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Abstract

Every semester universities are faced with the challenge of creating timetables for the courses.
Creating these timetables is an important task to ensure that students can attend the courses
they need for their education. Creating timetables that are feasible can be challenging, and
when di�erent preferences are taken into account, the problems become even more challenging.
Therefore, automating the processes of generating these timetables is a great help for the plan-
ners and the universities. Scheduling and timetabling has been studied before in the literature,
and two international conferences are dedicated to this research �eld.

This thesis considers a University Timetabling problem, more speci�cally the Curriculum-
based Course Timetabling (CTT) problem. The objective of the CTT problem is to assign a set
of lectures to time slots and rooms. The literature has focused mainly on heuristic applications
which are also apparent in the di�erent surveys. The drawback of the heuristics is that they
are problem speci�c and do not provide any information on the quality of the solutions they
generate. The objective of this thesis is to minimize the gap between the best-known upper
bounds and the best-known lower bounds for CTT by using Mixed Integer Programming (MIP)
based approaches.

We present a total of 15 di�erent MIP based approaches that we have implemented, ranging
from Cutting Plane techniques and Lagrangian Relaxation to Benders' Decomposition and
Dantzig-Wolfe Decomposition. Most of these implementations did not provide satisfying results.
However, they provide valuable insights into the di�culties of the problem. We discuss all the
approaches, the di�culties we have encountered, and suggestions on how to bring research
further.

Four of the implementations have led to articles submitted to international peer-reviewed
journals. The �rst two articles focus on exact methods and extend each other. The last two
focus on generating high-quality lower bounds by applying an extended formulation, which is
then decomposed. The articles in this thesis have brought us closer to the goal of closing the
gap between the best-known upper and lower bounds for CTT. Though CTT was the problem
in focus, the methods implemented here are general enough to be applied for other scheduling
problems as well.
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Resumé (Danish Abstract)

Hvert semester står universiteter over for udfordringen med at planlægge deres kurser. Denne
planlægning er en vigtig opgave for at sikre, at de studerende kan deltage i de kurser der
er nødvendige for at komme igennem deres uddannelse. Opgaven med at få skemaerne til
at gå op kan være udfordrende i sig selv, og når forskellige præferencer tages i betragtning,
bliver opgaven blot endnu vanskeligere. Derfor er automatiserede planlægningssystemer en stor
hjælp for planlæggerne og universiteterne. Planlægning og skemalægning er blevet studeret i
litteraturen før, og to internationale konferencer er dedikeret til dette område.

Denne afhandling studerer et universitetsskemalægningsproblem, mere speci�kt Pensum-
baseret Kursus Skemalægningsproblemet (PKS). Formålet med PKS er at tildele et sæt af
forelæsninger til ugentlige tidsintervaller og lokaler. I litteraturen er der fokuseret primært
på heuristiske metoder. Ulempen ved disse heuristikker er, at de er problem-speci�kke og de
giver ikke nogen oplysninger om kvaliteten af de løsninger de genererer. Formålet med denne
afhandling er at minimere den afstand der er mellem de bedst kendte øvre grænser og de bedst
kendte nedre grænser for PKS ved hjælp metoder baseret på matematisk programmering (MP).

Vi præsenterer i alt 15 forskellige metoder baseret på MP, som vi har implementeret. De
�este af disse implementeringer gav ikke tilfredsstillende resultater, men de giver værdifuld
indsigt til vanskelighederne ved PKS og ideér til videre forskning. Vi diskuterer alle de metoder,
de vanskeligheder vi er stødt på, og forslag til, hvorledes forskningen kan videreføres.

Fire af implementeringerne har ført til artikler indsendt til internationale tidsskrifter. De
to første artikler fokuserer på eksakte metoder og ligger i forlængelse af hinanden. De sidste
to fokuserer på at generere nedre grænser af høj kvalitet og ligger ogsÃ¥ i forlÃ¦ngelse af
hinanden. Artiklerne i denne afhandling har bragt os tættere på målet om at mindske afstanden
mellem de bedst kendte øvre og nedre grænser for PKS. Selvom PKS har været problemet i
fokus her, så er de metoder der er implementeret generelle nok til at blive anvendt til andre
planlægningsproblemer.
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Introduction
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1 Background

The tasks of generating timetables are frequently occurring at universities. Each semester,
events, such as lectures, tutorials, seminars, and exams, need to be scheduled into periods and
assigned rooms. The problem is very time consuming to solve manually. Thus there is a need
for automated timetabling. Automated Timetabling has long been researched, and there are
even two biennial conferences dedicated to this �eld; the International Series of Conferences
on the Practice and Theory of Automated Timetabling (PATAT) and the Multidisciplinary
International Scheduling Conference: Theory & Applications (MISTA).

To attract more attention to this research area, an International Timetabling Competi-
tion was organized in 2002 (ITC2002), where a university timetabling problem was provided.
Following the success of ITC2002, a second International Competition was organized in 2007
(ITC2007). Both of the competitions were sponsored by PATAT. The main contribution of
ITC2007 was the de�nitions of University Timetabling problems. McCollum et al. (2010) split
the University Timetabling problem into two di�erent problems; the Exam Timetabling prob-
lem and the Course Timetabling problem. The Course Timetabling problem is further divided
into two subproblems; Post Enrolment-based Course Timetabling (PE-CTT) (Lewis et al.,
2007) and Curriculum-based Course Timetabling (CB-CTT) (Di Gaspero et al., 2007). The
relation between the problems is illustrated in Figure 1.1.

University
Timetabling

Exam Timetabling

Course Timetabling

Post Enrolment-based
Course Timetabling

Curriculum-based
Course Timetabling

Figure 1.1: The di�erent types of University Timetabling problems presented at ITC2007.

The main di�erence between PE-CTT and CB-CTT is that each course in PE-CTT consists
of a single event, whereas in CB-CTT each course can contain multiple lectures. Another
di�erence is that in PE-CTT it is not allowed to put courses into rooms where the capacity is
not large enough. In CB-CTT it is allowed to schedule courses in rooms that are too small at
the cost of a penalty in the objective function. The problem that we consider throughout this
thesis is the CB-CTT problem de�ned by Di Gaspero et al. (2007). In the remainder of the
thesis, we refer to CB-CTT as CTT. This problem has received most attention in the literature.
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One of the reasons for the popularity of this problem is that a website was created as a result of
the competition (The Scheduling and Timetabling Research Group at the University of Udine,
Italy, 2015). This website has made it possible for researchers to upload instances and compare
results.

Most of the research that considers these problems focus on heuristic implementations.
The drawback of the heuristics is that they are often problem-speci�c and do not provide any
guarantee of optimality. So provided a solution from a heuristic it is unknown how far from
optimality it is unless the optimal solution or a lower bound is known in advance (assuming
that it is a minimization problem). If a heuristic is 5% away from optimality, then this may be
considered as acceptable, but if the heuristic, for instance, is 60% away from optimality, then
maybe the implementation of the heuristic should be reconsidered.

Optimal solutions can often be di�cult to obtain o that lower bounds can be used instead.
However, the quality of the lower bounds is important. For instance, when this Ph.D. project
started in 2014, the gap for one of the data instances from ITC2007 between the best-known
solution and the best-known lower bound was more than 65%. This large gap makes the
heuristic appear poor in performance, but this is not necessarily the case. During the work for
this thesis, we improved the lower bound for that particular instance such that the gap for the
same solution is decreased to approximately 15%. Therefore, we focus on methods that either
search for the optimal solutions or at least provide lower bounds so the quality of heuristics
can be veri�ed.

In the following section 1.1 we describe CTT in details, and in section 1.2 we provide an
outline for the thesis. We assume that the reader is familiar with Mixed Integer Programming
(MIP) and Operations Research in general.

1.1 Curriculum-based Course Timetabling

In this section, we describe the CTT problem as de�ned by Di Gaspero et al. (2007) and
McCollum et al. (2010) for ITC2007. We are provided with the following; courses, days, time
slots, lecturers, rooms, and curricula. Each course is taught by exactly one lecturer, and
contains lectures that must all be scheduled in a weekly timetable and assigned rooms. The
week is divided into days and each day is divided into time slots which are all equal in size.
We refer to a day and time slot pair as a period, so the total number of periods is the number
of days multiplied by the number of time slots. The length of one lecture corresponds to one
period. A curriculum is a set of courses where for every pair there is a set of students attending
both courses. Furthermore, we are given a set ofhard and soft constraints. The weekly schedule
and assignment to rooms must ful�ll all the hard constraints, which are as follows:

Lectures (L): Every lecture must be scheduled in a period. If two lectures correspond to
the same course, then they must be scheduled in di�erent periods. If a lecture is not
scheduled, then it is counted as one violation, and if two lectures of the same course are
scheduled in the same period, then this is also counted as one violation.

Availability (A ): A course can have speci�c periods de�ned as unavailable periods. If a
lecture from the course is scheduled in an unavailable period, then this is counted as one
violation.
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Con�icts (C): If two courses are taught by the lecturer of if they belong to the same curricu-
lum, then they cannot have lectures scheduled in the same periods.

Room Occupancy (RO ): Every room cannot accommodate more than one lecture in any
period. If more than one lecture ful�ll in the same room and same period, then this
constraint is violated by the number of lectures, minus one.

The problem contains the following four soft constraints, where the goal is to minimize the
violations:

Room Capacity (RC ): We are allowed to schedule any course into any room. However, it
is desired to be able to accommodate as many students as possible when scheduling the
courses into rooms. Every room has a capacity, i.e., the number of students that the room
can accommodate. If a course is assigned to a room and the number of students attending
is larger than the capacity of the room, then the violation is one for each student more
than the capacity.

Room Stability (RStab ): As the courses contain multiple lectures, it can also be an advan-
tage that the lectures are all scheduled in the same room during the week. For every
course, the violation is one for every distinct room that the course is assigned to, minus
one.

Minimum Working Days (MWD ): For every course, it is preferred to spread the lectures
across a predetermined number of days. This number is calledminimum working days.
If the lectures are scheduled in fewer days than the minimum working days, then the
violation is one for each day below the minimum working days that the lectures are
scheduled.

Isolated Lectures (IL ): If two periods belong to the same day and are in consecutive time
slots, then we say that the periods areadjacent. Consider some curriculum and some
course belonging to the curriculum. If the course has a lecture scheduled in a period and
no lecture from any of the courses belonging to the curriculum has a lecture scheduled in
an adjacent illustrate, then we say that the lecture isisolated. For every curriculum, the
violation is one for every isolated lecture.

Note that the IL constraint is usually referred to as thecurriculum compactnessconstraint in
the literature. We use the nameisolated lecturesas Bonutti et al. (2012) mentions di�erent ways
of de�ning curriculum compactnessand they use the nameisolated lecturesfor the formulation
used here and in ITC2007.

Any feasible timetable must ful�l all the hard constraints, i.e., a timetable is considered
feasible if, and only if, all the hard constraints have no violations. The objective is then to �nd
a feasible timetable while minimizing the soft constraints. Each soft constraint has a weight
associated such that a single-objective is de�ned by a weighted sum of all the violated soft
constraints.

Burke et al. (2010a) show that ful�lling the hard constraints isN P -complete, which means
that the overall problem isN P -hard. Empirical studies also illustrate that the models are hard
to solve, even within hours of computational time.
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To get an idea of what makes this problem hard to solve, we have tested a MIP model
from the paper in chapter 4 without theIL constraints. We used Gurobi provided by Gurobi
Optimization, Inc. (2016) for these tests. In Table 1.1 we report the results for 21 data instances,
which were provided for ITC2007. The �rst column is the data instance, which is followed by
the best-known upper bounds (UB) for CTT. The next three columns (B & B) report the
results from solving the model when the constraintsIL are removed. The �rst column (Time)
reports the running time of the MIP solver to �nd the optimal solution. The second column
(Obj) reports the objective value of the optimal solution for the model, which is a lower bound
for CTT. The last column (Gap) is the gap between the objective value and the best-known
upper bound for CTT. The last six columns report the statistics of the fractionality of the LP
relaxation of the models. We de�ne the fractionality as the number of integer variables that
are fractional in the optimal solution to the LP relaxation. In the �rst three columns (All
variables) we report the number for all the variables in the models. Since the Isolated Lectures
(IL ) is speci�c for the time schedule, we also consider the fractionality of the time schedule.
For each course and each period, we add all the variables together that schedules the course in
that period. If a course in a speci�c period is scheduled in one room by 0.3 and some other
room in the same period by 0.4, then we sum this together, so the course is scheduled in the
period by 0.7 in total, and we consider this as a single variable. In the last three columns (Time
variables) we report the fractionality of all these aggregated variables. For both (All variables)
and (Time variables) we report the fractionality whenIL is not included in the model (w/o
IL ) and when IL is included in the model (w/ IL ). In the column (Incr.) we report by how
much the inclusion of theIL constraints increases the number of fractional variables.

In Table 1.1 we see that the model can be solved within minutes whenIL is not included.
A reason for this can be because of the fractionality of the models since the Branch & Bound
algorithm must branch whenever the integer variables are fractional. We see that includingIL
increases the number of all fractional variables more than four times on average, and for the
(Time variables) the increase is more than eight times. The gap between the objective values of
the model without IL and the best-known upper bounds for CTT also illustrate by how much
the IL constraints impact the objective value.

The problem as it has been presented here is the problem we are considering throughout the
entire thesis. However, we brie�y present some extensions described byMcCollum et al. (2010)
and Bonutti et al. (2012) that could be included to cover a broader variety of universities.
These could be either soft or hard and include:

Student Lunch Break: The students should not have a lecture scheduled in at least one time
slot around lunch time.

Windows: If two lectures from the same curriculum are scheduled on the same day, and no
lectures are scheduled in the time slots between them, then this is referred to as a window.
The penalty for these could depend on the lengths of the windows.

Student Min/Max Load: A minimum (or maximum) number of lectures that the students
should be scheduled on any day could be speci�ed. If at least one lecture is scheduled
on a day and the total number of lectures is below the minimum (above the maximum),
then this could be penalized.

6



Table 1.1: The impact ofIL for the ITC2007 data set.

LP Fractionality
B & B All variables Time variables

Instance UB Time Obj Gap w/o IL w/ IL Incr. w/o IL w/ IL Incr.
comp01 5 1.8 5 0.0% 192 647 � 3:4 57 245 � 4:3
comp02 24 24.6 0 100.0% 404 2005 � 5:0 64 659 � 10:3
comp03 64 13.0 0 100.0% 671 1653 � 2:5 158 547 � 3:5
comp04 35 14.8 0 100.0% 244 1500 � 6:1 12 450 � 37:5
comp05 284 1.4 15 94.7% 583 1221 � 2:1 189 481 � 2:5
comp06 27 170.7 0 100.0% 898 2436 � 2:7 201 761 � 3:8
comp07 6 312.8 0 100.0% 1038 3165 � 3:0 186 965 � 5:2
comp08 37 22.3 0 100.0% 229 1809 � 7:9 0 549 -
comp09 96 20.6 0 100.0% 298 1536 � 5:2 29 483 � 16:7
comp10 4 51.7 0 100.0% 699 2713 � 3:9 104 843 � 8:1
comp11 0 0.4 0 0.0% 148 634 � 4:3 48 255 � 5:3
comp12 294 1.5 0 100.0% 374 1967 � 5:3 75 685 � 9:1
comp13 59 15.7 0 100.0% 214 1544 � 7:2 0 471 -
comp14 51 19.3 0 100.0% 444 1988 � 4:5 74 643 � 8:7
comp15 62 13.1 0 100.0% 671 1653 � 2:5 158 547 � 3:5
comp16 18 64.9 0 100.0% 426 2454 � 5:8 48 748 � 15:6
comp17 56 48.4 0 100.0% 762 2301 � 3:0 155 716 � 4:6
comp18 61 0.5 0 100.0% 250 961 � 3:8 53 347 � 6:5
comp19 57 23.7 0 100.0% 839 1641 � 2:0 217 512 � 2:4
comp20 4 278.3 0 100.0% 764 2813 � 3:7 139 901 � 6:5
comp21 74 47.2 0 100.0% 1002 2316 � 2:3 232 720 � 3:1
Avg. 90.2% � 4:1 � 8:3

Travel Distance: If the students need to change building between two lectures that are in
adjacent periods, then this could be penalized.

Room Suitability: Some rooms may be unsuitable for some courses, e.g., a lecturer may need
chemistry equipment for the lectures, and so the room must contain such equipment. A
room could also be de�ned as unsuitable if the room is too big for the course.

Room Availability: Sometimes rooms are occupied by other activities, e.g., seminars and
conferences. Lectures cannot be scheduled in the rooms in the periods where the rooms
are unavailable.

Double Lectures: Some courses may require that lectures scheduled on the same day must
be in adjacent periods, and also in the same room.

Another extension that McCollum et al. (2010) discuss is the weights of the soft constraints.
In CTT used for ITC2007, the weights for each soft constraint is set to a constant value.
It could be considered to let the weight depend on the number of students attending the
courses or curricula. TheTravel Distance de�ned in McCollum et al. (2010) penalizes when
students change building. However, some universities may have a large campus, and the walking
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distances between the rooms must be taken into account, which is the case at the Technical
University of Denmark (Bærentsen, 2012).

1.1.1 Previous Work

In this section, we describe approaches from the literature that has considered CTT. The
research on university timetabling problems has, in general, focused on heuristics (Phillips et
al., 2015). This focus is also apparent in the overview provided by Bettinelli et al. (2015) and
the survey by Pillay (2016).

As MIP solvers are increasing in performance, so is the interest in applying MIP based
methods for university timetabling problems (Phillips et al., 2015). As we consider exact and
lower bounding methods we provide a brief overview of articles in the literature that consider
either exact or lower bounding methods.

Burke et al. (2010a) introduces an exact MIP model of CTT. They formulate theIL by
using a variable for each curriculum and each period. Burke et al. (2008) remove those variables
and instead they have just one variable for each curriculum and each day. The value of this
variable is then calculated by adding exponentially many constraints. In Burke et al. (2012)
they add a subset of the beforementioned constraints and then add the remaining dynamically
whenever they are violated. Burke et al. (2010b) takes the model from Burke et al. (2010a) and
split it into two stages. The �rst stage is to schedule the courses into the periods, i.e., ignore the
room assignments. However, it is ensured that the time schedule is feasible by not scheduling
more lectures in any period than the number of rooms available. In the second stage, they take
the period schedule and �x the model either completely or partially to the selected periods and
then solve the full model. This approach is executed iteratively.

Splitting the problem into two stages is also considered by Lach and Lübbecke (2008) and
Lach and Lübbecke (2012), where the problem is also split into two stages; the �rst stage creates
the time schedule and the second stage makes the room assignment given the time schedule.
Lach and Lübbecke (2012) also show how theRC constraints can be added to the �rst stage
problem by grouping the rooms together according to their capacities. Then the �rst stage
problem schedules the courses into periods and capacities.

Hao and Benlic (2011) considers the �rst stage problem of Lach and Lübbecke (2012). They
make a decomposition by relaxing some of the constraints such that the problem can be divided
into subproblems. They then compute a lower bound for each subproblem and sum them up
to get a lower bound for the overall problem.

Cacchiani et al. (2013) also compute lower bounds. They do this by splitting the problem
into two parts where one part considers the constraintsMWD and IL and the other part
considers the constraintsRC and RStab . A lower bound is then calculated by summing up
lower bounds for the two parts. The part which considers the constraintsMWD and IL can
be time-consuming to solve. So they apply a Dantzig-Wolfe decomposition of their model such
that the pricing problem is decomposable by days and solve the model by column generation.

Asín Aschá and Nieuwenhuis (2014) proposes multiple satis�ability encodings. They start o�
by treating the soft constraints as hard constraints and solve the problem as a pure satis�ability
problem. Then they relax the constraints one by one and move towards a weighted partial
maximum satis�ability encoding.
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In the paper in chapter 4 we provide more details on some of the methods from the literature.
For an even more comprehensive overview of the literature regarding CTT, we refer to Bettinelli
et al. (2015).

1.2 Thesis Outline

This thesis is divided into three main parts; Part I Introduction, Part II Exact Methods and
Part III Lower Bounding Methods. Part I is the introduction to the thesis and covers the
description of the problem, the scienti�c contributions and the conclusions of the work. In
chapter 1 we provide the description of the problem that has been considered throughout the
work for this thesis, and related work that has been applied. In chapter 2 we summarize the
scienti�c contributions and the conclusion of the work for this thesis. Furthermore, we provide
suggestions for future research. The last chapter 3 of part I is a summary of all 15 di�erent
approaches that we have implemented and tested during the work for this thesis. The chapter
is not necessary to read but is included for the readers that are interested in the details of all
the approaches that we have implemented. Part II and part III constitute the majority of the
thesis, and both consist of two articles. The articles in part II focuses on exact methods, and
the articles in part III focuses on lower bounding methods.

9





2 Scienti�c Contributions

The scienti�c contributions are here summed up for the four papers. All four papers are
submitted to international peer-reviewed journals. The �rst two papers focus on exact methods.
A common approach to solving the problem is to divide it into two parts; aTime Scheduling
problem and aRoom Allocation problem. Then the Time Scheduling problem is solved, and
the solution is provided for the Room Allocation problem to generate a complete solution.
This approach can be iterated. The drawback of this approach is that we lose the guarantee
of optimality. So the focus in this thesis has been on exact methods in the �rst two papers
and then lower bounding methods in the last two papers. In the following we describe the
four papers. Section 2.1 contains our conclusions of the work conducted for this thesis and in
section 2.2 we provide suggestions for future research.

Chapter 4: Flow Formulations for Curriculum-based Course Timetabling This pa-
per combines the two components, theTime Scheduling problem and the Room Allocation
problem, into two exact formulations, which are solved by a generic MIP solver. The �rst for-
mulation is based on an underlyingminimum cost �ow (MIN) problem. The second formulation
is based on amulti-commodity �ow (MULT) problem. The MIN problem is known to contain
the integrality property, and hence being solvable in polynomial time, but the MULT problem
is N P -hard in general. However, we proved that it su�ces to include the LP-relaxation of
MULT in the model. For both of these formulations, the result is that the number of integer
variables is signi�cantly lower than other exact formulations in the literature at the cost of
many continuous variables.

Compared to other approaches in the literature that provide both lower and upper bounds
the MIN formulation provides the best performance on the data instances from ITC2007. We
also compared the �ow formulations with the basic MIP model which we present in section 3 on
a total of 32 instances. The results showed that the reformulations outperform the basic model
both on the lower and upper bounds. Here the MIN formulation obtained a lower bound which
is at least as good as MULT and the basic model on 28 of the instances, and for 11 of these
instances, MIN obtained a strictly better bound than the other two. On 24 of the instances
the MIN formulation obtained an upper which is at least as good as the other two, and for 12
of these the upper bound is strictly less than for the other two formulations. Out of the 32
instances, six of them are still open. The MIN formulation improved the lower bound of one
of them from 101 to 142. We believe that other approaches from the literature based on the
basic model can bene�t from these reformulations.

The MULT formulation was submitted as an extended abstract to the peer-reviewed MISTA
conference in 2015 (Bagger et al., 2015). The full paper with both methods is submitted to
Annals of Operations Researchand contributes with:
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ˆ Two new formulations that outperform the basic formulation.

ˆ An improvement of the lower bound for one out of the six instances that are still open by
more than 40%.

Chapter 5: Benders' Decomposition for Curriculum-based Course Timetabling In
the previous paperFlow Formulations for Curriculum-based Course Timetabling, two formula-
tions were provided for CTT such that a large part of the variables could be relaxed to contin-
uous variables. The paperBenders' Decomposition for Curriculum-based Course Timetabling
expands on one of the formulations by projecting out all these continuous variables. Then a
Benders' Decomposition algorithm is implemented, which is the �rst time to our knowledge that
a full Benders' Decomposition algorithm is implemented for CTT, i.e., where Benders' cuts are
generated dynamically as they are violated. We also implemented a heuristic to generate upper
bounds based on solving a series ofMinimum Cost Maximum Flow problems as the solutions
produced inside the decomposition were usually infeasible. The main focus of the heuristic was
to gain feasibility, so we believe that there is a potential here to improve the implementation
further.

We compared the decomposition with other approaches on a total of 38 real-life instances.
Out of these 38 instances, 12 of them are still open, and our implementation improved the
lower bound on eight of these instances. Six of the open instances are signi�cantly larger and
more di�cult to solve than the other 32. For these six instances our decomposition is the
�rst MIP-based approach that has been applied, and the �rst time lower bounds have been
calculated.

