kg/day in samples collected in winter time43.

Based on a survey of U.S. residents, Calafat et al.17 reported geometric mean urine concentrations for BP-3 of 30.7 ng/ml for females (n = 1288) and 16.8 ng/ml for males (n = 1229). Daily excretion rates can be estimated assuming an average urine volume of 1.3 L/day60 and an average body weight of 75 kg for females and 89 kg for males61. The resulting estimated excretion rates are 532 ng/kg/day for females and 245 ng/kg/day for males. Dewalque et al.46 reported a mean urine concentration of 1.3 ng/ml in a Belgian population, which corresponds to 22 ng/kg/day using the same method. Overall, the observed uptake rates and model predictions suggest that the clothing-enhanced dermal uptake route is competitive with other exposure routes, especially for individuals that have intentionally avoided personal care products containing UV filters.

For three male volunteers, wearing cotton shirts that had been exposed to airborne BP-3 resulted in dermal uptake of this chemical as evidenced by BP-3 in their blood as well as both BP-3 and BP-1 (a metabolite) in their urine. In an average adult population, direct applications of sunscreen, cosmetics and other personal care products are anticipated to be the dominant contributors to BP-3 exposure. However, given that BP-3 is commonly present in indoor air25,
this unintentional exposure pathway (i.e., dermal uptake from air and clothing) is likely to contribute meaningfully to the overall body-burden of BP-3. For infants and children not using BP-3 containing lotions, inadvertent exposure from air and clothing may be the major source of BP-3 in their bodies.

Acknowledgements

We are grateful for the assistance of volunteers and skilled technical assistance by Stine E. Andersen, Department of Growth and Reproduction, Rigshospitalet. This research was supported, in part, by the Otto Mønsted Guest Professorship of the Technical University of Denmark, and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark. This material is also based upon work supported by the National Science Foundation under grant number 1336807.

References

1. MST. Survey of chemical substances in consumer products; 142; Ministry of Environment and Food of Denmark. Environmental Protection Agency., 2015.

Hays, S. M.; Aylward, L. L.; Blount, B. C. Variation in Urinary Flow Rates According to Demographic Characteristics and Body Mass Index in NHANES: Potential Confounding of

24 hour urine pool day 1 (all individual spot urine and the 1st morning sample from morning 2 pooled)

Blood samples

9 am 10 am 11 am 12 am 13 pm 14 pm 15 pm

Exposure 3 hours

Spot 1 Spot 2 Spot 3 Spot 4...

All individual spot urine samples collected during the day, evening and night

24 hour urine pool day 2 (all pooled spot urine and the 1st morning sample from morning 3 pooled)

Blood sample
Morning 2

Blood sample
Morning 3

Pooled spot urine
(collected during the day, evening and night on day 2)

1st morning urine
Morning 1

1st morning urine
Morning 2

1st morning urine
Morning 3