We compared Benders' Decomposition on the large instances with MULT since no other
MIP-based methods have been applied. These tests illustrated that the bene�ts of Benders'
Decomposition are more apparent for large data instances. Solving the root node LP with
MULT had a running time of more than half an hour for three of the instances, and for the three
other instances, the running time was more than one and a half hour. For our decomposition,
the longest running time is less than four minutes. On average the speed-up was more than 30
times, and the improvements of the lower bounds were 14%. For the upper bounds, MULT were
only able to obtain a feasible solution for four of the instances, which Benders' Decomposition
improved by 35% on average. Furthermore, the decomposition was able to obtain solutions for
all instances.

The paper is submitted toComputers & Operations Researchand contributes with:

ˆ The �rst Benders' Decomposition algorithm for CTT.

ˆ First time that the lower bounds are calculated for six large instances.

ˆ Improvement of the lower bounds for eight out of 12 of the real-life instances that are still
open.

Chapter 6: Daily Course Pattern Formulation and Valid Inequalities for the
Curriculum-based Course Timetabling Problem The previous two papers focused on
the improvement of exact methods and provided methods to combine the Time Scheduling
problem and the Room Allocation problem. Empirical studies have shown that the Time
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Scheduling problem is the most time-consuming problem of the two components. So in this
paper, we focus on the Time Scheduling problem as any improvements on this component can
be applied to the two previous approaches. In the paper,Daily Course Pattern Formulation and
Valid Inequalities for the Curriculum-based Course Timetabling Problema pattern formulation
is provided. For each course and each day we enumerate all the patterns that are possible for
the course to be assigned on that day. In our model, there is a binary variable for each of these
patterns for each course and each day.

The bene�t of the pattern formulation is that we can preprocess the model to remove
variables. We implement multiple preprocessing techniques where one is based on solving
auxiliary maximum �ow problems. We also generate valid inequalities, which are di�cult to
derive for the basic formulation. Some of these inequalities come from generating a con�ict
graph for the variables, and we show how this graph can be constructed by extending the
preprocessing techniques. We discuss in the paper that one of the bene�ts of the pattern
formulation is that it is more �exible regarding adding additional constraints or penalties than
the basic model.

We compared the formulation to other lower bounding approaches from the literature on
21 real-life instances from ITC2007, and show that the pattern formulation has a better per-
formance. Four of the instances are still open, and our formulation improves the lower bound
of three of them. The paper is submitted toJournal of Schedulingand contributes with:

ˆ A new lower bounding formulation of CTT that outperforms other approaches from the
literature.

ˆ Implementation of novel preprocessing and clique graph generation techniques.

ˆ Improvements of the best-known lower bound for three out of the four real-life instances
that are still open.

Chapter 7: Dantzig-Wolfe Decomposition of the Daily Pattern Formulation for
Curriculum-based Course Timetabling Dantzig-Wolfe Decomposition has been applied
to CTT before. However, they are all based on the basic formulation. As a stronger formulation
is provided in the previous paperDaily Course Pattern Formulation and Valid Inequalities for
the Curriculum-based Course Timetabling Problem, then we use this formulation for the decom-
position. We apply the decomposition such that there is a pricing problem for each day and
we solve the LP-relaxation of the master problem by Column Generation. The decomposition
puts the formulation of the isolated lectures into the pricing problems, which is an advantage
as it was shown in section 1.1 that these soft constraints are the ones that are most di�cult.

We provide a preprocessing technique that can be applied in an iteration of the Column
Generation algorithm and also show how the technique can be extended to generate inequalities.
The empirical study shows that our preprocessing implementation can remove almost half of
the variables from the model on average. Applying this technique to other scheduling problems
could be interesting.

We implement a Local Branching algorithm to solve the pricing problems by using previously
generated columns. To the best of our knowledge, this is the �rst time Local Branching is
implemented in a pricing problem in Column Generation, though the nature of the Column
Generation algorithm �ts perfectly with Local Branching. As Local Branching is a general
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framework and easy to implement it can be considered for other problems solved by Column
Generation as well. We show that more than 90% of the time of the Column Generation
algorithm is spent in the pricing problems. So we suggest any future research, to focus on
improving the running time of the pricing problems.

We compared the decomposition to other approaches from the literature. The lower bounds
obtained are higher than for most other approaches except for the pattern formulation in the
previous paper. However, for the four instances from ITC2007 that are still open we obtain a
higher lower bound for all of them, which decreases the average gap to the best-known upper
bounds from 24% to 11%. The paper is submitted toEuropean Journal of Operational Research
with the following contributions:

ˆ A new Dantzig-Wolfe Decomposition and Column Generation algorithm for CTT.

ˆ Novel preprocessing and inequality generation for the pricing problem.

ˆ The �rst time Local Branching is applied in a pricing problem inside a Column Generation
algorithm.

ˆ Improvements of the best-known lower bounds for all four real-life instances from ITC2007
that are still open.

2.1 Conclusion

Due to the second international timetabling competition in 2007 (ITC2007), the Curriculum-
based Course Timetabling (CTT) problem has received a lot of attention. The CTT problem
consists of assigning courses into periods and rooms. For University Timetabling problems,
in general, most literature has focused on heuristic applications which are also apparent in
the di�erent surveys. The heuristics are attractive in real-world settings as they are usually
fast. The drawback of the heuristics is that they are problem-speci�c and do not provide
information on how far they are from optimality. For the competition 21 data instances were
provided where four of them are stillopen, meaning that for these four instances, the best-
known lower bounds do not equal the best-known upper bounds. The objective of this thesis
has been to minimize the gap between the best-known upper bounds and the best-known lower
bounds for CTT by using Mixed Integer Programming (MIP). A total of 15 di�erent MIP based
formulation and methodologies have been implemented and tested during this work. Four of
these implementations led to article submissions for peer-reviewed international journals.

Most of the MIP-based approaches in the literature split the problem into two components;
a Time Scheduling problem and a Room Allocation problem. The Time Scheduling problem
consists of scheduling the course into periods, and the Room Allocation problem assigns courses
to rooms. The Time Scheduling problem is commonly solved �rst, and the solution is then pro-
vided to the Room Allocation problem. The �rst article we submitted focused on combining
the two components into one model. Two formulations were provided that improved the perfor-
mance of a generic MIP solver, both regarding the lower and upper bounds. The second article
expanded on the results from the �rst article by applying a Benders' Decomposition on one of
the provided formulations. The results showed improvements on the lower bounds compared to
literature. The method was also tested on six large data instances where MIP based approaches
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have not been applied before. On these instances, the decomposition improved the performance
of the MIP solver signi�cantly on both the lower and upper bounds.

The last two articles focused on improving the lower bounds by considering the Time
Scheduling problem as empirical studies in literature have shown that this is the most time-
consuming part. In the �rst of the two articles, a pattern formulation is implemented by
enumerating all possible patterns for each course and each day. The pattern formulation pro-
vided stronger lower bounds compared to the literature. In the last article, we expanded on
the pattern formulation by applying a Dantzig-Wolfe Decomposition of the model and solved
it by Column Generation. The bene�t of the decomposition was that the formulation of some
of the hardest soft constraints was put into the pricing problems, which are smaller and easier
to solve. The decomposition further improved the bounds for the four instances from ITC2007
that are still open.

The articles in this thesis have brought us closer to the goal of closing the gap between
the best-known upper and lower bounds for CTT. Though CTT was the problem in focus, the
methods implemented here are general enough to be applied for other scheduling problems.

2.2 Future Research

We have implemented and tested di�erent MIP based approaches on CTT, leading to four
submitted articles. In chapter 3 we describe additional implementations that we have tested,
which were not all successful for CTT. In total, we report 15 di�erent formulations, methods
and implementations. This vast amount of implementations shows how di�cult this problem
is, and that further research is needed. The theory and notes on the implementations are
provided, and it could be interesting to see if other scheduling problems can bene�t from these
approaches, or which changes to the methods that are needed for them to be successful for
CTT.

Other suggestions for future research is to improve the approaches from our submitted
articles. In the second article, we consider a Benders' Decomposition. We implemented a
heuristic to obtain feasible solutions but saw that our implementation did not improve the
upper bounds. The focus of the heuristic was to obtain a feasible solution by assigning rooms
provided that the time schedule was feasible. Therefore, we suggest considering implementing
a heuristic which also considers improving the solutions, for instance by also making changes
to the time schedule. In the last article, we applied a Dantzig-Wolfe Decomposition. For some
of the instances that we tested the implementation of the Column Generation algorithm was
too time-consuming to be embedded in a full Branch & Price algorithm. As more than 90% of
the running time was spent in the pricing problems we suggest that solution methods for these
problems are researched further.

Some methods that we have brie�y tested for the pricing problems include Dynamic Pro-
gramming, Constraint Programming, Lagrangian Relaxation and Benders' Decomposition.
However, we have not studied these implementations enough for us to draw conclusions, which
is why we have not included them in the description of the implemented approaches. Another
interesting study could be to consider why some of the instances are signi�cantly more time
consuming than others, for instance by examining the feature space suggested by Smith-Miles
et al. (2014). This information could be useful in the development of solution approaches.
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When the pricing problems can be solved in a reasonable amount of time, we would like
to see the Benders' Decomposition algorithm included in the Dantzig-Wolfe Decomposition.
One way to include Benders' Decomposition could be to solve the room allocation problem
in another pricing problem and then add the Benders' feasibility cuts in the master problem
to connect the pricing problems. Another possibility is to use the current implementation as
the lower bounding problem in a Branch & Price algorithm and apply branching rules on the
time schedule. Then switch to the Benders' Decomposition algorithm for nodes that are deep
enough in the search tree.
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3 Implemented Approaches

In this chapter we provide an overview of all the methods that has been tested during this work
for the CTT problem. Not all methods have been equally successful. However, the knowledge is
useful for the timetabling community to get an overview of methods that are either successful,
should be avoided or needs further research. Furthermore, even though some of the approaches
have not been successful for CTT, it could be interesting to see if other scheduling or timetabling
problems can bene�t from these methods. Before describing all the approaches that have been
tested, we �rst provide a basic (MIP) model of the problem. All the tested methods refer to
this model as the basis.

The set of courses is denotedC. For each coursec 2 C, the number of lectures to be
scheduled is denoted asL c. For the periods we have the set of days,D, and the set of time
slots, T . For each coursec 2 C, day d 2 D and time slot t 2 T we let the parameterFc;d;t take
value one if the course is available in the speci�c period, and zero otherwise. The set of rooms
is denotedR. We let xc;d;t;r be a binary variable taking value one if coursec 2 C is scheduled on
day d 2 D in time slot t 2 T in room r 2 R , and zero otherwise. To ensure that the constraint
L is not violated we sum over all the binary variables associated with one course and add a
constraint that the sum must equalL c:

X

d2D ;t2T ;r 2R

xc;d;t;r = L c; 8c 2 C (3.1)

This constraint only ensures that all lectures are scheduled, but not that they are scheduled
in di�erent time slots. We ensure this by the following constraints, where we also include the
A constraint:

X

r 2R

xc;d;t;r � Fc;d;t ; 8c 2 C; d 2 D ; t 2 T (3.2)

To ful�l the constraint C we �rst construct a graph where every node in the graph cor-
responds to a course. If two courses are taught by the same lecturer or belong to the same
curriculum, then the corresponding nodes are connected by an edge. An example of the graph
is illustrated in Figure 3.1.

We then enumerate a set ofcourse cliques� where a course clique
 2 � is a set of courses
C
 � C such that each pair of courses inC
 is con�icting. To generate the cliques we use the
algorithm described by Bron and Kerbosch (1973) that enumerates all maximal cliques in a
graph. For every edge in the graph the two courses corresponding to the nodes of the edge are
both contained in at least one clique together. The for each clique we add the constraint that
at most one of the courses in the clique can be scheduled in any period:
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c1 c2

c3 c4

Figure 3.1: Con�ict graph where a curriculum consists of coursesc1, c2 and c3 while c3 and c4

are taught by the same lecturer. The �gure is taken from the paper in chapter 6

X

c2C
 ;r 2R

xc;d;t;r � 1; 8
 2 � ; d 2 D ; t 2 T (3.3)

We de�ne the set � c � � as the set of cliques that contain coursec 2 C. The last of the
hard constraints to ful�ll is the RO constraint:

X

c2C

xc;d;t;r � 1; 8r 2 R ; d 2 D ; t 2 T (3.4)

Any integer solution of the x variables ful�lling constraints (3.1) � (3.4) corresponds to a
feasible timetable. Next, we formulate the soft constraints. We letSc be the number of students
attending coursec 2 C and Cr be the capacity of roomr 2 R . Then the violation of the RC
constraint can be calculated as:

X

c2C;d2D ;t2T ;r 2R

(Sc � Cr )
+ xc;d;t;r (3.5)

where(x)+ for any real numberx is de�ned as(x)+ := max f 0; xg. For the RStab constraint
we introduce a binary variablezc;r for each coursec 2 C and roomr 2 R which takes value one
if c is assigned tor at least once:

X

d2D ;t2T

xc;d;t;r � L czc;r ; 8c 2 C; r 2 R (3.6)

Then we can calculate the violation of theRStab constraint as follows:

X

c2C

 
X

r 2R

zc;r � 1

!

(3.7)

For the MWD constraint we let the binary variabletc;d take value one if coursec 2 C has
at least one lecture scheduled on dayd 2 D , and zero otherwise:

tc;d �
X

t2T ;r 2R

xc;d;t;r ; 8c 2 C; d 2 D (3.8)

For each coursec 2 C, we let the variablewc calculate the violation of theMWD constraint:

wc +
X

d2D

tc;d � D min
c ; 8c 2 C (3.9)

18



The set of curricula is denotedQ, and for each curriculumq 2 Q the set of courses belonging
to q is denotedCq � C . Similarly, we let the set of curricula that coursec 2 C belongs to be
denoted asQc. For each curriculumq 2 Q , day d 2 D and time slot t 2 T we let the binary
variable sq;d;t take value one if q has an isolated lecture at dayd in time slot t, and zero
otherwise. For t 2 T we denote the time slot that is right before ast � 1 and we denote the
time slot right after t as t + 1. For ease of notation, we de�nexq;d;t for each curriculumq 2 Q ,
day d 2 D and time slot t 2 T as follows:

xq;d;t :=
X

c2C;r 2R

xc;d;t;r ; 8q 2 Q ; d 2 D ; t 2 T (3.10)

If t is the �rst time slot then we de�ne xq;d;t� 1 to be zero and ift is the last time slot then
we de�ne xq;d;t+1 to be zero. Then we can calculate the isolated lectures as follows:

sq;d;t � xq;d;t � xq;d;t� 1 � xq;d;t+1 ; 8q 2 Q ; d 2 D ; t 2 T (3.11)

Let W RC , W RStab , W MWD and W IL be the non-negative weights for the constraintsRC ,
RStab , MWD and IL respectively. Then, we express the objective function as a weighted
sum of the soft constraints to be minimized:

W RC
X

c2C;d2D ;t2T ;r 2R

(Sx � Cr )
+ xc;d;t;r

+ W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

+ W MWD
X

c2C

wc

+ W IL
X

q2Q ;d2D ;t2T

sq;d;t (3.12)

We have tested a total of 15 di�erent method for CTT during this thesis. Figure 3.2
illustrates all the 15 methods which have been divided into �ve frameworks; Mixed Integer
Programming, Lagrangian Relaxation, Benders' Decomposition, Cutting Planes and Dantzig-
Wolfe Decomposition.

In section 3.1 we provide an overview of the frameworkMixed Integer Programming. Here
we tested four MIP models as alternatives to the basic MIP model which has resulted in two
papers. In section 3.2 theLagrangian Relaxation framework is described. We tested three
di�erent approaches none of which resulted in papers. The frameworkBenders' Decomposition
is described in section 3.3. Three methods were tested within this framework which resulted
in one paper. In section 3.4 and overview of three methods tested within the framework
Cutting Planes is provided where none resulted in papers. The last frameworkDantzig-Wolfe
Decomposition is described in section 3.5. Three di�erent methods were tested within this
framework which resulted in one paper.
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Curriculum-based Course
Timetabling

Benders' Decomposition

Cutting Planes

Lagrangian Relaxation

Mixed Integer Program-
ming

Dantzig-Wolfe Decomposi-
tion

Pattern formulation

Flow Formulations

Disjunctive Formulation

Period Decomposition

Curriculum Decomposition

Isolated Lectures

Disjunctive Cuts

Clique Pattern Cuts

Nonlinear Disjunctive Cuts

Penalty Variables

Curriculum Patterns

Network Structure

Course Schedules

Clique Schedules

Daily Schedules

MethodFrameworkProblem

... Method resulted in a publishable paper

Figure 3.2: Overview of the tested approaches. The di�erent approaches has been divided into �ve frameworks; Mixed Integer
Programming, Lagrangian Relaxation, Benders' Decomposition, Cutting Planes and Dantzig-Wolfe Decomposition
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3.1 Mixed Integer Programming

In this section we describe some alternatives to the basic model. We have tested four alternative
formulations to the basic model; two formulations based on underlying �ow networks, a pattern
based formulation where each pattern corresponds to an entire time schedule for one course
on one day and the last formulation is based on reformulating the modelling of the isolated
lectures. An overview of the �ow formulations and the pattern formulation are provided in
section 2. A detailed description for the �ow formulations is provided in the paper in chapter 4
and the details of the pattern formulation is provided in the paper in chapter 6. In the following
section 3.1.1 we describe how the isolated lectures can be reformulated in a disjunctive model.

3.1.1 Disjunctive Formulation

The idea of the disjunctive formulation is to reconsider the formulation of the isolated lectures
(3.11). We examine the solution space of the Linear Programming (LP) relaxation of the
problem. Consider the constraint (3.11) for a curriculumq 2 Q , day d 2 D and time slot
t 2 T as well as the non-negativity constraintsq;d;t � 0. Consider a(x; y; z)-coordinate system.
The x coordinate corresponds to the value of thexq;d;t variable. The y coordinate is equal
to xq;d;t� 1 + xq;d;t+1 and the z coordinate corresponds to the value of thesq;d;t variable. In
Figure 3.3 the constraint (3.11) together with the non-negativity constraint are illustrated in
the unit cube where the hyperplanes of the constraints are marked in grey.

(0,0,0)

(1,0,1)

(1,1,0)

(0,1,0)

Figure 3.3: Illustration of the isolated lecture constraints in the unit cube

Note that four points are emphasized in Figure 3.3; the origin(0; 0; 0) and (0; 1; 0), (1; 1; 0)
and (1; 0; 1). These are the important points as they represent the integer solutions, and in the
�rst three points there is no isolated lecture, and in the last point, there is an isolated lecture.
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As the z coordinate corresponds to thesq;d;t variable which is minimised then the value of the
sq;d;t variable in the optimal solution to the LP relaxation will be on one of the hyperplanes.
This means that for any solution where the(x; y) coordinates are a convex combination of(0; 0),
(0; 1) and (1; 1) the z coordinate will be set to zero. It is only necessary for thez coordinate
to be zero in the integer(x; y)-points (0; 0), (0; 1) and (1; 1), but not in any fractional point
which is a convex combination of the three points. In Figure 3.4 an alternative formulation
is illustrated where the z coordinate can only be zero in the unit cube in the integer points
(x; y)-points (0; 0), (0; 1) and (1; 1) and in the convex combination of(0; 0) and (0; 1) and the
convex combination of(0; 1) and (1; 1). Everywhere else inside the unit cube thez coordinate
must be strictly positive.

(0,0,0)

(1,0,1)

(1,1,0)

(0,1,0)

Figure 3.4: Illustration of the disjunctive formulation of the isolated lectures in the unit cube

In Figure 3.4 the solution space of the LP relaxation in the unit cube is the convex combina-
tion of the points (0; 0; 0), (1; 0; 1) and (0; 1; 0) or the convex combination of the points(0; 1; 0),
(1; 0; 1) and (1; 1; 0). The obstacle with the formulation in Figure 3.4 is that it is non-convex, so
we cannot make an LP formulation of this. The line which is a convex combination of(0; 1; 0)
and (1; 0; 1) is the intersection of the two convex combinations. The line projected down to the
(x; y)-space is the hyperplanex + y = 1. So if we consider some solution, we need to know on
which side of this hyperplane in the(x; y)-space the solution is. We introduce a binary variable
yq;d;t which takes value one if the solution is on thex + y < 1 side of the hyperplane and zero
if it is on the x + y > 1 side. As we cannot formulate< or > constraint in LP models we
calculate the value ofyq;d;t as follows:

xq;d;t + xq;d;t� 1 + xq;d;t+1 � 3 � 2yq;d;t (3.13)

xq;d;t + xq;d;t� 1 + xq;d;t+1 � 1 � yq;d;t (3.14)
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If the point is on the x + y < 1 side of the hyperplane in the(x; y)-space then we use the
hyperplane spanned by the three points(0; 0; 0), (1; 0; 1) and (0; 1; 0); x � z = 0. If the point is
on the x + y > 1 side of the hyperplane in the(x; y)-space then we use the hyperplane spanned
by the three points (0; 1; 0), (1; 0; 1) and (1; 1; 0); y + z = 1. In an LP model this can be
formulation as follows:

sq;d;t � xq;d;t + yq;d;t � 1 (3.15)

sq;d;t � 1 � yq;d;t � xq;d;t� 1 � xq;d;t+1 (3.16)

sq;d;t � 0 (3.17)

If yq;d;t = 1 then constraint (3.15) is activated and (3.16) becomesinactive and opposite
for yq;d;t = 0. Note that for any point that is on the hyperplanex + y = 1 then yq;d;t can be
either zero or one. However, as we know that the variablesxq;d;t, xq;d;t� 1 and xq;d;t+1 then we
can formulate the following disjunction of the model:

(
xq;d;t + xq;d;t� 1 + xq;d;t+1 � 1

sq;d;t � xq;d;t

)
_

(
xq;d;t + xq;d;t� 1 + xq;d;t+1 � 2

)

(3.18)

The disjunction (3.18) corresponds to replacing the right-hand side of (3.14) by2 � 2yq;d;t.
Introducing this disjunction makes constraint (3.16) redundant as there can only be an isolated
lecture in the left branch, i.e., whenyq;d;t = 1. The disjunction (3.18) also means that we
implicitly minimize the value of yq;d;t which makes the constraint (3.13) redundant, thus the
disjunctive formulation is as follows:

xq;d;t + xq;d;t� 1 + xq;d;t+1 + 2yq;d;t � 2 (3.19)

xq;d;t + yq;d;t� sq;d;t � 1 (3.20)

sq;d;t � 0 (3.21)

The downside about the formulation (3.19) � (3.21) is that it requiresO (jQjjDjjT j ) extra
binary variables. Another downside is that the LP relaxation is weaker compared to the LP
relaxtion of the basic model. If xq;d;t + xq;d;t� 1 + xq;d;t+1 is at least two then both of the
formulations does not provide a higher lower bound forsq;d;t than zero. We assume that the
sum is less than two and isolateyq;d;t in (3.19):

yq;d;t � 1 �
1
2

(xq;d;t � xq;d;t� 1 � xq;d;t+1 ) (3.22)

As we minimizeyq;d;t then it will be equal to the right-hand side of (3.22) and we insert this
in (3.20):

sq;d;t �
1
2

(xq;d;t � xq;d;t� 1 � xq;d;t+1 ) (3.23)

Here we see that in the LP relaxation, the isolated lectures are only penalised in the disjunc-
tive formulation by half of what they are penalised by the original formulation. The disjunctive
formulation also resulted in a poorer performance than the original formulation when we tested
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it in the commercial MIP solvers such as Gurobi by Gurobi Optimization Inc. (2015) and
CPLEX by International Business Machines Corp. (2017). CPLEX provides the user with the
capability of implementing custom branching decisions. So to get around the issues of the dis-
junctive formulation, we implemented a custom branching decision in CPLEX inspired by the
disjunctive formulation. The idea is to provide CPLEX with the original formulation, i.e., with
the formulation of the isolated lectures in (3.11). A common branching decision is to choose an
integer variablex with a fractional value x in the LP relaxation and then apply the branching:

x � b xc _ x � d xe (3.24)

Instead of choosing one variable for the branching decision, we consider a sumxq;d;t +
xq;d;t� 1 + xq;d;t+1 . We then compute the penalty of the isolated lecture using the disjunctive
formulation. If the value of the disjunctive formulation is greater thansq;d;t then the sum is
a candidate for the branching decision, other we let CPLEX decide on the branching. If this
sum is between one and two, then we apply the branching from the disjunction in (3.18). If
the sum is between zero and one, then we apply the branching in (3.25). If the sum is equal to
one, then we pick one of the two branching decisions randomly.

(
xq;d;t + xq;d;t� 1 + xq;d;t+1 � 0

)
_

(
xq;d;t + xq;d;t� 1 + xq;d;t+1 � 1

sq;d;t � 1 � xq;d;t� 1 � xq;d;t+1

)

(3.25)

The question left to answer is which sum to choose. When branching on a single variables,
then a common approach is to pick the variable which is most fractional, i.e., ifbxe is the value
x rounded to the nearest integer then we pick the variable which maximizesjx � b xej. This
branching rule means that we branch on the variable that violates the integrality requirement
the most. We do something similar for the calculation of the isolated lectures. Consider
curriculum q 2 Q , day d 2 D and time slot t 2 T . Let sLP

q;d;t be the value of the variable
sq;d;t calculated in the optimal solution of the LP relaxation using the constraints (3.11) and
sq;d;t � 0. We calculate the sumxq;d;t + xq;d;t� 1 + xq;d;t+1 . If the sum is less than or equal to
one, then the disjunctive valuesDisjunct

q;d;t of the variablesq;d;t is set toxq;d;t. If the sum is greater
than one and less than two, then we setsDisjunct

q;d;t = 1 � xq;d;t� 1 � xq;d;t+1 . In all other cases
we set sDisjunct

q;d;t = 0. Note that sDisjunct
q;d;t � sLP

q;d;t. We then pick the curriculum q 2 Q , day
d 2 D and time slot t 2 T which maximizessviol := sDisjunct

q;d;t � sLP
q;d;t. If sviol > 0 we apply the

branching (3.18) or (3.25) depending on the sum as mentioned earlier, otherwise we let CPLEX
decide. The issue we encountered is that when implementing custom branching decisions in
CPLEX a lot of the internal features is turned o�. So the lower bounds were not as strong as
without the custom branching, and the heuristics also did not produce solutions which are as
good as the solutions obtained without the custom branching. Therefore, we suggest that any
researchers that want to study this method further to consider using another framework such
as SCIP (Gamrath et al., 2016) where the user is given more control of the Branch & Bound
algorithm.
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3.2 Lagrangian Relaxation

In this section we describe di�erent methods that we have tested based on Lagrangian Re-
laxation. Before the description of the methods we provide an introduction to Lagrangian
Relaxation in section 3.2.1. The idea of all the methods tested within this framework is to
consider the formulation of the isolated lectures. In section 3.2.2 we apply the relaxation to the
direct formulation of the isolated lectures. In section 3.2.3 we replace the formulation of the
isolated lectures and describe how we apply Lagrangian Relaxation to this reformulation which
results in a subproblem that is decomposable by the periods. In section 3.2.4 we reformulation
the entire model such that the subproblem is decomposable by the curricula.

3.2.1 Introduction to Lagrangian Relaxation

In this section we provide a brief description of Lagrangian Relaxation similar to the descrip-
tion by Martin (1999, chapter 12), which we refer to for a detailed description of Lagrangian
Relaxation. Consider a MIP problem in the following form:

min c> x

s.t. Ax � b

Bx � d

x 2 X

(MIP)

The idea of Lagrangian Relaxation is to take a set of the constraints andrelax them by
multiplying them with a non-negative vector u, referred to as theLagrangian multipliers, and
inserting them in the objective function:

L(u) = min
�

(c � B > u)> x + d> u j Ax � b; x 2 X
	

(3.26)

We refer to the problem (3.26) as theLagrangian Subproblem. For a �xed value of u the
optimal solution of the subproblem provides a lower bound for (MIP). The goal is to maximize
this lower bound by solving the following model:

maxf L(u) j u � 0g (LR)

We let zMIP and zLP be the objective values of the optimal solution of (MIP) and the LP
relaxation of the model respectively. Furthermore, we letzLR be the objective value of the
optimal solution to (LR), and we have the following relation

zLP � zLR � zMIP (3.27)

If the model (3.26) contains theintegrality property, i.e., that the extreme points of the
LP-relaxation are all integral, then zLP = zLR . So the set of constraints to relax should be
selected such that the subproblem does not contain theintegrality property. However, the
constraints should also be selected such that the resulting subproblem is easier to solve than
the original problem. Di�erent methods can be applied to solve the problem (LR). One
method isSubgradient Search. This algorithm is an iterative procedure which starts by setting
the Lagrangian multipliers to some initial value, e.g., zero. Then the optimal solution of the
subproblem (3.26) is found for these values ofu. Let uj be the value in thej 0th iteration of
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the subgradient search and letx j be the optimal solution to the subproblem foruj . Then
d � Bx j is a subgradientvector of the subproblem foruj and for a scalar� j > 0 we calculate
the multipliers for the next iteration as follows:

uj +1 = max
�

0; uj + � j
�
d � Bx j

�	
(3.28)

We let L be an upper bound on the value of the optimal solution to the Lagrangian Relax-
ation. This upper bound can for instance by the objective value of some feasible solution to
the original model MIP. For a positive scalar� j between zero and two, the choice of� j can be
determined by:

� j =
� j

�
L � L (uj )

�

kd � Bx j k2
(3.29)

The value of� j can for instance be set to two in the �rst iteration and then halved whenever
the lower bound has not improved for some number of iterations. We refer to Martin (1999,
section 12.5) for descriptions of other methods to solve the Lagrangian Relaxation.

3.2.2 Isolated Lectures

The idea in this section is to relax the constraints (3.11) using as it was shown in section 1.1
that the problem is much easier to solve without these constraints. For each curriculumq 2 Q ,
day d 2 D and time slot t 2 T we let uq;d;t be the non-negative Lagrangian multiplier of
the associated constraint (3.11). The objective function of the Lagrangian Relaxation then
becomes:

X

c2C;d2D ;t2T ;r 2R

 

W RC (Sx � Cr )
+ +

X

q2Q c

(uq;d;t � uq;d;t� 1 � uq;d;t+1 )

!

xc;d;t;r

+ W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

+ W MWD
X

c2C

wc

+
X

q2Q ;d2D ;t2T

�
W IL � uq;d;t

�
sq;d;t (3.30)

As the s variables do not contribute to any constraints in the Lagrangian Relaxation, then
we can calculate the values of each of the variables ins independently. Consider a curriculum
q 2 Q , day d 2 D and time slot t 2 T . If uq;d;t < W IL then the coe�cient of the sq;d;t is
strictly positive and since we minimize this variable then the optimal valuesq;d;t is zero. If
uq;d;t > W IL then the coe�cient is strictly negative and the optimal value sq;d;t is one. If
uq;d;t = W IL then we can setsq;d;t to be either zero or one, and we set the valuesq;d;t to one
if xq;d;t � xq;d;t� 1 � xq;d;t+1 = 1 and zero otherwise. The reason for these latter choices ofsq;d;t

whenuq;d;t = W IL is that the subgradientxq;d;t � xq;d;t� 1 � xq;d;t+1 � sq;d;t then evaluates to zero.
A summary of the values ofsq;d;t are provided in (3.31).
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sq;d;t =

(
1 if uq;d;t > W IL _

�
uq;d;t = W IL ^ xq;d;t � xq;d;t� 1 � xq;d;t+1 = 1

�

0 otherwise
(3.31)

We then calculate the step size� for some positive scalar� between zero and two as follows:

� =
�

�
L � L (u)

�

X

q2Q ;d2D ;t2T

(xq;d;t � xq;d;t� 1 � xq;d;t+1 � sq;d;t)
2

(3.32)

Since the solution to the subproblem is feasible for the original model we can calculate
the real objective value of the solutions and use them for the upper boundL. Then for each
curriculum q 2 Q , day d 2 D and time slot t 2 T we add � (xq;d;t � xq;d;t� 1 � xq;d;t+1 � sq;d;t)
to uq;d;t. As uq;d;t is a non-negative multiplier we set it to zero if it is negative after we updated
it. Furthermore, we set uq;d;t to W IL if the value is greater thanW IL after the update. To
see the reason that we can set this upper bound on the multiplier, we reconsider the choice of
the step size� . Another choice for � is a constant value� . Assume that we choose� to be
in�nitesimally small. Consider some iteration in the subgradient search and let there be one
Lagrangian multiplier which is in�nitesimally close to W IL and where the gradient is positive.
This means that when we update the multiplier it will be set toW IL and for this value the
gradient can never by positive, which means that the multiplier will never be greater thanW IL .
So we can use this value as an upper bound for the multipliers.

The issues encountered with our implementation of the Lagrangian Relaxation is that,
though the subproblem is much easier to solve than the original model, the number of iterations
required to �nd the optimal value of is large. Furthermore, the bounds obtained in the end of
the subgradient search were not higher than what the solver Gurobi can obtain in the cutting
plane phase of the root node in the original formulation.

3.2.3 Period Decomposition

The idea in this section is to two new binary variables for each curriculumq 2 Q , day d 2 D
and time slot t 2 T ; x �

q;d;t which is one ifq has a lecture scheduled in the time slot beforet on
day d and x+

q;d;t which is one ifq has a lecture scheduled in the time slot aftert on day d. For
ease of notation we de�nex �

q;d;t as zero ift is the �rst time slot and x+
q;d;t if t is the last time

slot. We can then reformulate (3.11) into the following:

sq;d;t �
X

c2Cq ;r 2R

xc;d;t;r � x �
q;d;t � x+

q;d;t; 8q 2 Q ; d 2 D ; t 2 T (3.33)

We need to link the variablesx � and x+ together with the x variables:

X

c2Cq ;r 2R

xc;d;t;r = x �
q;d;t+1 ; 8q 2 Q ; d 2 D ; t 2 T (3.34)

X

c2Cq ;r 2R

xc;d;t;r = x+
q;d;t� 1; 8q 2 Q ; d 2 D ; t 2 T (3.35)
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If we make a Lagrangian Relaxation where we multiply every constraint other than (3.3),
(3.4) and (3.33) then the result is a subproblem which is decomposable on the periods. For
each curriculumq 2 Q , day d 2 D , time slot t 2 T we let � �

q;d;t and � +
q;d;t be the Lagrangian

multipliers of (3.34) and (3.35) respectively. For each coursec 2 C, day d 2 D , time slot t 2 T
and room r 2 R let � c;d;t;r be the sum of all the Lagrangian multipliers with respect to the
contribution of xc;d;t;r to each of the relaxed constraints.� 0 is the sum of all the constants in
the relaxed constraints, multiplied by the respective Lagrangian multipliers. The result is the
following model for each dayd 2 D and time slot t 2 T :

min W IL
X

q2Q

sq;d;t +
X

c2C;r 2R

�
(Sc � Cr )

+ + � c;d;t;r
�

xc;d;t;r

+
X

q2Q

� �
q;d;tx

�
q;d;t +

X

q2Q

� +
q;d;tx

+
q;d;t + � 0 (3.36)

s.t.
X

c2C
 ;r 2R

xc;d;t;r � 1; 8
 2 � (3.37)

X

c2C

xc;d;t;r � 1; 8r 2 R (3.38)

X

c2Cq ;r 2R

xc;d;t;r � x �
q;d;t � x+

q;d;t � sq;d;t; 8q 2 Q (3.39)

xc;d;t;r 2 B; 8c 2 C; r 2 R (3.40)

x �
q;d;t 2 B; x+

q;d;t 2 B; sq;d;t 2 B; 8q 2 Q (3.41)

The model (3.36) � (3.41) is much easier to solve than the original formulation. The issue is
that the majority of the constraints are relaxed and the bounds we obtained in the Subgradient
Search were not better then the bounds that Gurobi obtained in a shorter amount of time in the
root node of the Branch & Bound tree. The model (3.36) � (3.41) can also be used in aColumn
Generation scheme. Cacchiani et al. (2013) provide an overview of di�erent formulations to be
incorporated in a column generation algorithm where one of them is similar to the one described
here. They report results on four data instances and show that the bounds obtained by this
formulation are lower and the running times are higher than for other formulations.

3.2.4 Curriculum Decomposition

In this section we describe a formulation based on making copies of some of the variables for each
curriculum. Then we apply the Lagrangian Relaxation such that the model is decomposable
into jQj + 1 subproblems. For each curriculumq 2 Q we introduce the binary variablexq

c;d;t
which is one if coursec 2 Cq has a lecture scheduled at dayd 2 D in time slot t 2 T , and zero
otherwise. We then introduce the following constraints to link the variables together:

X

r 2R

xc;d;t;r = xq
c;d;t ; 8q 2 Q ; c 2 Cq; d 2 D ; t 2 T (3.42)

The next step we perform is to take the variabletc;d for each coursec 2 C and day d 2 D ,
and make a copy of it for each curriculumq 2 Q c. For each coursec 2 C we also make a copy of
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the variable wc for each curriculumq 2 Q c. The constraints (3.8) and (3.9) are then replaced
by constraints that use these new variables:

tq
c;d �

X

t2T

xq
c;d;t � 0; 8q 2 Q ; c 2 Cq; d 2 D (3.43)

wq
c +

X

d2D

tq
c;d � D min

c ; 8q 2 Q ; c 2 Cq (3.44)

In the objective function (3.12) we apply the following substitution for each coursec 2 C:

wc =
1

jQcj

X

q2Q c

wq
c (3.45)

We make a Lagrangian Relaxation by relaxing the linking constraints (3.42) for each cur-
riculum q 2 Q , coursec 2 Cq, day d 2 D and time slot t 2 T and we letuq

c;d;t be the Lagrangian
multiplier. This makes the model decomposable such that for each curriculumq 2 Q we have
a subproblemLR q containing all the variables associated withq, and we have a subproblem
LR for the remaining variables. The subproblemLR is the same as the basic MIP formulation
where the constraints (3.8), (3.9) and (3.11) are removed and objective function is replaced as
follows:

W RC
X

c2C;d2D ;t2T ;r 2R

0

@(Sc � Cr )
+ �

X

q2Q q

uq
c;d;t

1

A xc;d;t;r + W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

(3.46)

For each curriculumq 2 Q the subproblemLR q is as follows:

min W IL
X

d2D ;tT

sq;d;t + W MWD
X

c2Cq

1
jQcj

wq
c +

X

c2Cq ;d2D ;t2T

uq
c;d;tx

q
c;d;t (3.47)

s.t.
X

d2D ;t2T

xq
c;d;t = L c 8c 2 Cq (3.48)

xq
c;d;t � Fc;d;t 8c 2 Cq; d 2 D ; t 2 T (3.49)

X

c2Cq

xq
c;d;t � 1 8d 2 D ; t 2 T (3.50)

tq
c;d �

X

t2T

xq
c;d;t � 0 8c 2 Cq; d 2 D (3.51)

wq
d +

X

d2D

tq
c;d � D min

c 8c 2 Cq (3.52)

X

c2Cq

�
xq

c;d;t � xq
c;d;t � 1 � xq

c;d;t+1

�
� sq;d;t 8d 2 D ; t 2 T (3.53)

xq
c;d;t 2 B 8c 2 Cq; d 2 D ; t 2 T (3.54)

sq;d;t 2 B 8d 2 D ; t 2 T (3.55)
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Note that in the subproblemLR q we added the extra constraints (3.48), (3.49) and (3.50).
The constraints (3.48) and (3.49) are copies of the constraints (3.1) and (3.2) and the con-
straints (3.50) comes from (3.3) by noting that the coursesCq constitute a course clique. The
issue with this formulation is that the subgradient search requires many iterations to converge
and for most of the data instances the bound obtained is not much higher than the bound
calculated for the initial value (zero) of the Lagrangian multipliers. However, for the value
of zero the lower bound obtained was at least as good as the bound by the LP-relaxation of
the basic model (sometimes higher) and faster to compute. So we tested a Branch & Bound
implementation where we used the Lagrangian Relaxation as the bounding problem instead of
the LP-relaxation.

The issue arising here is how to apply the branching. As the LP-relaxation is a relaxation
of the integrality requirements then it follows naturally to branch on fractional variables. In
our Lagrangian Relaxation we relaxed the linking constraints (3.42) so we use them to apply
the branching decision. If one of the constraints (3.42) is violated for some curriculumq 2 Q ,
coursec 2 Cq, day d 2 D and time slot t 2 T then we apply the following branching:

8
<

:

xq
c;d;t = 0; q 2 Q c
X

r 2R

xc;d;t;r = 0

9
=

;

_
8
<

:

xq
c;d;t = 1; q 2 Q c
X

r 2R

xc;d;t;r = 1

9
=

;
(3.56)

The bene�t of the branching (3.56) is that we do not need to resolve all the subproblems.
For instance let coursec 2 Cq, day d 2 D and t 2 T be the selected branching. Letxq

c;d;t be the
value of the variablexq

c;d;t that we branched on for each curriculumq 2 Q . For each curriculum
q 2 Q we do not need to resolveLR q in the left branch if xq

c;d;t = 0 and we do not need to
resolveLR q in the right branch if xq

c;d;t = 1.
Another bene�t of this approach is that the subproblemLR creates a solution which is

feasible so we can calculate the value of the objective function for the basic model as an upper
bound. However, this bound turned out to have a very high penalty of the constraintsMWD
and IL . To get around this issue we solved theLR subproblem in two stages. First we solved
the model to obtain the optimal objective value� of LR . We then resolved the model where
we added a constraint such that the objective value would not increase:

W RC
X

c2C;d2D ;t2T ;r 2R

0

@(Sc � Cr )
+ �

X

q2Q q

uq
c;d;t

1

A xc;d;t;r + W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

� � (3.57)

For each curriculumq 2 Q , coursec 2 Cq, day d 2 D and time slot t 2 T let xq
c;d;t be the

value of the variablexq
c;d;t in the optimal solution of the subproblemLR q. We then de�ned

the distance between the solution inLR to the solution in each subproblemLR q for q 2 Q as
follows:

X

c2C;d2D ;t2T ;r 2R

0

@
X

q2Q c :xq
c;d;t =0

xc;d;t;r +
X

q2Q c :xq
c;d;t =1

(1 � xc;d;t;r )

1

A (3.58)

The objective function was then replaced by minimizing the distance (3.58). The upper
bounds obtained by Gurobis heuristic on the basic model is much better than the solutions
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obtained in the subproblemLR . Furthermore, the lower bounds obtained by Gurobi are higher
compared to the bounds produces by our approach.

3.3 Benders' Decomposition

In this section we describe di�erent approaches based on Benders' Decomposition (Benders,
1962). We tested three applications of Benders' Decomposition. The �rst one is based on
one of the �ow formulations brie�y mentioned in section 3.1 which are described in the paper
in chapter 4. In chapter 4 it is shown that the problem has an underlying �ow network.
This network is projected out and replaced by constraints. We provide a brief description in
section 2 and the details can be found in the paper in chapter 5. The second approach we
tested is described in section 3.3.2, and is based on projecting out the formulations of all the
soft constraints. The last approach we tested is described in section 3.3.3, and is based on
a pattern formulation of the curricula. Before we present the applications we provide a brief
introduction to Benders' Decomposition in section 3.3.1. This introduction is taken directly
from the paper in chapter 5.

3.3.1 Introduction to Benders' Decomposition

Our introduction is a crude overview and we refer to (Benders, 1962) and Martin (1999, chapter
10) for a detailed description. We describe the method based on a model containing two types
of variables, x and y. The x variables are non-negative continuous variables, and we do not
have any assumptions on they variables, i.e.,x � 0 and y 2 Y whereY can be any domain,
e.g., the set of integers. Consider the MIP model (3.59).

min c> x + f (y)

s.t. Ax + B(y) � b

y 2 Y

x � 0

(3.59)

In model (3.59) c 2 Rn is the cost vector of thex variables, A 2 Rn� m is the constraint
matrix of the x variables andb2 Rm is the right-hand-side vector of the constraints.f : Y ! R
is some function to evaluate the cost of they variables andB is a vector function that evaluates
the contribution of the y variables for the constraints. If we �x they variables to some value in
the domainY then what remains is a linear programme (LP). This assumption can be extended
as described by Geo�rion (1972), but we stick to the (LP) case in this context. Model (3.59)
can be rewritten to model (3.60).

min f (y) + z

s.t. z � min
x� 0

�
c> x j Ax � b� B (y)

	

y 2 Y

z 2 R

(3.60)

In model (3.60) there is an inner optimization problem in the constraints. If they variables
are �xed, then this is an LP and we can change it into its dual LP as in model (3.61).
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min f (y) + z

s.t. z � max
� � 0

�
(b� B (y)) � j A> � � c

	

y 2 Y

z 2 R

(3.61)

One interesting aspect of the inner optimization problem in model (3.61) is that the corre-
sponding polytope is independent of the values of they variables. So if the polytope

�
AT � � c

	

is non-empty then we can reformulate the problem using the extreme points� p and extreme
rays � r as in model (3.62).

min f (y) + z

s.t. z � (b� B (y)) � p 8� p 2 � p

0 � (b� B (y)) � r 8� r 2 � r

y 2 Y

z 2 R

(3.62)

Model (3.62) is referred to as Benders' master problem. For a given solutiony model (3.63)
is referred to as Benders' subproblem.

max (b� B(y)) �

s.t. A> � � c

� � 0

(3.63)

As the number of extreme points and rays can be exponentially large, a way to solve the
model is to relax the master problem by removing some (or all) of the constraints originating
from the extreme points and rays and then iteratively add them as needed. This is done by
�nding a solution y for the master problem (3.62) and inserting the solution into the subprob-
lem (3.63). The subproblem is then solved to obtain an extreme point� p or ray � r and the
corresponding cut is added to the master problem if it is violated. This is done iteratively as
illustrated in Figure 3.5.

Master problem

Subproblem

Solution y
Extreme point � p

or extreme ray� r

Figure 3.5: The iterative loop of Benders' algorithm.

A lower bound on the (relaxed) master problem is a lower bound on the original model, and
if the subproblem returns an extreme point, then this provides an upper bound. The iterative
process is run until some stopping criterion is met, e.g., a time limit is reached, or the lower
and upper bounds are su�ciently close.
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3.3.2 Penalty Variables

In this section we consider a reformulation of the basic model such that all the variables asso-
ciated with the soft constraints can be relaxed to non-negative continuous variables. For each
coursec 2 C and day d 2 D the variable tc;d is implicitly maximized. So if we consider an
integer solutionx then the upper bound oftc;d in constraint (3.8) will be either zero or greater
than or equal to one. So if we add the upper boundtc;d � 1 then we can relax the variable
tc;d to be a non-negative continuous variable. We can also relax the variablewc for each course
c 2 C. For each curriculum q 2 Q , day d 2 D and time slot t 2 T the lower bound from
constraint (3.11) for the variablesq;d;t is either one or less than or equal to zero, and as we are
minimizing this variables then it can be relaxed to a non-negative continuous variable. We also
relax the variable zc;r to a non-negative continuous variables for each coursec 2 C and room
r 2 R . To be able to do this we replace the constraints (3.6) with the following constraints:

xc;d;t;r � zc;r ; 8c 2 C; d 2 D ; t 2 T ; r 2 R (3.64)

Consider a solution wherexc;d;t;r is the value of the variablesxc;d;t;r for coursec 2 C, day
d 2 D , time slot t 2 T and roomr 2 R . To obtain the objective value of the solution we solve
the following LP model:

min W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

+ W MWD
X

c2C

wc + W IL
X

q2Q ;d2D ;t2T

sq;d;t

+ W RC
X

c2C;d2D ;t2T ;r 2R

(Sx � Cr )
+ xc;d;t;r (3.65)

s.t. zc;r � xc;d;t;r ; 8c 2 C; d 2 D ; t 2 T ; r 2 R (3.66)

wc +
X

d2D

tc;d � D min
c ; 8c 2 C (3.67)

� tc;d � �
X

t2T ;r 2R

xc;d;t;r ; 8c 2 C; d 2 D (3.68)

� tc;d � � 1; 8c 2 C; d 2 D (3.69)

sq;d;t �
X

c2Cq ;r 2R

(xc;d;t;r � xc;d;t � 1;r � xc;d;t+1 ;r ) ; 8q 2 Q ; d 2 D ; t 2 T (3.70)

zc;r � 0; 8c 2 C; r 2 R (3.71)

tc;d � 0; 8c 2 C; d 2 D (3.72)

wc � 0; 8c 2 C (3.73)

sq;d;t � 0; 8q 2 Q ; d 2 D ; t 2 T (3.74)

We assume that the model (3.65) � (3.74) is feasible for any solutionx. We let � c;d;t;r for
each coursec 2 C, day d 2 D , time slot t 2 T and room r 2 R be the dual variable of the
corresponding constraint (3.66). For the constraints (3.67) we let� c be the dual variable for
each coursec 2 C. For each coursec 2 C and dayd 2 D we let � c;d and � c;d be the dual variables
of the constraints (3.68) and (3.69) respectively. For each curriculumq 2 Q , day d 2 D and
time slot t 2 T we let � q;d;t be the dual variable of the constraint (3.70). We then formulate
the dual of (3.65) � (3.74) as follows:
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max
X

c2C;d2D ;t2T ;r 2R

xc;d;t;r � c;d;t;r +
X

c2C

D min
c � c �

X

c2C;d2D

 
X

t2T ;r 2R

xc;d;t;r

!

� c;d �
X

c2C;d2D

� c;d

+
X

q2Q ;d2D ;t2T

0

@
X

c2Q q ;r 2R

(xc;d;t;r � xc;d;t � 1;r � xc;d;t+1 ;r )

1

A � q;d;t

+ W RC
X

c2C;d2D ;t2T ;r 2R

(Sx � Cr )
+ xc;d;t;r � W RStab jCj (3.75)

s.t.
X

d2D ;t2T

� c;d;t;r � W RStab ; 8c 2 C; r 2 R (3.76)

� c � � c;d � � c;d � 0; 8c 2 C; d 2 D (3.77)

0 � � c � W MWD ; 8c 2 C (3.78)

0 � � q;d;t � W IL ; 8q 2 Q ; d 2 D ; t 2 T (3.79)

� c;d;t;r � 0; 8c 2 C; d 2 D ; t 2 T ; r 2 R
(3.80)

� c;d � 0; 8c 2 C; d 2 D (3.81)

We add the continuous variableu to the model. We let the variable be non-negative as a
trivial lower bound of CTT is zero. Then for a solution(x; u) we solve the dual LP model (3.75) �
(3.81). If the objective value of the dual LP is greater thanu then we add the following violated
cut to the model:

u �
X

c2C;d2D ;t2T ;r 2R

 

W RC (Sc � Cr )
+ + � c;d;t;r � � c;d +

X

q2Q c

�
� q;d;t � � q;d;t� 1 � � q;d;t+1

�
!

xc;d;t;r

+
X

c2C

D min
c � c �

X

c2C;d2D

� c;d � W RStab jCj (3.82)

The bene�t of the approach described in this section that the model (3.75) � (3.81) can be
solved analytically, thus we do not need to use an LP solver.

Consider a curriculumq 2 Q , day d 2 D and time slot t 2 T . In model (3.75) � (3.81)
the variable � q;d;t is not included in any constraints other than its own lower and upper bounds
(3.80). So in the optimal solution we set the variable to its upper bound when the objective
coe�cient is positive, otherwise we set it to its lower bound:

� q;d;t =

8
<

:

W IL ; if
X

c2Cq ;r 2R

(xc;d;t;r � xc;d;t � 1;r � xc;d;t+1 ;r ) > 0

0; otherwise
(3.83)

Consider now coursec 2 C and roomr 2 R . We de�ne xmax
c;r as the maximum amount that

c has been assigned tor in any period:
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xmax
c;r := max

d2D ;t2T
f xc;d;t;r g (3.84)

In the constraint (3.76) the variables� c;d;t;r for each dayd 2 D and time slot t 2 T contribute
by the same amount and they do not contribute to any other constraints. So we can pick any
variable � c;d;t;r where xc;d;t;r = xmax

c;r and set it to W RStab and the others to zero. Another
approach is to distribute W RStab across all the variables that have the largest coe�cient. We
de�ne the set Pmax � D � T as the set of periods wherec has been assigned tor by the
maximum amount:

Pmax :=
�

d 2 D ; t 2 T j xc;d;t;r = xmax
c;r

	
(3.85)

We then calculate the value� c;d;t;r according to whether or not(d; t) 2 P max :

� c;d;t;r =

8
<

:

W RStab

jP max j ; if (d; t) 2 P max

0; otherwise
(3.86)

The last variables we need to calculate are the ones associated with the calculation of the
MWD constraint. Note that the variables � , � and � can be calculated separately for each
course. Consider coursec 2 C and assume that we know the optimal value� c for the variable
� c. Due to constraints (3.77) we have that for the values� c;d and � c;d for each dayd 2 D
the sum � c;d + � c;d is lower bounded by� c. Since all the variables are non-negative and the
coe�cients of the variables � c;d and � c;d for each dayd 2 D are non-positive then it is always
desirable to have the sum at its lower bound:

� c = � c;d + � c;d (3.87)

As the variables� c;d and � c;d do not contribute to other constraints then the values� c;d and
� c;d can be set such that the variable with the largest (least negative) coe�cient is set to� c

and the other is set to zero:

� c;d =

8
<

:

� c; if
X

t2T ;r 2R

xc;d;t;r � 1

0; otherwise
(3.88)

� c;d =

8
<

:

� c; if
X

t2T ;r 2R

xc;d;t;r > 1

0; otherwise
(3.89)

If we insert (3.88) and (3.89) into the objective function then the objective coe�cient of� c

becomes the following:

D min
c �

X

d2D

min

(

1;
X

d2D ;t2T

xc;d;t;r

)

(3.90)

So we calculate (3.90) and it is positive then we set� c to its upper bound W MWD and then
we use (3.88) and (3.89) to calculate the values of the� and � variables.
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Every integer solution x is a feasible solution and provides an upper bound. We imple-
mented the cuts in a callback function of Gurobi where we calculated the cuts analytically.
Unfortunately, all the lower bounds were higher and the upper bounds were lower when the
basic model is solved in Gurobi. Some of these issues might arise because Gurobi does not con-
tain any information about the objective function that can guide the heuristics and the cutting
planes. In the newest version of CPLEX an automatic Benders' Decomposition has been im-
plemented. Future research could see if this implementation helps on the issues addressed here.
Furthermore, it could also be interesting to include more soft constraints into the approach.

3.3.3 Curriculum Patterns

The idea in this section is to remove thes variables and then add a pattern variables instead.
For each curriculum and day we construct a set of patterns that the curriculum can be scheduled
to on that day. A pattern de�nes in which time slots that lectures are scheduled. For instance
if jT j = 4 then all the possible patterns that exists are illustrated in Table 3.1. Each column
in the table corresponds to a pattern and each row corresponds to a time slot. If a pattern
has a lecture scheduled in a speci�c time slot then this is marked with� . The second last line
(IL) count the number of isolated lectures that are created if a curriculum is assigned to the
corresponding pattern on any day.

Table 3.1: The patterns whenjT j = 4.

time slot pattern index k
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 � � � � � � � �
2 � � � � � � � �
3 � � � � � � � �
4 � � � � � � � �
IL 0 1 1 1 1 0 2 2 0 2 0 0 1 1 0 0

For each curriculumq 2 Q and day d 2 D we let Kq;d be the set of feasible patterns thatq
can be assigned to on dayd. We de�ne � k

q;d as a binary variables which takes value one if the
curriculum q 2 Q is assigned to the patternk 2 K q;d for day d 2 D . We link the x variables
from the basic formulation from section 3.1 with the� variables as follows:

X

k2K q;d

ak
t � k

q;d =
X

c2Cq ;r 2R

xc;d;t;r ; 8q 2 Q ; d 2 D ; t 2 T (3.91)

X

k2K q;d

� k
q;d = 1; 8q 2 Q ; d 2 D (3.92)

� k
q;d 2 B; 8q 2 Q ; d 2 D ; k 2 K q;d (3.93)

Constraints (3.91) ensure that if a curriculum is assigned some pattern on a day, then all
the courses in the curriculum must be assigned to the periods associated with the pattern.
Constraints (3.92) ensure that every curriculum selects exactly one pattern for each day. For
each curriculumq 2 Q , day d 2 D and pattern k 2 K q;d we let � k

q;d be the total penalty of the
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pattern k, thus we add� k
q;d�

k
q;d to the objective function. Consider some solution where each

variable xc;d;t;r is �xed to some integer valuexc;d;t;r for each coursec 2 C, day d 2 D , time slot
t 2 T and roomr 2 R . Then the remaining problem to solve is the following:

min
X

q2Q ;d2D ;k2K q;d

� k
q;d�

k
c;d (3.94)

s.t.
X

k2K q;d

ak
t � k

q;d =
X

c2Cq ;r 2R

xc;d;t;r ; 8q 2 Q ; d 2 D ; t 2 T (3.95)

X

k2K q;d

� k
q;d = 1; 8q 2 Q ; d 2 D (3.96)

� k
q;d 2 B; 8q 2 Q ; d 2 D ; k 2 K q;d (3.97)

Assume that model (3.94) � (3.97) is feasible and bounded. Furthermore, assume that all the
extreme points of the polytope of the LP-relaxation of model (3.94) � (3.97) are integer points,
meaning that we can replace the integrality requirements (3.97) by the following non-negativity
constraints:

� k
q;d 2� 0; 8q 2 Q ; d 2 D ; k 2 K q;d (3.98)

Then we can introduce the continuous variablez and reformulate model (3.94) � (3.97) as
follows:

min z (3.99)

s.t. z �
X

c2C;d2D ;t2T ;r 2R

� j
c;d;t;r xc;d;t;r + � j

0; 8j 2 J (3.100)

J is the set of Benders' optimality cuts and for each cutj 2 J the coe�cient of the variable
xc;d;t;r for coursec 2 C, day d 2 D , time slot t 2 T and roomr 2 R is � j

c;d;t;r and � j
0 is a constant.

We add z to the objective function of the original formulation and all the� variables from the
model. AsJ is exponentially large, we remove them all (except the trivialz � 0) and add them
dynamically when they are violated. We de�ne� as the dual vector of the constraints (3.95)
and � as the dual vector of (3.96). We formulate the dual of model (3.94) � (3.97) as follows:

max
X

q2Q ;d2D ;t2T

0

@
X

c2Cq ;r 2R

xc;d;t;r

1

A � q;d;t +
X

q2Q ;d2D

� q;d (3.101)

s.t. � q;d;t + � q;d � � k
q;d; 8q 2 Q ; d 2 D ; k 2 K q;d (3.102)

� q;d;t 2 R; 8q 2 Q ; d 2 D ; t 2 T (3.103)

� q;d 2 R; 8q 2 Q ; d 2 D (3.104)

Given an integer solution(x; z) we solve model (3.101) � (3.104) and get the optimal solution
(�; � ). If the objective value of(�; � ) is greater thanz then we have a violated optimality cut
which we add to the model:
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z �
X

c2C;d2D ;t2T ;r 2R

 
X

q2Q c

� q;d;t

!

xc;d;t;r +
X

q2Q ;d2D

� q;d (3.105)

These cuts were based on the assumption that model (3.94) � (3.97) has the integrality
property, i.e., that all the extreme points of the polytope of the LP-relaxation are integral.
Consider a solutionx for the variablesx and the polytope of LP relaxation of (3.91) � (3.93).
If

P
c2Cq ;r 2R xc;d;t;r = 0 for curriculum q 2 Q , day d 2 D and time slot t 2 T then for each

pattern k 2 K q;d where ak
t = 1 the variable � k

q;d must be zero in any solution so we remove
this variable. When we have removed all the variables that contribute to the constraint then
we remove the constraint as it is now redundant. What remains is a zero�oneset partitioning
problem. Note that the model is decomposable for each curriculum and each day, i.e., for each
curriculum q 2 Q and each dayd 2 D we consider the following problem:

X

k2K q;d

ak
t � k

q;d = 1; 8t 2 T :
X

c2Cq ;r 2R

xc;d;t;r = 1 (3.106)

X

k2K q;d

� k
q;d = 1 (3.107)

� k
q;d � 0; 8k 2 K q;d : ak

t =
X

c2Cq ;r 2R

xc;d;t;r ; 8t 2 T (3.108)

If model (3.106) � (3.108) has the integrality property for each curriculum and each day then
model (3.94) � (3.97) also has the integrality property. A zero�one set-partitioning problem
is said to have the integrality property if and only if the corresponding constraint matrix is
perfect (Padberg, 1974; Ryan and Falkner, 1988). So we need to show that the constraint
matrix of model (3.106) � (3.108) isperfect. To show that the constraint matrix is perfect we
use de�nition 3.1 and theorem 3.1.

De�nition 3.1 (Padberg (1974) and Ryan and Falkner (1988)). An m � h zero�one matrix
Ah with h � m is said to have the property� �;h if:

ˆ Ah contains a h � h non-singular submatrixBh were all rows and columns sum to�

ˆ Every row in Ah which is not in Bh is either equal to a row inBh or the sum of the row
is strictly less than�

Theorem 3.1 (Padberg (1974) and Ryan and Falkner (1988)). Any zero�one matrix A of size
m � n is perfect if and only if A does not contain anym � h submatrix Ah with the property
� �;h for � � 2 and 3 � h � m.

We let A of sizem � n be the constraint matrix of model (3.106) � (3.108). To prove that
A is perfect we assume that it is not perfect and show that this leads to a contradiction. The
assumption means that there is anm � h submatrix Ah of A with property � �;h for some� � 2
and 3 � h � m. As Ah has the property � �;h then it contains a h � h non-singular submatrix
Bh where all rows and columns sum to� . Since the number of columns inBh is h then an
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upper bound on� is h. If � = h then Bh cannot be non-singular, i.e.,� � h � 1 must hold.
Consider the row ofAh corresponding to constraint (3.107). As the coe�cients of the variables
are all one in this constraint, then this means that the sum of this row ish. As � < h then
the row cannot be inBh and thus (3.107) must be one of the rows inAh which is not in Bh.
However, this contradicts de�nition 3.1 as the sum of any row inAh outsideBh must be either
equal to a row inBh or sum to a value less than� . So the constraint matrix of model (3.106)
� (3.108) must be perfect.

The issue we encountered with this approach is that Gurobi had di�culties improving
the lower bounds compared to the basic formulation. We only added the Benders' cuts for
integer solutions. Future research could consider to add the cuts in fractional solutions as well.
However, the model that generates the cuts are based on the property that it is feasible and
bounded for integer solution. This does not always apply to fractional solutions, so feasibility
cuts should also be considered. Future research could also consider other hard or soft constraints
that can be included in this formulation. For instance if we penalize the minimum or maximum
number of lectures it is allowed to schedule for each curriculum. This penalty can be added
to the costs of the patterns or if it is a hard constraint then we can remove the patterns that
violates this. Another example of a penalty that can be included iswindows, i.e., if a curriculum
has more than one lecture scheduled in one day then they should be scheduled consecutively
and any holesare penalized. The bene�t of the pattern formulation is that the penalties of the
mentioned soft constraints can be based on non-linear expressions.

3.4 Cutting Planes

In this section we provide three di�erent cutting plane methods that we have tested. Before
the descriptions of the cutting plane approaches we provide an introduction to cutting plane
methods in section 3.4.1. In section 3.4.2 we describe a cutting plane method based on a
pattern formulation and Benders' Decomposition. The last two methods are disjunctive cuts
where the �rst approach in section 3.4.3 is based on the disjunctive formulation described in
section 3.1.1 and the last approach in section 3.4.4 is based on a non-linear formulation of the
isolated lectures.

3.4.1 Introduction to Cutting Planes

In this section we provide a brief description of Cutting Plane algorithms. We refer to Wolsey
(1998) for a thorough description. Consider a MIP problem in the following form:

min c> x

s.t. Ax � b

x 2 X

(MIP)

where c, x and b are vectors andA is a matrix and X is some set, e.g. the set of in-
tegers. To get a lower bound of the model (MIP) the LP relaxation is solved. LetPIP =
conv(f Ax � b; x 2 X g) and let PLP = f Ax � b; x 2 Rng, i.e., PIP is the convex hull of the
model (MIP) and PLP is the LP relaxation; PLP � PIP . The idea of cutting plane algorithms
is to solve the LP relaxation to obtain a point x � 2 PLP . If x � =2 PIP then we look for an
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inequality � > c � � 0 which is violated by x � but not violated by any point x 2 PIP . The idea
is illustrated in Figure 3.6.

x � � > x � � 0

LP solution spaceLP solution space

Eliminated by cut

Integer solution

Figure 3.6: Illustration of the solution space.

In Figure 3.6 an example of the solution space is illustrated, where each point corresponds
to an integer solution. When the LP relaxation is solved to optimality the pointx � is obtained.
This solution is not integer and so an inequality� > x � � 0 is added that separatesx � from the
set of integer solutions. This approach can be iterated until no more cuts can be found, which
results in the polyhedronP0 wherePLP � P0 � PIP , and hopefullyPLP � P0. P0\ X can then
be explored by a Branch & Bound algorithm to �nd the optimal solution. If P0 is signi�cantly
smaller than PLP then this can improve the performance of the Branch & Bound algorithm.

3.4.2 Clique Pattern Cuts

The idea in this section is to make a formulation similar to the pattern formulation in sec-
tion 3.3.3 and the formulation in the paper in chapter 6. However, instead of considering
patterns for one course, we consider patterns for an entire course clique.

For each course clique
 2 � and day d 2 D we let K 
;d be the set of feasible patterns that

 can be assigned to on dayd similar to section 3.3.3. We de�ne� k


;d as a binary variables
which takes value one if the clique
 2 � is assigned the patternk 2 K 
;d for day d 2 D . Then
we can link thex variables from the compact formulation from section 3.1 together with the�
variables as follows:
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X

k2K 
;d

ak
t � k


;d =
X

c2C
 ;r 2R

xc;d;t;r ; 8
 2 � ; d 2 D ; t 2 T (3.109)

X

k2K 
;d

� k

;d = 1; 8
 2 � ; d 2 D (3.110)

� k

;d 2 B; 8
 2 � ; d 2 D ; k 2 K 
;d (3.111)

We can prove that the integrality requirements can be replaced by non-negativity constraint
by using the same arguments as in section 3.3.3 where we replace the curricula by the course
cliques. The di�erence between the approach in section 3.3.3 and the approach we consider
here is that we use the the model to generate cuts for fractional solutions. If we are provided
with a fractional solution x then we chec whether the LP-relaxation of model (3.109) � (3.110)
is infeasible. If this is the case then we can generate a cut. We do this by introducing new
variables. For each clique
 2 � , day d 2 D and time slot t 2 T we let the variablesu+


;d;t and
u�


;d;t be the violation of the constraint (3.109). For each clique
 2 � and day d 2 D we let the
variablesv+


;d and v�

;d be the violation of the constraint (3.110). The objective is to minimize

these variables, i.e., we solve the following model:

min
X


 2 � ;d2D ;t2T

�
u+


;d;t + u�

;d;t

�
+

X


 2 � ;d2D

�
v+


;d + v�

;d

�
(3.112)

s.t.
X

k2K 
;d

ak
t � k


;d + u+

;d;t � u�


;d;t =
X

c2C
 ;r 2R

xc;d;t;r ; 8
 2 � ; d 2 D ; t 2 T (3.113)

X

k2K 
;d

� k

;d + v+


;d � v�

;d = 1; 8
 2 � ; d 2 D (3.114)

u+

;d;t ; u�


;d;t � 0 8
 2 � ; d 2 D ; t 2 T (3.115)

v+

;d ; v�


;d � 0 8
 2 � ; d 2 D (3.116)

� k

;d � 0; 8
 2 � ; d 2 D ; k 2 K 
;d (3.117)

If the objective value of the optimal solution of model (3.112) � (3.117) is greater than zero
then we can generate a cut to remove the fractional solutionx from the solution space of the
basic model. The cut is generated by dualizing model (3.112) � (3.117) as follows:

max
X


 2 � ;d2D ;t2T

0

@
X

c2C
 ;r 2R

xc;d;t;r

1

A � 
;d;t +
X


 2 � ;d2D

� 
;d (3.118)

s.t. � 
;d;t + � 
;d � 0; 8
 2 � ; d 2 D ; k 2 K 
;d (3.119)

� 1 � � 
;d;t � 1; 8
 2 � ; d 2 D ; t 2 T (3.120)

� 1 � � 
;d � 1; 8
 2 � ; d 2 D (3.121)

� 
;d;t 2 R; 8
 2 � ; d 2 D ; t 2 T (3.122)

� 
;d 2 R; 8
 2 � ; d 2 D (3.123)
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We solve the model (3.118) � (3.123) and obtain the optimal solution(�; � ). If the objective
value of this solution is strictly positive then we add the following cut to the basic model:

X

c2C;d2D ;t2T

 
X


 2 � c

� 
;d;t

!

xc;d;t +
X


 2 � ;d2D

� 
;d � 0 (3.124)

To improve the strength of the cuts, we also apply a preprocessing phase to remove patterns
from the set K 
;d for each clique
 2 � and day d 2 D . The preprocessing we apply are taken
from the paper in chapter 6. All the preprocessing techniques that are discussed in the paper
can be applied by extending them to consider course cliques instead of only single courses.
Some of the inequalities discussed in the paper can also be applied here, such as theextended
cover inequalities. Furthermore, consider two cliques
 1 2 � and 
 2 2 � . Let C
 1 ;d � C 
 1 for 
 1

be the set of courses where at least one of the time slots on dayd 2 D is available and similarly
for 
 2 we have the setC
 2 ;d � C 
 2 . If C
 1 ;d = C
 2 ;d then we can remove all the constraints
corresponding to clique
 2 and day d 2 D as they are redundant.

We implemented the cuts in a callback function of Gurobi where we added any violated
cut to the fractional solution generated by Gurobi in the root node of the Branch & Bound
tree. The cuts did not improve the lower bounds compared to Gurobi's default behaviour. Any
future research focusing on this approach should consider if additional valid inequalities can be
derived for model (3.112) � (3.117) to strengthen the cuts. It could also be interesting to see if
MIP models for other scheduling problems would bene�t from these cuts.

3.4.3 Disjunctive Cuts

In this section we describe an application of addingdisjunctive cuts to the basic model. First
we provide a brief description of disjunctive cuts, and we refer to Fischetti et al. (2011) for a
thorough description.

We consider the following MIP model:

min c> x

s.t. Ax � b

x 2 X

(3.125)

Let P be the polyhedron of the LP-relaxation of model (3.125), i.e.,P = f Ax � b; x 2 Rng
where n is the number of variables in the vectorx. Assume that we are given a disjunction�
PL ; PR

�
of the model such that every integer point inP is in PR or PL but not in both of them.

We let PL be denoted as
�

AL x � bL ; x 2 R
	

and we letPR be denoted as
�

ARx � bR ; x 2 Rn
	

.
For any dual vector u � 0 the cut (uAL )> x � ubL is valid for PL and for any dual vector

v � 0 the cut (vAL )> x � vbL is valid for PR . We let AL
i be the column in the matrix AL

corresponding to the variablex i and similarly for AR
i . We can use these two cuts to generate

a valid inequality � > x � � 0 for P by calculating � and � 0 as follows:

� i = min
�

uAL
i ; vAL

i

	
; i 2 f 1; : : : ; ng (3.126)

� 0 = max
�

ubL ; vbR
	

(3.127)
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Consider a fractional solutionx for the LP relaxation of (3.125). We then formulate the
following cut separation problem:

max � > x � � 0

s.t. � � uAL

� � vAR

� 0 � ubL

� 0 � vbR

e> u + e> v = 1

u; v � 0

� 2 Rn

� 0 2 R

(3.128)

The constraint e> u + e> v = 1 is a normalisation constraint that ensures feasibility as the
model can be unbounded. If there exits a solution(�; � 0) to model (3.128) where the objective
value is positive thenx � violates the cut � > x � � 0 and we add this cut toP.

In the following we describe how we apply the disjunctive cuts for CTT. We apply the
cuts for the basic model described in section 3. For the cuts we use the disjunction from
section 3.1.1. For a fractional solutionx consider curriculumq 2 Q , day d 2 D and time slot
t 2 T wheresq;d;t is the value of the variablesq;d;t in the fractional solution. We calculate the
sum xq;d;t + xq;d;t� 1 + xq;d;t+1 , and if the sum is zero or two then we then this is not a branching
candidate. If the sum if greater than zero and less than two then we calculate the valuesDisj

q;d;t
according to the disjunctive formulation:

sDisj
q;d;t =

(
xq;d;t if xq;d;t + xq;d;t� 1 + xq;d;t+1 � 1

1 � xq;d;t� 1 � xq;d;t+1 otherwise
(3.129)

If sDisj
q;d;t > s q;d;t then this is a candidate for a disjunctive cut. If the sumxq;d;t+ xq;d;t� 1+ xq;d;t+1

is greater than one then we use the disjunction (3.18) for the cut separation problem (3.128).
If the sum if less than one then is use the disjunction (3.25). If the sum is one then we pick
one of the disjunctions randomly.

In our implementation we used Gurobi and implemented the cutting plane in a callback
function. We tested the approach where we added the cuts only in the root node of the Branch
& Bound tree. The strategy we used to generate the cuts were to order the candidates by the
value sDisj

q;d;t � sq;d;t from largest to smallest. We then iterated through the list and then added
only the �rst cut that was generated. Though cuts were generated, it did not help on the
performance of Gurobi. For future research it could be interesting to examine further if it helps
to add multiple cuts and if the cuts should be added in other nodes in the Branch & Bound
tree as well.

3.4.4 Nonlinear Disjunctive Cuts

In this section we consider disjunctive cuts similar to the cuts in section 3.4.3. However, in
this section we consider a disjunction based on a nonlinear formulation of the isolated lectures.
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Consider a curriculumq 2 Q , day d 2 D and time slott 2 T . Curriculum q has an isolated
lecture in period (d; t) if the variable xq;d;t is one and bothxq;d;t� 1 and xq;d;t+1 are zero. So we
can replace the constraint (3.11) by the following nonlinear constraint:

sq;d;t = xq;d;t (1 � xq;d;t� 1) (1 � xq;d;t+1 ) (3.130)

Consider a solutionx to the LP relaxation of the basic model. We letsLP
q;d;t be the value of

the variablesq;d;t calculated from the linear formulation (3.11) andsNLP
q;d;t be the value calculated

from the nonlinear formulation (3.130). Unfortunately the (3.130) is nonlinear and non-convex
so we cannot use it in a solver such as Gurobi. However, provided with the solutionx to the LP
relaxation, we can calculate the nonlinear terms. In Table 3.2 we have solved the LP relaxation
for all the data instances from ITC2007. For each instance we report the objective value of the
LP relaxation in the column LP and in the column NLP we report the objective value of the
same solution if we had used the nonlinear formulation.

Table 3.2: For each instance the objective value of the LP relaxation (LP) is provided as well
as the corresponding objective value for the non-linear formulation

Instance LP NLP
comp01 4.0 51.6
comp02 0.0 304.0
comp03 0.0 306.4
comp04 0.0 210.8
comp05 17.0 911.7
comp06 6.0 312.3
comp07 0.0 325.5
comp08 0.0 230.6
comp09 0.0 334.1
comp10 0.0 253.6
comp11 0.0 56.1
comp12 3.0 979.0
comp13 0.0 262.4
comp14 0.0 269.4
comp15 0.0 306.4
comp16 4.0 319.1
comp17 10.0 331.6
comp18 0.0 284.6
comp19 4.5 271.8
comp20 0.0 363.3
comp21 0.0 364.8

From Table (3.2) we see that there is a large di�erence in the objective values, which is
always the case. If we expand the expression (3.130) for the solutionx we get the following:

xq;d;t (1 � xq;d;t� 1) (1 � xq;d;t+1 ) = xq;d;t � xq;d;txq;d;t� 1 � xq;d;txq;d;t+1 + xq;d;txq;d;t� 1xq;d;t+1 (3.131)
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As all three variables are non-negative thenxq;d;txq;d;t� 1xq;d;t+1 � 0 must hold. Furthermore,
since0 � xq;d;t � 1 then xq;d;txq;d;t� 1 � xq;d;t� 1 and xq;d;txq;d;t+1 � xq;d;t+1 must hold as well,
and so we can calculate a lower bound for the right-hand side of (3.131):

xq;d;t � xq;d;txq;d;t� 1 � xq;d;txq;d;t+1 + xq;d;txq;d;t� 1xq;d;t+1 � xq;d;t � xq;d;t� 1 � xq;d;t+1 (3.132)

Note that the right-hand side of (3.132) is equivalent to the linear formulation of the isolated
lectures. So for any optimal solutionx to the LP relaxation of the basic model we have that
sNLP

q;d;t � sLP
q;d;t for every curriculum q 2 Q , day d 2 D and time slot t 2 T . We use this

information to create the disjunction and to �nd the candidates for the disjunction. If we have
selected a curriculumq 2 Q , day d 2 D and time slot t 2 T as the candidate then we create
the disjunction by ensuring that in each subproblem the valuesNLP

q;d;t is equal to sLP
q;d;t for the

optimal solution of the LP relaxation of the subproblem.
The question is whensNLP

q;d;t = sLP
q;d;t holds. If we �x xq;d;t� 1 to one then sNLP

q;d;t is zero for
any solution x and the right-hand side in (3.11) is less than or equal to zero meaning that
sLP

q;d;t is zero as well. So we can create one subproblem where we add the constraintxq;d;t � 1.
Then we also have to create another subproblem where we add the constraintxq;d;t � 0,
which creates a disjunction of the problem. In this latter suproblem we cannot guarantee that
sNLP

q;d;t = sLP
q;d;t for any solution. So we cretae a new disjunction of that subproblem that split it

into two new subproblems. In the �rst subproblem we add the constraintxq;d;t+1 � 1 and as
beforesNLP

q;d;t = sLP
q;d;t = 0 in this subproblem. In the second subproblem we add the constraint

xq;d;t+1 � 0. So now we have a subproblem where we have the constraintsxq;d;t� 1 � 0 and
xq;d;t+1 � 0 which means that for a solutionx the right-hand side in (3.11) evaluates toxq;d;t.
The value sNLP

q;d;t also evaluates toxq;d;t which means thatsLP
q;d;t = sNLP

q;d;t for any solution xq;d;t.
We provide an overview of the disjunction in Figure 3.7 whereP refers to the problem we
consider andPL , PM and PR refers to the subproblems created. The label below each node is
the constraint that is added to the subproblem.

P

PL

xq;d;t� 1 � 1

PM

xq;d;t� 1 � 0
xq;d;t+1 � 1

PR

xq;d;t� 1 � 0
xq;d;t+1 � 0

Figure 3.7: Illustration of the three children when branching

We let AL � bL be the constraint set of the model in the �rst child PL , i.e., if Ax � b is
the constraint set ofP then AL � bL is the same constrains set plus the additional constraint
xq;d;t� 1 � 1. AM � bM is the constraint set of the model in the second childPM , and AR � bR

is the constraint set of the model in the third childPR . We then extend the cut model from
section (3.4.3) to the following:
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max � > x � � � 0

s.t. � � uAL

� � vAM

� � wAR

� 0 � ubL

� 0 � vbM

� 0 � wbR

e> u + e> v + e> w = 1

u; v; w � 0

� 2 Rn

� 0 2 R

(3.133)

We implemented the cutting plane as a callback function in Gurobi. Whenever we were
provided with a fractional solution x by Gurobi in the root node of the Branch & Bound tree,
we ordered each triple(q; d; t) for curriculum q 2 Q , day d 2 D and time slot t 2 T for the
value sNLP

q;d;t � sLP
q;d;t from largest to smallest. We then iteration two the triples and for each triple

we solved the cut separation model (3.133), and if a cut is generated, we add it to the model
and stop. The drawback of this method compared to the disjunctive cuts in section 3.4.3 is
that the cut separation model is larger, which made it more time consuming to solve. It could
be interesting to see if it help the performance if all the violated cuts and also if the solution
time of the cut separation process can be improved.

3.5 Dantzig-Wolfe Decomposition

In this section we describe di�erent Dantzig-Wolfe Decomposition that we have considered.
Before the description of our implementations, we provide an introduction to Dantzig-Wolfe
Decomposition in section 3.5.1. This introduction is taken directly from the paper in chapter 7.

Dantzig-Wolfe decompositions have been applied to CTT before, e.g., Cacchiani et al. (2013)
mentions di�erent formulations. In one of the decompositions, they decompose one of the
subproblems further when the data instances are large such that there is a subproblem for each
day. In the paper in chapter 7 a decomposition is described that also generates a subproblem
for each day. The di�erence between Cacchiani et al. (2013) and the paper in chapter 7 is that
the approach in chapter 7 based on a pattern formulation described in the paper in chapter 6.

In section 3.5.2 and 3.5.3 we describe two other decompositions that we have implemented
which are also based on the pattern formulation from the paper in chapter 6. The �rst approach
is to decompose the model according to the courses and the second approach divides the course
into cliques and then decomposes the model according to those cliques.

3.5.1 Introduction to Dantzig-Wolfe Decomposition

Our introduction to the Dantzig-Wolfe Decomposition is speci�c for MIP models and we refer to
Martin (1999, chapter 11) and Desrosiers and Lübbecke (2010) for thorough and more general
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descriptions. We consider an MIP of the form:

min c> x (3.134)

s.t. Ax � b (3.135)

Bx � d (3.136)

x 2 Zn (3.137)

where c, x, b and d are vectors andA and B are matrices. To get a lower bound of the
model (3.134) � (3.137) the linear programming (LP) relaxation is solved. In Figure 3.8 an
example of the solution space is illustrated.

Ax � b Bx � d

LP solution space

Integer solution

Figure 3.8: Illustration of the solution space.

The idea of the Dantzig-Wolfe decomposition for an MILP is to take the convex hull of
f x 2 X j Bx � dg, and replace it by variables. For simplicity, we assume that the convex hull
conv(f x 2 X j Bx � dg) is a polytope. Then any pointx in this polytope can be written as a
convex combination of the extreme points, i.e., if

�
xh

	
h2H

is the set of all the extreme points
of conv(f x 2 R j Bx � dg), then x can be written as follows:

X

h2H

xh � h = x (3.138)

X

h2H

� h = 1 (3.139)

� h � 0; 8h 2 H (3.140)

We can take this representation and insert it into the LP-relaxation of the model (3.134) �
(3.137):
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min
X

h2H

�
c> xh

�
� h (3.141)

s.t.
X

h2H

�
Axh

�
� h � b (3.142)

X

h2H

� h = 1 (3.143)

� h � 0; 8h 2 H (3.144)

Model (3.141) � (3.144) is referred to as the LP relaxation of the Dantzig-Wolfemaster
problem. Let z�

IP be the optimal objective value of the model (3.134) � (3.137), letz�
LP be the

optimal objective value of the LP relaxation of the same model and letz�
DW be the optimal

objective value of the model (3.141) � (3.144). Then the bene�t of rewriting the model is that
the LP relaxation of the Dantzig-Wolfe master problem is a stronger relaxation in the sense
that we have the following relation:

z�
LP � z�

DW � z�
IP (3.145)

Figure 3.9 illustrates the impact on the solution space whenBx � d from Figure 3.8 is
replaced byconv(f Bx � d; x 2 Z ng).

Ax � b conv(f Bx � d; x 2 Zn g)

LP solution space

Eliminated by DW

Integer solution

Figure 3.9: Illustration of the solution space of the master problem.

Explicitly describing model (3.141) � (3.144) can be di�cult as the number of extreme points
in conv(f x 2 X j Bx � dg) can be exponentially large. So a way to solve the model is to start
with a restricted setH 0 � H and then solve the model (3.141) � (3.144) with this restricted set.
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The model with this restricted set is referred to as therestricted master problem(RMP). Let �
be the dual vector of the constraints (3.142) and� 0 be the dual variable of constraint (3.143).
For a dual solution (�; � 0) the reduced cost of a columnh 2 H is ch = ( c � A> � )> xh � � 0. If
the dual solution is optimal then the RMP is optimal whench � 0 for every h 2 H . We know
that ch � 0 for every h 2 H 0, but there may exist some columnh 2 HnH 0 wherech < 0 so we
need to check if any such column exist. This can be done by solving the following problem,
known as thepricing problem (PP):

min (c � A> � )> x � � 0 (3.146)

s.t. Bx � d (3.147)

x 2 Zn (3.148)

If PP contains any solution where the objective value is negative, then the RMP is not
proven optimal, and we need to add the solution as a column to the RMP. This process is
known as thecolumn generationalgorithm. First solve the RMP to obtain the dual solution
(�; � 0). Given the dual solution �nd a solution for model (3.146) � (3.148) with a negative
objective value. If a solution with a negative reduced cost exists, then extend the restricted
set H 0 with this solution and iterate the process. We continue this iterative process until the
model (3.146) � (3.148) does not contain any solution with a negative objective value. This
iterative process is illustrated in Figure 3.10.

Master problem

Pricing problem

Dual solution �New columnxh

Figure 3.10: The iterative loop of the column generation algorithm.

Another bene�t of the Dantzig-Wolfe decomposition is that it is possible to exploit if the
constraint matrix B has ablock diagonalstructure as follows:

B =

2

6
6
6
4

B1

B2
. . .

Bm

3

7
7
7
5

; d =

2

6
6
6
4

d1

d2
...

dm

3

7
7
7
5

(3.149)

Let I = f 1; 2; : : : ; mg and for eachi 2 I let H i be the extreme points of
conv(f x i 2 Z j B i x i � di g) where x i is the subset of variables inx that corresponds to the
submatrix B i . Similarly, ci and A i are the subvector and submatrix of the vectorc and matrix
A corresponding to the submatrixB i . Then the LP relaxation of the master problem can be
written as follows:
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min
X

i 2I ;h2H i

�
c>

i xh
i

�
� h

i (3.150)

s.t.
X

i 2I ;h2H i

�
A i xh

i

�
� h

i � b (3.151)

X

h2H i

� h
i = 1; 8i 2 I (3.152)

� h
i � 0; 8i 2 I ; h 2 H i (3.153)

The columns with a negative reduced cost are then found by solving them independent
pricing problems.

3.5.2 Course Schedules

The �rst decomposition we considered for the pattern formulation from the paper in chapter 6
was to create a pricing problem for each day. The be�t of this decomposition is that the
pricing problem can be solved e�ciently byDynamic Programming. Dynamic Programming is a
method for solving a problem by solving it instages. Each stage is given thestate of the previous
stages to calculate new states to be provided for succeeding stages. In our implementation a
state consists if three values;c, L and M . c is the cost of the state. L corresponds to the
number of all the lectures that has been scheduled for the course in previous stages.M is
the number of days left for the course to schedule lectures to hit the target of the minimum
working day D min

c . In the beginning the state is
�
c; M = D min

c ; L = 0
�

wherec is set to be equal
to any constant of the objective function for the pricing problem. The stages correspond to
the days. When a stage (day) gets a state(ci ; M i ; L i ) as input, then for each pattern that the
course can be assigned on that day, a new state(cj ; M j ; L j ) is created. cj is set to be equal to
ci plus the cost of the pattern. L j is set to be equal toL i plus the number of lectures in the
pattern. M j  M i if the pattern does not contain any lectures, otherwiseM j  (M i � 1)+ .
For two di�erent states (cj 1 ; M j 1 ; L j 1 ) and (cj 2 ; M j 2 ; L j 2 ) produced by the same stage, we say
that (cj 1 ; M j 1 ; L j 1 ) dominates(cj 2 ; M j 2 ; L j 2 ) if L j 1 = L j 2 and cj 1 + W MWD (M j 1 � M j 2 )+ � cj 2 .
The dominated label can be discarded as it cannot lead to a solution which is better than
the best solution that is created from(cj 1 ; M j 1 ; L j 1 ). Any state (c; M; L ) returned by the �nal
stage is feasible ifL = L c. For each feasible state(c; M; L ) we add the cost of the minimum
working days;c  c + W MWD M . We can then pick the feasible state with the lowest cost as
the optimal solution. An example of the process is illustrated in Figure 3.11, where Monday is
provided with the initial state. All the states generated by Monday is then provided as input
for Tuesday. The algorithm continues until Friday has generated all its states.

In the example in Figure 3.11 we processed the stages starting from Monday and ended on
Friday. However, we could have processed the stages in any order we like. Therefore, we imple-
mented a faster dynamic algorithm by generating the states for each day independently and then
recursively merging the states together. Consider two states(ci ; M i ; L i ) and (cj ; M j ; L j ) that
were generated by two di�erent days. We can merge the states into stage(ck ; M k ; L k) if, and
only if, L i + L j � L c, otherwise(ck ; M k ; L k) becomes infeasible. We setL k = L i + L j . For the
valuesck and M k we need to consider the number of days that the course has lectures assigned
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Initial state

M T W T F

Solutions

Input states

Extended states

Figure 3.11: Illustration of the dynamic programming algorithm

in the two states. For the state(ci ; M i ; L i ) the number of working days isD min
c � M i , and for the

state (cj ; M j ; L j ) the number isD min
c � M j . So when we merge the labels the total number of

working days isD min
c � M i + D min

c � M j = 2D min � M i � M j . Now we can calculate the number
of days missing for the course,M k =

�
D min � 2D min + M i + M j

� +
=

�
M i + M j � D min

c

� +
. An

example of the complete merge procedure is illustrated in Figure 3.12.

M T W T F

Initial state Initial state Initial state Initial state Initial state

MT WT F

MT WTF

MTWTF

Solutions

Stage one

Stage two

Stage three

Stage four

Input states

Extended states

Figure 3.12: Illustration of the state merging procedure

In Figure 3.12 we start the �rst stage by providing each day with the initial state. Each day
then generates a list of states. Then for each state in the list returned by Monday, we merge
it with each state in the list returned by Tuesday, which generates a new list (denoted MT
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in the �gure) where the dominated states are discarded. We do the same for Wednesday and
Thursday (denoted WT in the �gure). At this stage we carry over the list of states generated
by Friday (denoted F in the �gure), i.e., the states generated by Friday are not merged. In the
second stage we carry over the list MT to the next stage, and we merge the lists WF and F
into the list WTF. In the third stage we merge the two lists, MT and WTF, which generates
the list MTWTF. In the last stage we remove all the states where the number of lectures is not
L c, and we can then pick the state with the lowest cost as our solution.

3.5.3 Clique Schedules

In this section we describe a decomposition based on the cliques� . The formulation is very
similar to the course decomposition in section 3.5.2, where we also consider the pattern formu-
lation from the paper in chapter 6. However, instead of decomposing the model, so we have
a pricing problem for each course, we decompose the problem such that each pricing problem
corresponds to a clique of courses. The bene�t of this decomposition is that for a clique of
courses we know that they must be scheduled in di�erent periods. Since each pricing problem
corresponds to a clique, we restrict the columns that are generated by only selecting patterns
for the courses that schedule at most one lecture in each period. The idea is to decompose the
courses into cliques such that each course is contained in exactly one of the cliques. We take
the cliques found by the algorithm described by Bron and Kerbosch (1973) and de�ne a binary
variable x 
 for each clique
 2 � which is one if the clique is selected for the decomposition,
and zero otherwise. For each clique
 2 � we de�ne the value� 
 , which is some measurement
of how pro�table it is to include 
 in the decomposition. We then formulate the decomposition
problem as follows:

max
X


 2 �

� 
 x 


s.t.
X


 2 � c

x 
 = 1 8c 2 C

x 2 B

(3.154)

In the model (3.154) there is one constraint for each course, which ensures that the course
is contained in at least one of the selected cliques. For the optimal solution to model (3.154)
we decompose the pattern formulation

To ensure that the model (3.154) is feasible we add a clique to� for each coursec 2 C, which
contains only this single course. LetCq;d;t be de�ned for curriculum q 2 Q , day d 2 D and time
slot t 2 T as the set of courses that can be scheduled in one of the time slotsf t � 1; t; t + 1g:

Cq;d;t := f c 2 Cq j Fc;d;t � 1 + Fc;d;t + Fc;d;t+1 � 1g; q 2 Q ; d 2 D ; t 2 T (3.155)

If all the courses in the setCq;d;t is in a clique 
 2 � , then we can put the formulation of
the isolated lecture in the corresponding pricing problem. Therefore, we de�ne the pro�t of
selecting clique
 2 � to be the number of sets (3.155) where all courses are in the clique:

� 
 := kf q 2 Q ; d 2 D ; t 2 T : Cq;d;t � C 
 gk (3.156)
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For each curriculum q 2 Q , day d 2 D and time slot t 2 T we can also add the set of
coursesCq;d;t to the set of cliques sinceCq;d;t � C q. We add these cliques to increase the chances
of the isolated lectures to be included in the pricing problems.

3.5.4 Remarks on the Decompositions

The two formulations from section 3.5.2 and 3.5.3 were not as successful as the decomposition
from the paper in chapter 6. To get an idea of why this could be the case, we consider the
constraint matrix of the pattern formulation. In Figure 3.13 we illustrate the constraint matrix
of the pattern formulation for the data instance comp03 from ITC2007. Each black pixel, except
the rectangles, corresponds to a non-zero entry in the matrix. In Figure 3.12a we have ordered
the columns and rows according to courses, in Figure 3.12b we have ordered the columns and
rows according to the clique decomposition and in Figure 3.12c the columns an rows are ordered
by days. The rectangles mark the constraints for the master problem and the block structure
of the pricing problem.

It should be noted that for the sake of visualization we added a border around each block
in Figure 3.13. The width of the border is four which is added to the sizes of the matrices.
Therefore, the total number of constraints in the pricing problems may appear to be larger
than they are. For instance in Figure 3.12a the total amount of constraints in the pricing
problems appear to be more than half of all the constraints, though, in reality only 5% of the
constraints are in the pricing problems. For the clique decomposition, 43% of the constraints
are in the pricing problems and for the day decomposition, 89% of the constraints are in the
pricing problem.

It is mentioned by Martin (1999, chapter 11) that to take full advantage of the Dantzig-Wolfe
Decomposition procedure the pricing problem must contain avast majority of the constraints,
which is the case for the day decomposition, but not for the other decompositions. Another
reason that the day decomposition is more successful than the other two is due to the isolated
lectures. In the course decomposition all of the isolated lectures are formulated in the master
problem, and for the clique decomposition, a few of them are contained in the pricing problems.
For the day decomposition, the isolated lectures are contained entirely in the pricing problems.
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(a) Course decomposition

(b) Clique decomposition

(c) Day decomposition

Figure 3.13: Illustration of the block diagonal structures for data instance comp03 when order-
ing by courses (a), cliques (b) or days (c). Figure (c) is taken from the paper in chapter 7

54



References

Asín Aschá, R. and Nieuwenhuis, R. (2014). �Curriculum-based course timetabling with SAT
and MaxSAT�. In: Annals of Operations Research218, pp. 71�91.

Bærentsen, R. (2012). �Optimization of room-allocation at the Technical University of Den-
mark�. PhD thesis. Technical University of Denmark.

Bagger, N., Kristiansen, S., Sørensen, M., and Stidsen, T. (2015). �Flow Formulation-based
Model for the Curriculum-based Course Timetabling Problem�. In:MISTA 2015 Proceed-
ings. Ed. by Z. Hanzálek, G. Kendall, B. McCollum, and P.�Søucha. Proceedings of the 7th
Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA
2015), pp. 825�848.

Benders, J. (1962). �Partitioning procedures for solving mixed-variables programming prob-
lems�. English. In: Numerische Mathematik4.1, pp. 238�252.issn: 0029-599X.doi : 10.
1007/BF01386316. url : http://dx.doi.org/10.1007/BF01386316 .

Bettinelli, A., Cacchiani, V., Roberti, R., and Toth, P. (2015). �An overview of curriculum-based
course timetabling�. In: TOP 23.2, pp. 313�349.

Bonutti, A., De Cesco, F., Di Gaspero, L., and Schaerf, A. (2012). �Benchmarking curriculum-
based course timetabling: Formulations, data formats, instances, validation, visualization,
and results�. In: Annals of Operations Research194.1, pp. 59�70.

Bron, C. and Kerbosch, J. (1973). �Algorithm 457: Finding All Cliques of an Undirected Graph�.
In: Communications of the ACM 16.9, pp. 575�577.doi : 10.1145/362342.362367. url :
http://doi.acm.org/10.1145/362342.362367 .

Burke, E. K., Mare£ek, J., Parkes, A. J., and Rudová, H. (2008). �Penalising Patterns in Timeta-
bles: Novel Integer Programming Formulations�. In:Operations Research Proceedings 2007.
Springer, pp. 409�414.

Burke, E. K., Mare£ek, J., Parkes, A. J., and Rudová, H. (2010a). �A supernodal formulation of
vertex colouring with application in course timetabling�. English. In:Annals of Operations
Research179.1, pp. 105�130.issn: 0254-5330.

Burke, E. K., Mare£ek, J., Parkes, A. J., and Rudová, H. (2010b). �Decomposition, reformu-
lation, and diving in university course timetabling�. In: Computers & Operations Research
37.3, pp. 582�597.doi : 10.1016/j.cor.2009.02.023 .

Burke, E. K., Mare£ek, J., Parkes, A. J., and Rudová, H. (2012). �A branch-and-cut proce-
dure for the Udine Course Timetabling problem�. In:Annals of Operations Research194.1,
pp. 71�87.

Cacchiani, V., Caprara, A., Roberti, R., and Toth, P. (2013). �A new lower bound for curriculum-
based course timetabling�. In:Computers and Operation Research40.10, pp. 2466�2477.doi :
10.1016/j.cor.2013.02.010 .

55



Desrosiers, J. and Lübbecke, M. E. (2010). �A Primer in Column Generation�. In:Column
Generation. Ed. by Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. Springer
Science+Business Media, Inc. Chap. 1, pp. 1�32.isbn : 978-1-4419-3799-5.

Di Gaspero, L., Schaerf, A., and McCollum, B. (2007). �The Second International Timetabling
Competition (ITC-2007): Curriculum-based Course Timetabling (Track 3) � preliminary
presentation ��. In: Association for the Advancement of Arti�cial Intelligence (www.aaai.org).

Fischetti, M., Lodi, A., and Tramontani, A. (2011). �On the separation of disjunctive cuts�. In:
Mathematical Programming 128.1, pp. 205�230.issn: 1436-4646.doi : 10.1007/s10107-
009-0300-y. url : http://dx.doi.org/10.1007/s10107-009-0300-y .

Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher, S. J., Mil-
tenberger, M., Müller, B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz,
R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt, J. T., and
Witzig, J. (2016). The SCIP Optimization Suite 3.2. eng. Tech. rep. 15-60. Takustr.7, 14195
Berlin: ZIB.

Geo�rion, A. M. (1972). �Generalized benders decomposition�. In:Journal of optimization the-
ory and applications10.4, pp. 237�260.

Gurobi Optimization Inc. (2015). Gurobi Optimizer Reference Manual. url : http : / /www.
gurobi.com .

Gurobi Optimization, Inc. (2016). Gurobi Optimizer Reference Manual. url : http: / /www.
gurobi.com .

Hao, J. K. and Benlic, U. (2011). �Lower bounds for the ITC-2007 curriculum-based course
timetabling problem�. In: European Journal of Operational Research212.3, pp. 464�472.

International Business Machines Corp. (2017).IBM ILOG CPLEX Optimization Studio V12.7.0
documentation.

Lach, G. and Lübbecke, M. E. (2008). �Optimal University Course Timetables and the Par-
tial Transversal Polytope�. In: International Workshop on Experimental and E�cient Algo-
rithms. Springer, pp. 235�248.

Lach, G. and Lübbecke, M. E. (2012). �Curriculum based course timetabling: New solutions to
Udine benchmark instances�. In:Annals of Operations Research194.1, pp. 255�272.

Lewis, R., Paechter, B., and McCollum, B. (2007).Post Enrolment based Course Timetabling: A
Description of the Problem Model used for Track Two of the Second International Timetabling
Competition. Cardi� Accounting and Finance Working Papers A2007/3. Cardi� University,
Cardi� Business School, Accounting and Finance Section.

Martin, R. K. (1999). Large scale linear and integer optimization: a uni�ed approach. Kluwer
Academic Publishers.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Di Gaspero,
L., Qu, R., and Burke, E. K. (2010). �Setting the research agenda in automated timetabling:
The second international timetabling competition�. In: INFORMS Journal on Computing
22.1, pp. 120�130.

Padberg, M. W. (1974). �Perfect zero�one matrices�. In:Mathematical Programming6.1, pp. 180�
196.

Phillips, A. E., Waterer, H., Ehrgott, M., and Ryan, D. M. (2015). �Integer programming meth-
ods for large-scale practical classroom assignment problems�. In:Computers & Operations
Research53, pp. 42�53. issn: 03050548.doi : 10.1016/j.cor.2014.07.012 .

56



Pillay, N. (2016). �A review of hyper-heuristics for educational timetabling�. In:Annals of
Operations Research239.1, pp. 3�38.issn: 1572-9338.doi : 10.1007/s10479-014-1688-1 .
url : http://dx.doi.org/10.1007/s10479-014-1688-1 .

Ryan, D. M. and Falkner, J. C. (1988). �On the integer properties of scheduling set partitioning
models�. In: European journal of operational research35.3, pp. 442�456.

Smith-Miles, K., Baatar, D., Wreford, B., and Lewis, R. (2014). �Towards Objective Measures
of Algorithm Performance Across Instance Space�. In:Comput. Oper. Res.45, pp. 12�24.
issn: 0305-0548.doi : 10.1016/j.cor.2013.11.015 . url : http://dx.doi.org/10.1016/
j.cor.2013.11.015 .

The Scheduling and Timetabling Research Group at the University of Udine, Italy (2015).
Curriculum-Based Course TimeTabling. Last retrieved October 2015,http://tabu.diegm.
uniud.it/ctt/index.php . url : http://tabu.diegm.uniud.it/ctt/index.php .

Wolsey, L. A. (1998). �Cutting Plane Algorithms�. In: Integer Programming. Ed. by R. Graham,
J. Lenstra, and R. Tarjan. John Wiley & Sons, Inc. Chap. 8, pp. 113�137.isbn : 0-471-28366-
5.

57





Part II

Exact Methods

59





4 Flow Formulations for
Curriculum-based Course Timetabling

Niels-Christian F. Baggera,b � Simon Kristiansenc � Matias Sørensena,b � Thomas R. Stidsena

amORetime research group, Management Science, Department of Management Engineering,
Technical University of Denmark, Produktionstorvet, Building 426B, DK-2800 Kgs. Lyngby,
Denmark, http://www.moretime.man.dtu.dk/

bMaCom A/S, Vesterbrogade 48, 1., DK-1620 København V, Denmark
cRHA Software Group, Frederikkevej 2B, DK-2900 Hellerup Denmark

Status: Submitted to Annals of Operations Research

Abstract: In this paper we present two mixed-integer programming formulations
for the Curriculum based Course Timetabling Problem (CTT). We show that the
formulations contain underlying network structures by dividing the CTT into two
separate models and then connect the two models using �ow formulation techniques.
The �rst mixed-integer programming formulation is based on an underlying mini-
mum cost �ow problem, which decreases the number of integer variables signi�cantly
and improves the performance compared to an intuitive mixed-integer programming
formulation. The second formulation is based on a multi-commodity �ow problem
which in general isNP -hard, however, we prove that it su�ces to solve the linear
programming relaxation of the model. The formulations show competitiveness with
other approaches based on mixed-integer programming from the literature and im-
prove the currently best known lower bound on one data instance in the benchmark
data set from the second international timetabling competition. Regarding upper
bounds, the formulation based on the minimum cost �ow problem performs better
on average than other mixed integer programming approaches for the CTT.

Keywords: University Course Timetabling � Integer Programming � Minimum
Cost Flow � Multi-Commodity Flow

4.1 Description and Literature

Each semester, universities face the problem of generating high-quality course timetables. A
timetable determines when and where a course should take place. In this work we consider the
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Curriculum based Course Timetabling (CCT) Problem in which weekly lectures for multiple
courses have to be scheduled and assigned to rooms. A week is divided into days (usually �ve
or six) and each day is divided into time slots. We refer to a day and time slot combination
as a period. The problem was introduced in track 3 of the second international timetabling
competition (ITC2007) as described by Di Gaspero et al. (2007), McCollum et al. (2010) and
Bonutti et al. (2012).

The basic entities of the problem are thecoursesto schedule, and theperiodsand rooms that
are available. Therefore, when formulating a Mixed Integer Program (MIP), it seems natural
to de�ne binary variables with three indices corresponding to a course, period and room where
the binary variable would then take value one if the course is scheduled in the speci�ed room
at the period. Formulating the MIP of the problem this way is the most commonly used,
see Lach and Lübbecke (2008). We show that such a formulation will create an unnecessarily
large amount of binary variables and instead we formulate two MIPs containing a signi�cantly
smaller number of integer variables. The goal of the formulations is to decrease the number of
integer variables, and we show that we can de�ne some of the variables as continuous variables
instead of integer variables.

Besides the courses, periods and rooms the problem also containslecturers and curricula,
hence the nameCurriculum-based Course Timetabling. Each course is taught by a lecturer,
and a curriculum is a set of courses which may be followed by the same students. The resulting
timetable must ful�l some speci�c hard constraints:

Availability (A ): For each course a subset of the periods (maybe all the periods) are denoted
as the available periods. It is not allowed to schedule a lecture in a period that is not
available for the corresponding course.

Lectures(L): All lectures of all courses must be scheduled, and lectures must be scheduled in
di�erent periods.

Con�icts (C): If two courses are taught by the same lecturer or the courses are part of the
same curriculum, the courses cannot be taught in the same period.

Room Occupancy(RO ): A room can at most be occupied by one course in any period.

Besides the hard constraints, the problem also contains the following soft constraints:

Room Capacity (RC ): If a lecture is scheduled in a room where the capacity is smaller than
the number of students attending the course, then each student above the capacity is
counted as a violation.

Isolated Lectures(IL ): It is desired to schedule lectures from the same curriculum in adjacent
periods. Two periods are considered to be adjacent if they belong to the same day and
are in consecutive time slots. If a lecture from a curriculum is scheduled in a period
and no lecture from the same curriculum is scheduled in an adjacent period, the lecture
is denoted as beingisolated. Every time there is an isolated lecture this counts as one
violation.

Minimum Working Days (MWD ): For each course, it is desired to spread the lectures across
a given number of days. If the number of days that a course is scheduled is below this

62



number, then the violation is the di�erence between the requested and the actual number
of days that has been scheduled.

Room Stability (RStab ): Each course should not be assigned to too many di�erent rooms
during the week. If a course is scheduled in at least two distinct rooms during the week,
then the violation is the total number of distinct rooms assigned to the course minus one.

The objective of the CTT is to �nd a solution which ful�ls all the hard constraints and
minimizes a weighted sum of the violations of the soft constraints using non-negative weights.

Many researchers have considered the CTT since the ITC2007 competition, and we refer to
Bettinelli et al. (2015) for an excellent overview. Since we are formulating a MIP model of the
problem, we mainly focus on other MIP based approaches in the literature in the remainder of
this paper.

Burke et al. (2008) and Burke et al. (2010) introduced a MIP formulation named themono-
lithic formulation, based on the intuition of the three-index binary variables (for each course,
period and room a binary variable is de�ned). The monolithic formulation is an exact model in
the sense that it can be solved by a generic MIP solver to obtain the optimal solution, assuming
that enough computational resources are available for the MIP solver. Unfortunately, many
instances of the CTT cannot be solved within a reasonable time using a MIP solver for the
monolithic formulation. Therefore Burke et al. (2010) propose methods to derive lower and
upper bounds based on the monolithic formulation. They obtain one lower bound by ignoring
the soft constraintsRC and RStab , which gives the possibility to ignore the assigning of rooms
in the formulation. They add a constraint to ensure that no more lectures are scheduled in any
period than the number of rooms that are available. They note that the constraint is equivalent
to aggregating all the rooms into a single room with a capacity equal to the largest room and
the number of lectures that can be scheduled in this room in a period is equal to the total
number of rooms. They use this observation to generate another lower bound by aggregating
the rooms into multi-rooms. A multi-room is a set of rooms where the capacity is equal to the
capacity of the largest room in the set and the number of lectures that can be scheduled in
the multi-room in a period is equal to the number of rooms in the set. In the tests, they show
that the latter method provides stronger bounds on average. After they obtain a solution from
one of the latter methods adiving heuristic is applied by taking the monolithic formulation
and �xing the periods based on the solution from the lower bounding method to obtain a full
solution. In a more recent paper, Burke et al. (2012) give an exact branch-and-cut algorithm
which they also base on the monolithic formulation, but some of the objective costs are left out
and instead added as cuts during the solution process. Furthermore, some valid inequalities are
presented, which the MIP solver can take advantage of during the search. Their computational
results show that the cutting plane approach leads to a better performance.

Lach and Lübbecke (2008) and Lach and Lübbecke (2012) propose a method that divides
the CTT into two stages, where they formulate each stage as a MIP model. In the �rst stage,
they schedule the courses into periods, which only requires a binary variable for each course
and period. They ensure that all the hard constraints are satis�ed in the �rst stage problem.
However only the soft constraintsMWD , IL and RC can be taken into account. They include
the RC constraints in the �rst stage by adding a variable for each course, period and distinct
room capacity. In the second stage, they assign the courses to the rooms that the lectures
should take place in, taking theRStab constraint into consideration. The solution from the
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�rst stage is used to �x the courses at the determined periods and the selected room capacities
in the second stage.

Hao and Benlic (2011) propose a divide-and-conquer approach based on the �rst stage
formulation of Lach and Lübbecke (2012), focusing on �nding lower bounds. The method
they present divides the MIP model into smaller parts by relaxing or removing some of the
constraints such that they can decompose the model into a set of subproblems. They then
obtain lower bounds for each subproblem, and the sum of all these lower bounds is then a lower
bound of the original problem. The approach provides excellent results.

Cacchiani et al. (2013) presented di�erent formulations containing exponentially many vari-
ables. The approach that obtained the best computational results consists of two sets of the
main binary decision variables. In each of the sets, a binary variable represents a schedule
for an entire week. One of the sets of binary variables takes care of the soft constraintsRC
and RStab and the other set considers the soft constraintsMWD and IL . The sum of the
lower bounds of each of the set is a lower bound of the original problem. The method shows
impressive results and obtains good lower bounds.

In the MIP-based methods found in the literature, it seems that decomposing the problem
into smaller parts provides the best results. The downside by many of the methods is that
they only provide lower bounds or that they come at the cost of sacri�cing the guarantee
of optimality, i.e., even if we solve the models to optimality, it does not guarantee that the
solution is globally optimal. Based on these observations, the goal of this paper is to exploit the
knowledge that decreasing the number of main decision variables provides better performance.
Furthermore, we want to maintain the guarantee of optimality, and therefore we look for exact
MIP formulations.

We base our work on the work (Bagger et al., 2015) presented at the biennial Multidis-
ciplinary International Scheduling Conference: Theory & Applications (MISTA) 2015 (http:
//www.schedulingconference.org/ ). There are some slight di�erences in this article com-
pared to the extended abstract submitted to MISTA. In the abstract, we only discussed one
�ow formulation, and in this article we present two �ow formulations. Furthermore, there were
some missing details in the proof that we supplied in the appendix (Bagger et al., 2015, Ap-
pendix A Proof of Proposition 2). Therefore the proposition and proof have been changed to
overcome this and the resulting mathematical model remains the same. Lastly the results have
been updated with our newest test runs and with more data sets.

We organize the paper as follows: In Section 4.2 an intuitive MIP model is presented, based
on the main binary variables having three indices. We then show how some of the integer
requirements on the variables can be relaxed. In Section 4.3 we present the two formulations
based on underlying network �ow problems; we base the �rst on aMinimum Cost Flow problem
and the second on aMulti-Commodity Flow Problem. We present and discuss the computational
results in Section 4.4 and lastly some perspectives on the �ow formulations are considered in
Section 4.5.

Throughout the article, we assume that the reader is familiar with the maximum �ow
problem, the minimum cut problem, the minimum cost �ow problem, and the multi-commodity
�ow problem as well as the maximum-�ow/minimum-cut theorem. We refer to Kleinberg and
Tardos (2005) and Ahuja et al. (1993) for details on these problems. Furthermore we de�ne
the following for notation purposes:
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(x)+ := max f x; 0g

We use the notationZ+ for the set of non-negative integers.

4.2 Three-Index Mixed Integer Programming Formulation

In this section, we present an intuitive MIP formulation of the CTT using three-index bi-
nary decision variables. We refer to this formulation throughout the article as thethree-index
formulation.

Let Cbe the set of courses,P be the set of periods andR be the set of rooms. Furthermore,
there are daysD, curricula Q, lecturersL , the periodsPd � P that belongs to dayd 2 D , the
coursesCq � C which are part of curriculum q 2 Q and the coursesCl � C which are all being
taught by lecturer l 2 L . For each periodp 2 P we de�ne the set � p. The set � p contains
the periods that are adjacent top, i.e. the periods occurring on the same day which is in the
period directly before or after the time slot ofp.

Let L c be the number of lectures to be scheduled for coursec 2 C, Cr be the capacity of
room r 2 R , Sc be the number of students attending coursec 2 C and let Fc;p be one if it is
allowed to schedule a lecture from coursec 2 C in period p 2 P and zero otherwise. Lastly,M c

is the minimum number of days that it is preferred to schedule lectures for coursec 2 C in.
Let xc;p;r be a binary variable deciding whether to schedule a lecture from coursec 2 C in

period p 2 P and room r 2 R or not. tc;d is a binary variable taking value one if coursec 2 C
has at least one lecture at dayd 2 D , and zero otherwise.wc is an integer variable denoting the
number of days below the given minimum that coursec 2 C has lectures.zc;r is a binary variable
taking value one if coursec 2 C is scheduled in roomr 2 R at least once during the week, and
zero otherwise.sq;p is a binary variable taking value one if curriculumq 2 Q has an isolated
lecture in period p 2 P . Let W RC , W IL , W MWD and W RStab be the non-negative weights of
the constraintsRC , IL , MWD and RStab respectively. The three-index formulation is given
in the following model:
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min W RC
X

c2C;p2P ;r 2R

(Sc � Cr )
+ � xc;p;r + W IL

X

q2Q ;p2P

sq;p

+ W MWD
X

c2C

wc + W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

(4.1)

s.t.
X

p2P ;r 2R

xc;p;r = L c 8c 2 C (4.2)

X

r 2R

xc;p;r � Fc;p 8c 2 C; p 2 P (4.3)

X

c2C

xc;p;r � 1 8r 2 R ; p 2 P (4.4)

X

c2Cl ;r 2R

xc;p;r � 1 8l 2 L ; p 2 P (4.5)

X

c2Cq ;r 2R

xc;p;r � 1 8q 2 Q ; p 2 P (4.6)

X

p2P

xc;p;r � L c � zc;r 8c 2 C; r 2 R (4.7)

X

p2P

xc;p;r � zc;r 8c 2 C; r 2 R (4.8)

X

r 2R

zc;r � 1 8c 2 C (4.9)

X

p2P d ;r 2 R

xc;p;r � tc;d 8c 2 C; d 2 D (4.10)

X

d2D

tc;d + wc � M c 8c 2 C (4.11)

X

c2Cq ;r 2R

0

@xc;p;r �
X

p02 � p

xc;p0;r

1

A � sq;p 8q 2 Q ; p 2 P (4.12)

xc;p;r 2 B 8c 2 C; p 2 P ; r 2 R (4.13)

zc;r 2 B 8c 2 C; r 2 R (4.14)

tc;d 2 B 8c 2 C; d 2 D (4.15)

wc 2 Z+ 8c 2 C (4.16)

sq;p 2 B 8q 2 Q ; p 2 P (4.17)

The constraints (4.2) ensure that all lectures are scheduled. The courses are only allowed
to be scheduled in available periods, which is ensured by the constraints (4.3) that also ensure
that all lectures are scheduled in di�erent periods. Constraints (4.4) make sure that no more
than one course is scheduled in a room in every period. Constraints (4.5) and (4.6) ensure that
courses that share a lecturer or are in the same curriculum are not scheduled in the same period.
The constraints (4.7) ensure that lectures are only scheduled in rooms that have beenopened,
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wherebyopenedwe mean a roomr 2 R wherezc;r = 1 for coursec 2 C Constraints (4.8) and
(4.9) ensure that at least one lecture is scheduled in theopen rooms and that at least one room
is put to use by each course. Constraints (4.10) puts an upper bound on thetc;d variable for
each coursec 2 C and day d 2 D such that it can take a positive value only if at least one
lecture for c is scheduled at dayd. Constraints (4.11) calculate the violation of theMWD
constraint and the constraints (4.12) calculate for which periods the curricula have isolated
lectures.

The variables tc;d, wc and sq;p can be relaxed to continuous variables, so we replace the
variable domains; (4.15), (4.16) and (4.17) by the following:

0 � tc;d � 1 8c 2 C; d 2 D (4.18)

wc � 0 8c 2 C (4.19)

0 � sq;p � 1 8q 2 Q ; p 2 P (4.20)

Burke et al. (2012) note that it is never possible that the minimum workings days constraint
is violated by more than M c � 1 since every course must be scheduled in at least one day.
Therefore this can be used as an upper bound for the variablewc which can help the MIP
solver. This bound can be strengthened as all lectures must be scheduled for each coursec 2 C
and therefore the number of days that the course is scheduled in must be at least

l
L c
jT j

m
, so we

can add the following bounds:

0 � wc;d � M c �
�

L c

jT j

�
8c 2 C (4.21)

The constraints (4.9) also comes from Burke et al. (2012) where they note that since all
lectures must be scheduled then surely every course must occupy at least one room.

If Fc;p = 0 for some coursec 2 C and period p 2 P then we do not add the variables
f xc;p;r gr 2 R to the model. Therefore the constraints (4.3) are redundant since every course is
taught by exactly one lecturer and constraints (4.5) ensure that each lecturer has at most one
lecture scheduled in any period. Furthermore the constraints (4.5) and (4.6) are replaced by
clique inequalities. We do this by creating a graph where each node corresponds to a course.
An edge is connecting two courses if they are in the same curriculum or taught by the same
lecturer. We then enumerate all the maximal cliques by running the Bron-Kerbosch algorithm
(Bron and Kerbosch, 1973). Let� be the set of cliques and letC
 be the set of courses in the
clique 
 2 � . We replace all the constraints (4.5) and (4.6) by adding the following constraints
for each clique
 2 � and periodp 2 P:

X

c2 C
 ;r 2 R

xc;p;r � 1 8
 2 � ; p 2 P (4.22)

4.3 Network Flow Formulations

Our inspiration for the new MIP formulations comes from the two-stage decomposition de-
scribed by Lach and Lübbecke (2008) and Lach and Lübbecke (2012). In their work, they
solve the problem by splitting the MIP model into two distinct models and then solve these
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models in sequence. In this paper, we also consider the CTT as two independent models (which
are both derived from the three-index model), but instead of solving the two models indepen-
dently, we re-combine the models into one model using �ow formulation techniques. Thereby
we obtain new exact formulations with di�erent properties than the original three-index for-
mulation. In Section 4.3.1 we present a formulation for the CTT based on minimum cost �ow.
In Section 4.3.2 we present a formulation for the CTT based on multi-commodity �ow.

4.3.1 Minimum Cost Flow

In this section, we present a formulation based on the minimum cost �ow problem. In Section
4.3.1.1 and Section 4.3.1.2 we present two di�erent MIP models for handling di�erent aspects of
the problem; thecourse-to-periodassignment and thecourse-to-roomassignment, respectively.
Both of these models are derived from model (4.1) � (4.17). In Section 4.3.1.3 we present
how these two models are combined into a single model using minimum �ow techniques. The
resulting model of this combination has fewer integer variables than the original formulation in
model (4.1) � (4.17), and is exact concerning the original formulation of the CTT.

4.3.1.1 Course-to-Period Assignment

In this section we consider the CTT problem from the period aspect only, i.e., we ignore the
existence of rooms. The goal of the problem is to assign courses to periods using the same
criteria as in the three-index formulation. We give the MIP formulation of the course period
assignment subproblem in the following model:
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min W IL
X

q2Q ;p2P

sq;p + W MWD
X

c2C

wc (4.23)

s.t.
X

p2P

xc;p = L c 8c 2 C (4.24)

xc;p � Fc;p 8c 2 C; p 2 P (4.25)
X

c2C


xc;p � 1 8
 2 � ; p 2 P (4.26)

X

p2P d

xc;p � tc;d � 0 8c 2 C; d 2 D (4.27)

X

d2D

tc;d + wc � M c 8c 2 C (4.28)

X

c2Cq

0

@xc;p �
X

p02 � p

xc;p0

1

A � sq;p 8q 2 Q ; p 2 P (4.29)

xc;p 2 B 8c 2 C; p 2 P (4.30)

0 � tc;d � 1 8c 2 C; d 2 D (4.31)

0 � wc � M c �
�

L c

jT j

�
8c 2 C (4.32)

0 � sq;p � 1 8q 2 Q ; p 2 P (4.33)

Note that model (4.23) � (4.33) is equivalent to model (4.1) � (4.17), except that the rooms
are ignored. Therefore we do not describe (4.23) � (4.33) in details.

4.3.1.2 Course-to-Room Assignment

In this section we consider the room assignment sub-problem, ignoring the existence of periods.
The goal is to assign courses to rooms and the criteria given in the three-index model. We give
the formulation for the room assignment in the following:

min W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

(4.34)

s.t.
X

r 2R

zc;r � 1 8c 2 C; r 2 R (4.35)

zc;r 2 B 8c 2 C; r 2 R (4.36)

Note that in model (4.34) � (4.36) only the room stability objective is considered and not
the room capacity. The reason is due to that the binary variablezc;r only identi�es whether or
not room r 2 R is used by coursec 2 C and not how many times the course is occupying the
room. The room capacity will be taken care of in the later step.
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4.3.1.3 Connecting the Models using the Minimum Cost Flow Problem

In this section we show how the minimum cost �ow problem connects model (4.23) � (4.33)
and model (4.34) � (4.36). Thereby we aim at obtaining a new exact formulation for the CTT
with fewer integer variables.

If a solution x to model (4.23) � (4.33) and a solutionz to model (4.34) � (4.36) is given
then a new problem emerges; is the combined solution feasible, i.e., is there a feasible mapping
from the assigned periods inx to the assigned rooms inz such that no room is occupied by
two courses in the same period, and if so, what is the minimum room capacity penalty to any
feasible mapping? A way to check this is to make a bipartite graph and solve a minimum cost
maximum matching problem. For every coursec 2 C create a node on the left-hand side of the
bipartite graph for each periodp 2 P that the course has been assigned to, i.e., ifxc;p = 1. For
every combination of a room and a period(r; p) create a node on the right-hand side of the
graph. For every pair of course period nodes(c; p) and every pair of room-period node(r; p) put
an edge between the nodes(c; p) and (r; p) if the course has been assigned to that room, i.e.,
if zc;r = 1, and set the weight of the edge toW RC (Sc � Cr )

+ . As an example of the matching
problem, consider two courses,c1 and c2, two periods,p1 and p2 and two rooms,r1 and r2. Let
coursec1 be teaching two lectures assigned in periodsp1 and p2 and let coursec2 be teaching
one lecture assigned in periodp1. Furthermore let c1 be assigned to roomsr1 and r2 and let c2

be assigned to roomr2. The corresponding bipartite graph is illustrated in Figure 4.1.

c1 ; p1

c1 ; p2

c2 ; p1

r 1 ; p2

r 1 ; p1

r 2 ; p1

r 2 ; p2

W RC (Sc1 � Cr 1 )+

W RC

(S
c
1 �

C
r
2 ) +

W
RC (Sc2

� Cr 2
)
+

W
RC (Sc1

� Cr 1
)+

W RC
(S

c1 � C
r2 ) +

Figure 4.1: Example of the bipartite graph of an instance with courses,c1 and c2, periods,p1

and p2 and roomsr1 and r2. Coursec1 has been assigned to periodsp1 and p2 and rooms,
r1 and r2. Coursec2 has been assigned to periodp1 and room r2. The labels in the nodes
indicate the corresponding pair that the node belongs to. The labels above the edges are the
corresponding weights.

If the solution (x; z) is feasible, then a maximum matching must match all the left-hand
side nodes into a node on the right-hand side, i.e., the value of the maximum matching must
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be
P

c L c and the cost of the matching corresponds to the total room capacity violation.
A way to solve the minimum cost maximum matching problem is to solve a �ow problem

on the graph with a source node(u) which is connected to all the left-hand side nodes and a
sink node(v) which is connected to all the right-hand side nodes as described by Kleinberg
and Tardos (2005) in Chapter 7 and Ahuja et al. (1993) in Section 12.3 and 12.4. The weights
on the new edges are all zero and the capacity of all edges are 1. Another way is to create
a new graph representationGmcf and solve a �ow problem on that graph. For every possible
course-period combination create a node(c; p) and for every possible room-period combination
create a node(r; p). For every coursec 2 C, period p 2 P and room r 2 R there is an arc
from the node(c; p) to the node (r; p). Furthermore there is a source node(u) with an arc to
every node(c; p) and a sink node(v) with an arc from every node(r; p). One unit of �ow in
this graph corresponds to a course assignment, i.e., sending one unit of �ow from(u) to (c; p)
for somec 2 C and p 2 P corresponds to assigning coursec to period p and sending a unit of
�ow through the arc (c; p) ! (r; p) for somec 2 C, p 2 P and r 2 R corresponds to assigning
coursec to room r in period p. The capacities are set for a given solution pair of model (4.23)
� (4.33) and model (4.34) � (4.36).

For every coursec 2 C and periodp 2 P the capacity of the arc(u) ! (c; p) is xc;p. This is
to depict that we can only send �ow from the source(u) to a node(c; p) if the coursec 2 C is
assigned to periodp 2 P. For every coursec 2 C, period p 2 P and room r 2 R the capacity
on the arc (c; p) ! (r; p) is zc;r to denote that we can only send �ow from a course-period pair
to a room-period pair if the course is assigned to the corresponding room. The capacity of the
arcs (r; p) ! (v) is set to one as a room can at most be occupied by one course in any period.
An example of the graph is given in Figure 4.2.

c1; p1

c2; p1

u

c1; p2

c2; p2

r1; p1

r2; p1

r1; p2

r2; p2

v

x c 1
;p

1

x c2;p1

xc1 ;p2

x
c

2 ;p
2

zc1 ;r 1

z
c1 ;r

2

z c2
;r 1

zc2 ;r 2

zc1 ;r 1

z
c1 ;r

2

z c2
;r 1

zc2 ;r 2

1

1

1

1

Figure 4.2: Illustration of the minimum cost �ow graph of an instance with two courses, two
rooms and two period. The labels above the arcs are the corresponding capacities. The weight
of the arc from the node(c; p) to the node(r; p) is W RC (Sc � Cr ).
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Note that the solutions x and z are feasible if and only if the solution to the maximum
�ow in the graph is integral and the total amount (the value) of the �ow is

P
c2 C L c. Since

we know the amount of �ow that any feasible solution must contain we can solve the problem
as a minimum cost �ow problem where the supply of node(u) and the demand of node(v) isP

c2 C L c and all other nodes have a demand and supply of zero. For every coursec 2 C, period
p 2 P and roomr 2 R let the cost of the �ow on the arc(c; p) ! (r; p) be the cost of violating
the RC constraint, i.e., W RC (Sc � Cr )

+ , and let the cost be zero on all other arcs.
Let the following non-negative variables be de�ned:

f u
c;p: The amount of �ow on the arc (u) ! (c; p)

f c;p;r : The amount of �ow on the arc (c; p) ! (r; p)

f v
r;p : The amount of �ow on the arc (r; p) ! (v)

The minimum cost �ow formulation is given in as follows:

min W RC
X

c2C;p2P ;r 2R

(Sc � Cr )
+ � f c;p;r (4.37)

s.t. �
X

c2C;p2P

f u
c;p = �

X

c2C

L c (4.38)

f u
c;p �

X

r 2R

f c;p;r = 0 8c 2 C; p 2 P (4.39)

X

c2C

f c;p;r � f v
r;p = 0 8r 2 R ; p 2 P (4.40)

X

r 2R ;p2P

f v
r;p =

X

c2C

L c (4.41)

0 � f u
c;p � xc;p 8c 2 C; p 2 P (4.42)

0 � f c;p;r � zc;r 8c 2 C; p 2 P ; r 2 R (4.43)

0 � f v
r;p � 1 8r 2 R ; p 2 P (4.44)

f u
c;p 2 Z 8c 2 C; p 2 P (4.45)

f c;p;r 2 Z 8c 2 C; p 2 P ; r 2 R (4.46)

f v
r;p 2 Z 8r 2 R ; p 2 P (4.47)

The constraints (4.38), (4.39), (4.40) and (4.41) correspond to the balance constraints of
the nodes, i.e., ingoing �ow minus outgoing �ow must equal the demand in the node which
is �

P
c L c in the source node,

P
c L c in the sink node and zero in all the other nodes. Con-

straints (4.42), (4.43) and (4.44) are the capacity constraints of the arcs.
Model (4.37) � (4.47) contains three-index integer variables just as in model (4.1) � (4.17)

which is what we wanted to get rid of to begin with. However, the minimum cost �ow integrality
theorem states that if all arc capacities, supplies, and demands are integers and there exists a
feasible �ow, then there exists a minimum cost �ow to the LP-relaxation with integer values
Ahuja et al. (1993, Theorem 9.10). So we can disregard the integrality requirements on the
�ow variables sincex and z are binary variables.

72



It should be noted that due to the structure of the graph and the equilibrium constraints
(4.39) and (4.40) the �ow requirement constraint (4.41) to the sink is redundant and can
be removed from the model. Furthermore since

P
p2 P xc;p = L c for every coursec 2 C in any

feasible solution then the �ow requirement is ful�lled if and only if equality is met in constraints
(4.42). This means that we can remove constraints (4.42) and (4.38) and replacef u

c;p with xc;p

throughout the model. Lastly since every variablef v
r;p occur exactly once in the constraints

(4.40) then we can replace the variable with
P

c2 C f c;p;r in the model. Furthermore we can
aggregate all the upper bounds (4.43) into one constraint:

X

p2 P

f c;p;r � j Pj � zc;r 8c 2 C; r 2 R (4.48)

Since we know that for any coursec 2 C and room r 2 R the sum
P

p2 P f c;p;r can never
exceedL c then we can strengthen this constraint by replacing the coe�cient ofzc;r with L c.
Then the models (4.23) � (4.33) and (4.34) � (4.36) can be combined into the new formulation
given in the following:

min W RC
X

c2C;p2P ;r 2R

(Sc � Cr )
+ � f c;p;r

+ W IL
X

q2Q ;p2P

sq;p + W MWD
X

c2C

wc

+ W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

(4.49)

s.t. (4.24) � (4.33) (4.50)

(4.35) � (4.36) (4.51)
X

r 2R

f c;p;r = xc;p 8c 2 C; p 2 P (4.52)

X

p2P

f c;p;r � L c � zc;r 8c 2 C; r 2 R (4.53)

X

c2C

f c;p;r � 1 8r 2 R ; p 2 P (4.54)

f c;p;r � 0 8c 2 C; p 2 P ; r 2 R (4.55)

Even though the minimum cost �ow problem has the integrality property, this does not
imply that the f c;p;r variables will take integer values when solving model (4.49) � (4.55). So
when the model is solved, we check whether the variables are fractional. If they are, we solve
the minimum cost �ow problem for the xc;p and zc;r variables by some polynomial algorithm
returning an integer solution, e.g. the Cycle-Canceling Algorithm Ahuja et al. (1993, proof of
Theorem 9.10, section 9.6).

Throughout the article, we assume that the reader is familiar with the maximum �ow
problem, the minimum cut problem, the minimum cost �ow problem, and the multi-commodity
�ow problem as well as the maximum-�ow/minimum-cut theorem.
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4.3.2 Multi-Commodity Flow

In this section, we consider the room assignment part of the problem once again. However, this
time we not only formulate a model to decide which rooms the courses should be scheduled in
but also how many times during the week the courses should be scheduled in each room. We
show how a multi-commodity �ow problem can be used to connect this formulation to the time
scheduling formulation in model (4.23) � (4.33).

We introduce the integer variableyc;r to identify the number of times that coursec 2 C is
assigned to roomr 2 R. The formulation is given as follows:

min W RC �
X

c2C;r 2R

(Sc � Cr )
+ � yc;r

+ W RStab �
X

c2C

 
X

r 2R

zc;r � 1

!

(4.56)

s.t.
X

r 2R

yc;r = L c 8c 2 C (4.57)

yc;r � L c � zc;r 8c 2 C; r 2 R (4.58)

yc;r � zc;r 8c 2 C; r 2 R (4.59)
X

r 2R

zc;r � 1 8c 2 C (4.60)

yc;r 2 Z+ 8c 2 C; r 2 R (4.61)

zc;r 2 B 8c 2 C; r 2 R (4.62)

Constraints (4.57) ensure that the total number of times that a coursec 2 C is occupying
some rooms is equal to the number of lectures to be taught. Constraints (4.58) ensure that for
some coursec 2 C and some roomr 2 R, zc;r is set to one ifyc;r > 0. Constraints (4.59) and
(4.60) ensure that at least one room is selected for each course and that at least one lecture is
put into each selected room.

Given a solution x to model (4.23) � (4.33) and a solution(y; z) to model (4.56) � (4.62)
then a new problem emerges; is the combined solution(x; y; z) feasible, i.e., is there a feasible
mapping from the assigned rooms iny to the assigned periods inx such that no room is occupied
by two courses in the same period and no course is giving two lectures in the same period?
To check this, we formulate the problem as amulti-commodity �ow problem. For each course
c 2 C we have a commodity where we need to send �ow from a source node(c� ) to a sink
node(c+ ). The demand for the commodity isL c, i.e., the amount of �ow that needs to be sent
from the source to the sink is the number of lectures for the course. For each periodp 2 P
we have a node and for each roomr 2 R we also have a node. For each coursec 2 C we have
an outgoing arc from node(c� ) to each node(p) with a capacity of xc;p for the corresponding
period p 2 P . The capacity ensures that the amount of �ow send out of the node(c� ) to the
node(p) does not exceedxc;p, i.e., a course can only send �ow to (be scheduled in) the periods
that it has been assigned to. Since each commodity has their distinct source node, this ensures
that the amount of the commodity corresponding to coursec is only send to periods where the
course is assigned. Furthermore we have an ingoing arc from each node(r ) to node(c+ ) with a
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capacity of yc;r for the corresponding roomr 2 R . The capacity ensures that the total amount
of �ow through rooms does not exceed the number of times the course has been scheduled in
the rooms. Lastly for each period and room pair(p; r) 2 P �R there is an arc from node(p) to
node(r ) with a capacity of one to ensure that the total amount of �ow across all commodities
does not exceed one. This capacity corresponds to the constraint that any room cannot be
occupied by more than one lecture in any period. An example of the graph for a test instance
containing two courses, two rooms and two periods is given in Figure 4.3.

c�
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c�
2

p1

p2

r1

r2

c+
1

c+
2

xc1 ;p1

x c2
;p 1

x
c1 ;p

2

xc2 ;p2

yc1 ;r 1

y c1
;r 2

y
c2 ;r

1

yc2 ;r 2

1

1
1

1

Figure 4.3: Illustration of the multi-commodity �ow graph of an instance with two courses, two
rooms and two periods. The labels above the arcs are the corresponding capacities.

We can either state the multi-commodity �ow problem as an arc formulation or a path
formulation. We use the path formulation. In the graph it can be seen that there is a path
(c�

1 ) ! (p) ! (r ) ! (c+
2 ) for every coursec1 2 C, every periodp 2 P , every roomr 2 R and

every coursec2 2 C. These are all the paths in the graph and each commodity corresponding
to a coursec 2 C must selectL c paths to send �ow. The path (c�

1 ) ! (p) ! (r ) ! (c+
2 ), for

some coursec1 2 C, some periodp 2 P , some roomr 2 R and some coursec2 2 C, can only be
selected by a commodity corresponding to coursec 2 C if c = c1 = c2. Let the integer variable
f c;p;r correspond to the amount of �ow of the commodity corresponding to coursec 2 C that
is send on the path(c� ) ! (p) ! (r ) ! (c+ ) for period p 2 P and room r 2 R . Then the
mathematical formulation can be described as follows:

X

r 2R

f c;p;r � xc;p 8c 2 C; p 2 P (4.63)

X

c2C

f c;p;r � 1 8p 2 P ; r 2 R (4.64)

X

p2P

f c;p;r � yc;r 8c 2 C; r 2 R (4.65)

X

p2P ;r 2P

f c;p;r = L c 8c 2 C (4.66)

f c;p;r 2 Z+ 8c 2 C; p 2 P ; r 2 R (4.67)

Constraints (4.63), (4.64) and (4.65) ensure that the capacities of the arcs are not violated.
Constraint (4.66) ensures that the demand is ful�lled for each commodity and (4.67) ensures
that the �ow is integral.
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The multi-commodity �ow problem is known to be NP-hard, however, in the next Propo-
sition 4.1 we show that it su�ces to solve the LP-relaxation of the path formulation in model
(4.63) � (4.67).

Proposition 4.1. Let A be the set of feasible period-room solutions and leto(x; y; z) denote the
objective value of the (possibly infeasible) period-room solution(x; y; z). Consider the solution
space of the LP-relaxationFLP of model (4.63) � (4.67) for (x; y; z). We then have the following:

(a) FLP = ; =) (x; y; z) =2 A

(b) FLP 6= ; =) 9 y0 : o(x; y0; z) 2 A ^

o(x; y0; z) � o(x; y; z)

Proposition 4.1a. We make the proof by showing that the contrapositive statement holds:

(x; y; z) 2 A =) F LP 6= ;

Assume that (x; y; z) 2 A and consider some feasible assignment for this solution. Let the
variable f c;p;r take value one if coursec 2 C is assigned to periodp 2 P and roomr 2 R in the
considered assignment. Since we are considering a feasible assignment and it is based on the
solution (x; y; z) then the following conditions must be met:

X

r 2R

f c;p;r = xc;p 8c 2 C; p 2 P (4.68)

X

c2C

f c;p;r � 1 8p 2 P ; r 2 R (4.69)

X

p2P

f c;p;r = yc;r 8c 2 C; r 2 R (4.70)

f c;p;r 2 B 8c 2 C; p 2 P ; r 2 R (4.71)

So the variablesf must full�l the constraints (4.63)�(4.65) and (4.67). Furthermore sinceP
p2P xc;p =

P
r 2R yc;r = L c for each coursec 2 C then

P
p2P ;r 2R f c;p;r = L c must hold and

thus constraint (4.66) is also ful�lled. This means thatf must be a feasible solution to model
(4.63) � (4.67) and soFLP 6= ; .

Proposition 4.1b. Consider a solution(x; y; z) with objective value o(x; y; z). Assume that
FLP 6= ; . Then there must exist some (possibly fractional) solutionf that ful�lls the con-
straints in model (4.63) � (4.67).
Since

P
p2P xc;p =

P
r 2R yc;r = L c for every coursec 2 C then the only way to ful�ll con-

straints (4.66) is to ful�ll the constraints (4.63) and (4.65) by equality, i.e., the solutionf must
ful�ll the following conditions:
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X

r 2R

f c;p;r = xc;p 8c 2 C; p 2 P (4.72)

X

c2C

f c;p;r � 1 8p 2 P ; r 2 R (4.73)

X

p2P

f c;p;r = yc;r 8c 2 C; r 2 R (4.74)

f c;p;r � 0 8c 2 C; p 2 C; r 2 R (4.75)

Now we create a new solution(x; y0; z) where the valuesx and z are �xed and only the
values of they-variables might be changed while ensuring that the objective value does not
increase,
i.e., o(x; y0; z) � o(x; y; z). Note that sincex and z are kept �xed the di�erence in the objective
value of the two solutions(x; y; z) and (x; y0; z) must be on theRC constraint.

Two cases can occur; eitherf is integral, or some of the values are fractional. Iff is integral
then every value must be either zero or one due to constraint (4.64) and therefore(x; y; z) 2 A
and we simply sety0 = y.

Consider now the case wheref contains fractional values. Sinceyc;r � L c � zc;r for each
coursec 2 C and each roomr 2 R then we must have thatf c;p;r � zc;r for every periodp 2 P .

Consider now the minimum cost �ow problem as described in Section 4.3.1. A �owf
MCF

in
the minimum cost �ow graph is created in the following way; for each coursec 2 C, period
p 2 P and room r 2 R send �ow on the path (u) ! (c; p) ! (r; p) ! (v) equal to f c;p;r . All
the node balancing constraints must be satis�ed as we are considering paths from the source
to the sink. Furthermore the amount of �ow must be

P
c2C L c since

P
p2P xc;p = L c for each

coursec 2 C and the condition (4.72) holds. Due to the condition (4.72) the capacity of the arc
(u) ! (c; p) in the minimum cost �ow graph illustrated in Figure 4.2 cannot be violated as the
total amount of �ow on the arc is equal to

P
r 2R f c;p;r and the capacity of the arc isxc;p. For

each coursec 2 C, period p 2 P and roomr 2 R the capacity of the arc(c; p) ! (r; p), which is
zc;r , cannot be violated since the �ow send through that arc is equal tof c;p;r and we just argued
that f c;p;r � zc;r . Lastly since

P
c2C f c;p;r � 1 then the capacity of the arc(r; p) ! (v) in the

graph from Figure 4.2 for roomr 2 R and periodp 2 P cannot be violated. So the �owf
MCF

is feasible for the minimum cost �ow graph. Recall that the costs on the arcs in the minimum
cost �ow graph is zero on the arc(u) ! (c; p) for each coursec 2 C and periodp 2 P , zero on
the arc (r; p) ! (v) for each roomr 2 R and period p 2 P and W RC � (Sc � Cr )

+ on the arc
(c; p) ! (r; p) for each coursec 2 C, period p 2 P and roomr 2 R . This means that the total
cost of the �ow f

MCF
is:

W RC
X

c2C;p2P ;r 2R

(Sc � Cr )
+ � f c;p;r

Due to the integrality property of the minimum cost �ow there must exists a �ow f 0 where
the total amount of �ow is the same as for the �owf

MCF
, the �ow on all the arcs are integers

and the cost of the �ow f 0 must be less than or equal to the cost of the �owf
MCF

:

W RC
X

c2C;p2P ;r 2R

(Sc � Cr )
+ � f 0

c;p;r � W RC
X

c2C;p2P ;r 2R

(Sc � Cr )
+ � f c;p;r (4.76)
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Create the new solution(x; y0; z) by setting y0 =
P

p2P f 0
c;p;r . Now the di�erence in the

objective value between the solution(x; y0; z) and the solution (x; y; z) can be calculated:

o(x; y0; z) � o(x; y; z)= W RC
X

c2C;r 2R

(Sc � Cr )
+ � y0

c;r

� W RC
X

c2C;r 2R

(Sc � Cr )
+ � yc;r

= W RC
X

c2C;p2P ;r 2R

(Sc � Cr )
+ � f 0

c;p;r

� W RC
X

c2C;r 2R

(Sc � Cr )
+ � yc;r

Using (4.76) we can put an upper bound on the di�erence in the objective values:

o(x; y0; z) � o(x; y; z) � W RC
X

c2C;r 2R

(Sc � Cr )
+ �

 
X

p2P

f c;p;r � yc;r

!

Due to condition (4.74) it must therefore hold thato(x; y0; z) � o(x; y; z).

Proposition 4.1 shows that we only need the linear relaxation of the multi-commodity �ow
problem and thus do not need to require integrality. Any solution to model (4.63) � (4.67) can
only ful�ll constraint (4.66) if equality is met in constraints (4.65). Then model (4.23) � (4.33)
and model (4.56) � (4.62) can be combined into the following model:

min W RC
X

c2C;p2P ;r 2R

(Sc � Cr )
+ � f c;p;r

+ W IL
X

q2Q ;p2P

sq;p + W MWD
X

c2C

wc

+ W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

(4.77)

s.t. (4.24) � (4.33) (4.78)

(4.57) � (4.62) (4.79)
X

p2P

f c;p;r = yc;r 8c 2 C; r 2 R (4.80)

X

r 2R

f c;p;r � xc;p 8c 2 C; p 2 P (4.81)

X

c2C

f c;p;r � 1 8r 2 R ; p 2 P (4.82)

f c;p;r � 0 8c 2 C; p 2 P ; r 2 R (4.83)

It is not guaranteed that the f c;p;r variables are integers in the solution obtained from model
(4.77) � (4.83). If the solution returned by the model contains fractional values for thef c;p;r
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variables we solve a minimum cost �ow problem in the same way as in Section 4.3.1 using the
values of the variablesxc;p and zc;p. The minimum cost �ow gives us a feasible integer solution
with an objective value which is less than or equal to the objective value of the solution returned
by model (4.77) � (4.83) as we showed in the proof of Proposition 4.1.

4.4 Computational Results

In this section, we perform computational experiments to evaluate the performance of the two
new formulations for the CTT. We test the models on three data sets; TEST, COMP and DDS.
The set TEST contains four data instances and were proposed by Di Gaspero and Schaerf (2003)
(test1 � test4). The set COMP contains 21 data instances from the ITC2007 competition track
3 described in Di Gaspero et al. (2007) (comp01 � comp21) mainly taken from the University of
Udine. The set DDS contains seven data instances mainly taken from other Italian universities
(DDS1 � DDS7). All the data sets can be retrieved fromhttp://tabu.diegm.uniud.it/ctt/
index.php . A benchmarking tool was provided as part of the ITC2007 competition, which
calculates the amount of time that the algorithms were allowed to run in the competition on
the machine the tool is executed on. This amount of time is usually referred to as one CPU
unit. The tool can be obtained fromhttp://www.cs.qub.ac.uk/itc2007 . We ran the tests
in Windows 10 on a 3.40GHz Intel® Core—i5-3570K CPU with 8GB memory. Running the
benchmarking tool returned 208 seconds as one CPU unit. The MIP solver used is Gurobi
6.0.2 provided by Gurobi Optimization Inc. (2015). We have run all tests with the default
parameters except that we have set the presolver to the most aggressive level (Presolve=2), in
the hope that the presolver can decrease the size of the problem, and we set the number of
threads to one (Threads=1).

As mentioned in sections 4.3.1.3 and 4.3.2, it may be needed to run some minimum cost �ow
algorithm on the solutions returned by model (4.49) � (4.55) or model (4.77) � (4.83). However,
in all our tests the �nal solutions did not contain any fractional variables, so the minimum cost
�ow algorithm was never put to use. We also mentioned in Section 4.2 that an algorithm for
enumerating all clique inequalities was run. This algorithm takes less than a second even for
the largest data instances we have tested, so we have neglected these enumerations from the
time limits when solving the models.

4.4.1 Lower Bounds Results

The bounds obtained by the �ow formulations are compared with the four approaches proposed
by Lach and Lübbecke (2012), Burke et al. (2010), Hao and Benlic (2011) and Cacchiani et al.
(2013). In Table 4.1 � 4.3 we report the lower bounds obtained on the �rst 14 COMP data
sets for the latter mentioned four approaches and the �ow-based formulations when running
the approaches for one CPU unit, ten CPU units and forty CPU units. In each table, we
report the number of times that the approaches obtain a bound which is at least as good as
the bound obtained by the other approaches and also the number of times that the approaches
obtain a bound which is better than all the other approaches. For each data instance, we
rank the approach according to the bound obtained. The approach that obtains the highest
bound on a data instance gets rank one; the second highest gets ranked two, and so on. If
multiple approaches are tied then each approach is assigned the average of the ranks, e.g., if
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three approaches are tied for rank two, three and four then they are each assigned the rank
three as this is the average of the three values. We report the average of the ranks over all the
instances for each approach.

Table 4.1: Comparison of the lower bounds obtained for the di�erent approaches when given
one CPU time unit; LL12 (Lach and Lübbecke, 2012), BMPR10 (Burke et al., 2010), HB11
(Hao and Benlic, 2011), CCRT13 (Cacchiani et al., 2013), MIN (the minimum cost �ow based
formulation) and MULT (the multi-commodity �ow based formulation). The numbers reported
in bold font are the values where the speci�c models obtained a value which is at least as good
as the other formulations. The numbers underlined are the values where the speci�c models
obtained a value which is better than for the other formulations. The two second last lines
(Best) denotes the number of times that a speci�c algorithm obtained a lower bound which
was at least as good as the other algorithms (in bold font) and strictly better than the other
algorithms (underlines in bold font). The last line (Rank) reports the average rank obtained
by the speci�c algorithm.

Instance BMPR10 LL12 HB11 CCRT13 MIN MULT

comp01 0 4 4 5 5 5
comp02 0 0 10 0 0 6
comp03 25 0 26 24 27 26
comp04 35 22 35 35 24 24
comp05 119 92 19 6 132 121
comp06 13 7 12 0 12 12
comp07 6 0 5 0 0 0
comp08 37 30 37 37 26 27
comp09 68 37 39 92 49 46
comp10 3 2 4 0 4 4
comp11 0 0 0 0 0 0
comp12 101 29 43 0 85 85
comp13 52 33 46 57 39 38
comp14 41 40 41 32 40 41

Best 2 1 6 6 5 4
3 0 1 2 2 0

Rank 2.71 4.89 2.96 3.96 3.29 3.18

In Table 4.1 �4.3 we see that the proposed formulations can compete with most of the
approaches, except for the proposed method by Cacchiani et al. (2013) which seems to perform
better on most instances. The performance of Cacchiani et al. (2013) is especially evident in
Table 4.4 where we compare all the three data sets between the �ow formulations and the
approach proposed by Cacchiani et al. (2013) where the time limit is forty CPU units. Here we
see that Cacchiani et al. (2013) obtains a better bound more often than the �ow formulations.
However the �ow formulations appear to generate a better bound on two of the instances at
ten and forty CPU units; comp05 and comp12, where the bound generated for comp12 is an
improvement of the best-known bound.
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Table 4.2: Comparison of the lower bounds obtained for the di�erent approaches when given
ten CPU time units; LL12 (Lach and Lübbecke, 2012), BMPR10 (Burke et al., 2010), HB11
(Hao and Benlic, 2011), CCRT13 (Cacchiani et al., 2013), MIN (the minimum cost �ow based
formulation) and MULT (the multi-commodity �ow based formulation). The interpretation of
the numbers in bold font and the underlined numbers follows that of Table 4.1.

Instance BMPR10 LL12 HB11 CCRT13 MIN MULT

comp01 4 4 4 5 5 5
comp02 0 8 12 16 8 8
comp03 33 0 34 52 37 35
comp04 35 28 35 35 35 35
comp05 111 25 69 6 173 172
comp06 15 10 12 11 13 13
comp07 6 2 6 6 0 6
comp08 37 34 37 37 37 37
comp09 65 41 67 92 71 71
comp10 4 4 4 2 4 4
comp11 0 0 0 0 0 0
comp12 95 32 78 0 129 116
comp13 52 39 53 57 54 54
comp14 42 41 43 48 43 42

Best 6 2 5 10 7 6
1 0 0 5 2 0

Rank 3.75 5.18 3.46 3.00 2.75 2.86

4.4.2 Comparing Upper-Bound Formulations

Since Lach and Lübbecke (2012) and Burke et al. (2010) obtain both lower and upper bounds
we also compare these with the bounds obtained by the �ow formulations. The results for forty
CPU units are given in Table 4.5. Here we see that the �ow formulations obtain better lower
bounds in most cases. As for the upper bounds, Lach and Lübbecke (2012) and the minimum
cost �ow formulation appear to perform similarly. The minimum cost �ow formulation obtains
upper bounds that are at least as good as the other formulations in most cases, but Lach and
Lübbecke (2012) obtain upper bounds that are better than the other formulations in more
cases. However, the minimum cost �ow formulation has the best average performance, both
regarding upper and lower bounds, as we see it has a lower average rank than any of the other
formulations.
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Table 4.3: Comparison of the lower bounds obtained for the di�erent approaches when given
forty CPU time units; LL12 (Lach and Lübbecke, 2012), BMPR10 (Burke et al., 2010), HB11
(Hao and Benlic, 2011), CCRT13 (Cacchiani et al., 2013), MIN (the minimum cost �ow based
formulation) and MULT (the multi-commodity �ow based formulation). The interpretation of
the numbers in bold font and the underlined numbers follows that of Table 4.1.

Instance BMPR10 LL12 HB11 CCRT13 MIN MULT

comp01 5 4 4 5 5 5
comp02 1 11 12 16 8 8
comp03 33 25 36 52 38 37
comp04 35 28 35 35 35 35
comp05 114 108 80 166 186 181
comp06 16 10 16 11 16 16
comp07 6 6 6 6 0 6
comp08 37 37 37 37 37 37
comp09 66 46 67 92 74 73
comp10 4 4 4 2 4 4
comp11 0 0 0 0 0 0
comp12 95 53 84 100 142 140
comp13 54 41 55 57 56 59
comp14 42 46 43 48 44 43

Best 7 4 6 9 8 8
0 0 0 4 2 1

Rank 4.00 4.61 3.82 2.75 2.89 2.93
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Table 4.4: Comparison of the lower bounds obtained for the di�erent model formulations when
given forty CPU time units; CCRT13 (Cacchiani et al., 2013), MIN (the minimum cost �ow
based formulation) and MULT (the multi-commodity �ow based formulation). The interpreta-
tion of the numbers in bold font and the underlined numbers follows that of Table 4.1.

Instance CCRT13 MIN MULT

comp01 5 5 5
comp02 16 8 8
comp03 52 38 37
comp04 35 35 35
comp05 166 186 181
comp06 11 16 16
comp07 6 0 6
comp08 37 37 37
comp09 92 74 73
comp10 2 4 4
comp11 0 0 0
comp12 100 142 140
comp13 57 56 59
comp14 48 44 43
comp15 52 38 37
comp16 13 13 11
comp17 48 43 44
comp18 52 36 30
comp19 48 56 55
comp20 4 0 0
comp21 68 56 57

DDS1 40 46 44
DDS2 0 0 0
DDS3 0 0 0
DDS4 17 15 15
DDS5 0 0 0
DDS6 0 0 0
DDS7 0 0 0

test1 224 224 224
test2 16 16 16
test3 59 59 59
test4 46 44 43

Best 25 19 16
11 4 1

Rank 1.81 2.00 2.19
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Table 4.5: Comparison of the lower and upper bound bounds obtained for the di�erent model
formulations when given forty CPU time units; LL12 (Lach and Lübbecke, 2012), BMPR10
(Burke et al., 2010), MIN (the minimum cost �ow based formulation) and MULT (the multi-
commodity �ow based formulation). The interpretation of the numbers in bold font and the
underlined numbers follows that of Table 4.1.

BMPR10 LL12 MIN MULT
Instance LB UB LB UB LB UB LB UB

comp01 5 9 4 12 5 5 5 5
comp02 1 63 11 46 8 45 8 59
comp03 33 123 25 66 38 123 37 99
comp04 35 36 28 38 35 35 35 35
comp05 114 629 108 368 186 355 181 377
comp06 16 46 10 51 16 92 16 92
comp07 6 45 6 25 0 179 6 -
comp08 37 41 37 44 37 37 37 41
comp09 66 105 46 99 74 105 73 103
comp10 4 23 4 16 4 18 4 68
comp11 0 12 0 7 0 0 0 0
comp12 95 785 53 548 142 423 140 500
comp13 54 67 41 66 56 66 59 59
comp14 42 55 46 53 44 55 43 74

Best 7 1 6 5 10 7 8 4
0 1 2 5 4 4 1 1

Rank 2.75 3.14 3.11 2.25 2.00 2.07 2.14 2.53

4.4.3 Comparing with the Three-Index Formulation

In this section, we compare the �ow formulations with the three-index formulation.
In Table 4.6 we provide the results of both the three-index formulation (model (4.1) � (4.17))

and the �ow based formulations. Here we see that the �ow formulations clearly outperform the
three-index formulation and we obtain a new lower bound in one of the instances compared
to the best-known bound. This improvement makes the models riveting as some of the other
approaches based on the three-index formulation from the literature might also bene�t from
this reformulation.

On a �nal note, these computational results show that the the minimum cost �ow based
formulation in general has better performance than the multi-commodity �ow based formulation
as it obtains a much lower average rank.
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Table 4.6: Comparison of the lower and upper bound bounds obtained for the di�erent model
formulations when given forty CPU time units; 3IDX (the three-index formulation), MIN (the
minimum cost �ow based formulation) and MULT (the multi-commodity �ow based formula-
tion). The interpretation of the numbers in bold font and the underlined numbers follows that
of Table 4.1.

3IDX MIN MULT
Instance LB UB LB UB LB UB

comp01 5 5 5 5 5 5
comp02 0 109 8 45 8 59
comp03 33 136 38 123 37 99
comp04 35 41 35 35 35 35
comp05 161 427 186 355 181 377
comp06 12 98 16 92 16 92
comp07 3 118 0 179 6 -
comp08 37 45 37 37 37 41
comp09 66 157 74 105 73 103
comp10 4 39 4 18 4 68
comp11 0 0 0 0 0 0
comp12 108 629 142 423 140 500
comp13 51 126 56 66 59 59
comp14 41 144 44 55 43 74
comp15 33 136 38 123 37 99
comp16 8 102 13 61 11 42
comp17 41 175 43 123 44 109
comp18 24 133 36 78 30 108
comp19 53 114 56 57 55 57
comp20 0 146 0 50 0 96
comp21 49 235 56 156 57 133

DDS1 45 92 46 70 44 76
DDS2 0 0 0 0 0 0
DDS3 0 0 0 0 0 0
DDS4 15 67 15 17 15 12079
DDS5 0 0 0 0 0 0
DDS6 0 51 0 2 0 27
DDS7 0 0 0 0 0 0

test1 224 233 224 224 224 224
test2 16 19 16 19 16 19
test3 59 83 59 75 59 75
test4 43 109 44 91 43 107

Best 15 8 28 24 21 19
0 1 11 12 4 7

Rank 2.45 2.66 1.66 1.55 1.89 1.80
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4.5 Perspectives

We proposed two mixed integer programming models for the curriculum based course timetabling
problem (CTT). We based both our models on network �ow problems; the minimum cost �ow
problem and the multi-commodity �ow problem. These models are exact, meaning that they
will obtain optimal solutions given enough computational resources. We showed that these
models have far fewer integer variables than the standard three-index formulation for the CTT.
By experimental results, we also showed that the models outperform the three-index formula-
tion regarding �nding feasible solutions when solved by a MIP solver.

Regarding lower bounds, the formulations are competitive with most of the mixed inte-
ger programming based approaches from the literature and improve one of the currently best
known lower bounds on the benchmarking instances from the second international timetabling
competition.

Regarding upper bounds, the minimum cost �ow based formulation performs better than
other state-of-the-art MIP based approaches.

Furthermore, some of the approaches from the literature are based on models similar to the
three-index formulation. Since we showed that our formulations outperform the three-index
formulation, we believe that these approaches can also bene�t from adopting the proposed
network �ow formulations.
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Abstract: In this paper we apply Benders' decomposition to the Curriculum-
based Course Timetabling (CTT) problem. The objective of the CTT problem is to
assign a set of lectures to time slots and rooms. Our approach is based on splitting
the problem into a time scheduling problem and a room allocation problem. The
Benders' algorithm is then used to generate cuts that connect the time schedule
and room allocation. We only generate feasibility cuts, meaning that most of the
solutions we obtain from a mixed integer programming solver are infeasible, and
therefore we also provide a heuristic to regain feasibility.

We compare our algorithm with other approaches from the literature on a total
of 32 data instances. We get a lower bound on 23 of the instances which are at
least as good as the lower bounds obtained by the state-of-the-art, and on eight of
these our lower bounds are higher. On two of the instances, our lower bound is an
improvement of the currently best-known. Lastly, we compare our decomposition
with the model without the decomposition on additionally six instances which are
much larger than the other 32. To our knowledge, this is the �rst time that lower
bounds are calculated for these six instances.

Keywords: University Course Timetabling � Integer Programming � Benders'
Decomposition� Maximum Flow � Minimum Cut

5.1 Curriculum-based Course Timetabling

In this work we consider the Curriculum based Course Timetabling Problem (CTT) introduced
in track 3 of the second international timetabling competition (ITC2007) as described by Di
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Gaspero et al. (2007), McCollum et al. (2010) and Bonutti et al. (2012). Most of the work on
CTT focuses on �nding high-quality solutions using heuristics. The drawback of these heuristics
is that they do not provide any proof of quality, e.g., how far from optimality the solutions are.
We need bounding and exact methods to be able to validate the quality of the heuristics and
not much work has been put into developing these methods. In this article we apply Benders'
decomposition to a Mixed Integer Programming (MIP) model that we presented in Bagger
et al. (2016).

In the CTT problem we must schedule weekly lectures for multiple courses into time periods
and assign the lectures to rooms. We are given a set of days, each divided into a set of
time slots. We refer to a day and time slot combination as a period. The basic entities of
the problem are thecoursesto schedule, and theperiods and rooms that are available. The
problem originates from a real world application and has received a lot of attention since the
competition. Each course has a number of lectures which must all be scheduled in a period
and assigned a room. Furthermore all the lectures must be scheduled in distinct periods. This
requirement is referred to as the Lectures(L) constraint. The courses have speci�ed some of the
periods to beunavailableperiods, i.e., periods where it is not allowed to schedule the course.
This requirement is referred to as the Availability(A ) constraint. There are no constraints
on assigning the courses to rooms, i.e., any course can be assigned to any room. Besides the
courses, periods and rooms the problem also containslecturers and curricula, hence the name
Curriculum-based Course Timetabling. Each course is taught by a lecturer, and a curriculum
is a set of courses which may be followed by the same students. If two courses are taught by
the same lecturer or belong to the same curriculum they cannot have lectures scheduled in the
same periods. This requirement is referred to as the Con�icts(C) constraint. For each room,
at most one lecture can be assigned in any period, which is referred to as the Room Occupancy
(RO ) constraint. The objective of the CTT is to �nd a timetable which ful�ls all the latter
mentioned requirements,L , A , C and RO , while minimizing a weighted sum of the violation
of four soft constraints; Room Capacity(RC ), Room Stability (RStab ), Minimum Working
Days (MWD ) and Isolated Lectures(IL ). When a course is assigned to a room where the
number of seats is smaller than the number of students that are attending the course then
the constraint RC is violated by one for each student above the capacity of the room. It is
desired to assign lectures from the same course to as few distinct rooms as possible. A course is
violating constraint RStab by the total number of distinct rooms that it is assigned to minus
one. The constraintMWD is the desire to spread lectures across a given number of days. We
say that a day is a working day for a course if at least one lecture from the course is scheduled
in a time slot on that day. For each course a number of minimum working days is provided
and if the number of working days is below this number then the violation of the constraint
is the di�erence. The last constraint IL is associated with the curricula. For each curriculum
it is desired to have as fewisolated lectures as possible. Eachisolated lecture counts as one
violation. A curriculum has an isolated lecture in a period if any of the courses belonging to
the curriculum has a lecture scheduled in the period and none of the courses have lectures
scheduled in theadjacent periods. We say that two periods are adjacent if they belong to the
same day and are in consecutive time slots.

In the following section 5.1.1 we provide an overview of other approaches applied to CTT. In
section 5.2 we �rst provide a brief introduction to Benders' decomposition and then we describe
how we apply it to CTT. In section 5.3 we describe a heuristic to repair partially infeasible
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solutions, whereby partially infeasible we mean solutions where the time schedule is feasible,
but not the room assignment. In section 5.4 we describe the computational results. Lastly, in
section 5.5 we state our conclusions on this work.

5.1.1 Related Research

As we consider a MIP model for the problem, we mainly focus on other MIP based approaches
in the literature. For a thorough overview of the problem and di�erent approaches for CTT we
refer to Bettinelli et al. (2015).

Burke et al. (2008) and Burke et al. (2010) introduces a compact MIP formulation that
is exact, in the sense that the optimal solution can be found by a generic MIP solver given
enough computational resources. However, many instances of the CTT cannot be solved for this
formulation within a reasonable time using a MIP solver and so Burke et al. (2010) propose
methods to derive lower and upper bounds. They obtain lower bounds by aggregating the
rooms into multi-rooms. For eachmulti-room the number of lectures that can be scheduled in
it in any period is equal to the umber of rooms that where aggregated. This problem provides
a lower bound for CTT. To obtain an upper bound they �x the periods (or parts of them)
according to the solution from the lower bounding mechanism and then assign rooms to the
lectures. Burke et al. (2012) give an exact branch-and-cut algorithm which they also base on
the compact formulation, but some of the objective costs are left out and instead added as
cuts during the solution process. This can be seen as a Benders' decomposition, but instead of
generating the cuts dynamically they are generated a priori and then added when needed.

Lach and Lübbecke (2008) and Lach and Lübbecke (2012) proposed a method that divides
the CTT into two stages. The started by grouping the rooms together such that if two rooms
have the same capacity then they are in the same group. Then in the �rst stage, they scheduled
the courses into periods and assigned them to these capacities. This method is a Benders'
Decomposition (Lübbecke, 2015). In the second stage, they assign the courses to the rooms,
where the solution from the �rst stage is used to �x the courses at the determined periods and
the selected room capacities.

Hao and Benlic (2011) divides the MIP model that Lach and Lübbecke (2012) use in the
�rst-stage into smaller parts by relaxing or removing some of the constraints. The relaxations
makes it possible to decompose the model into a set of subproblems where they calculate a
lower bound for each subproblem. The sum of all these lower bounds is then a lower bound
for CTT. Cacchiani et al. (2013) present multiple extended MIP formulation, i.e., models with
an exponential amount of variables. The approach that provides the best results divides the
problem into two parts; one focusing on the time scheduling related soft constraints and the
other focusing on the room related soft constraints. They calculate a lower bound for each part
and the sum of these lower bounds is then a lower bound for CTT.

In Bagger et al. (2016) two MIP models were presented that were inspired by Lach and
Lübbecke (2008) and Lach and Lübbecke (2012) and Burke et al. (2008) and Burke et al. (2010).
The division of the problem described Lach and Lübbecke (2012) by was applied (excluding the
notion of distinct capacities) and it was shown that the two stages could be connected using
two underlying �ow network formulations. The �rst formulation was based on a minimum cost
�ow network and performed best of the two. The second formulation was based on a multi-
commodity �ow problem which is the formulation where we apply Benders' decomposition
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(Benders, 1962) in this article. The reason for using the last formulation, although it did not
perform as well as the �rst, is that the underlying network is a feasibility problem. So we do
not need to generate any optimality cuts, but only feasibility cuts.

5.2 Benders' Decomposition

In this section we give an introduction to Benders' decomposition followed by our application
of the technique. Our introduction is a crude overview and we refer to (Benders, 1962) and
Martin (1999, chapter 10) for a detailed description. We describe the method based on a
model containing two types of variables,x and y. The x variables are non-negative continuous
variables, and we do not have any assumptions on they variables, i.e.,x � 0 and y 2 Y where
Y can be any domain, e.g., the set of integers. Consider the MIP model (5.1).

min c> x + f (y)

s.t. Ax + B(y) � b

y 2 Y

x � 0

(5.1)

In model (5.1)c 2 Rn is the cost vector of thex variables,A 2 Rn� m is the constraint matrix
of the x variables andb 2 Rm is the right-hand-side vector of the constraints.f : Y ! R is
some function to evaluate the cost of they variables andB is a vector function that evaluates
the contribution of the y variables for the constraints. If we �x they variables to some value in
the domainY then what remains is a linear programme (LP). This assumption can be extended
as described by Geo�rion (1972), but we stick to the (LP) case in this context. Model (5.1)
can be rewritten to model (5.2).

min f (y) + z

s.t. z � min
x� 0

�
c> x j Ax � b� B (y)

	

y 2 Y

z 2 R

(5.2)

In model (5.2) there is an inner optimization problem in the constraints. If they variables
are �xed, then this is an LP and we can change it into its dual LP as in model (5.3).

min f (y) + z

s.t. z � max
� � 0

�
(b� B (y)) � j A> � � c

	

y 2 Y

z 2 R

(5.3)

One interesting aspect of the inner optimization problem in model (5.3) is that the corre-
sponding polytope is independent of the values of they variables. So if the polytope

�
AT � � c

	

is non-empty then we can reformulate the problem using the extreme points� p and extreme
rays � r as in model (5.4).
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min f (y) + z

s.t. z � (b� B (y)) � p 8� p 2 � p

0 � (b� B (y)) � r 8� r 2 � r

y 2 Y

z 2 R

(5.4)

Model (5.4) is referred to as Benders' master problem. For a given solutiony model (5.5)
is referred to as Benders' subproblem.

max (b� B(y)) �

s.t. A> � � c

� � 0

(5.5)

As the number of extreme points and rays can be exponentially large, a way to solve the
model is to relax the master problem by removing some (or all) of the constraints originating
from the extreme points and rays and then iteratively add them as needed. This is done by
�nding a solution y for the master problem (5.4) and inserting the solution into the subprob-
lem (5.5). The subproblem is then solved to obtain an extreme point� p or ray � r and the
corresponding cut is added to the master problem if it is violated. This is done iteratively as
illustrated in Figure 5.1.

Master problem

Subproblem

Solution y
Extreme point � p

or extreme ray� r

Figure 5.1: The iterative loop of Benders' algorithm.

A lower bound on the (relaxed) master problem is a lower bound on the original model, and
if the subproblem returns an extreme point, then this provides an upper bound. The iterative
process is run until some stopping criterion is met, e.g., a time limit is reached, or the lower
and upper bounds are su�ciently close.

In the following section 5.2.1 we give the model we use for the decomposition and Benders'
master problem. In section 5.2.2 we state the subproblems we use to generate Benders' cuts.
For all the models we are given the set of coursesC, the set of periodsP and the set of roomsR.
We are also provided with the set of daysD and the set of periodsPd belonging to dayd 2 D .
For each periodp 2 P the set � p is the set of periods that are adjacent top, i.e., the periods
that belong to the same day and are in consecutive time slots. Furthermore, we have the set of
lecturersL and curricula Q. For each curriculumq 2 Q we have the set of coursesCq belonging
to the curriculum. We also de�ne the set� which is the set of course-cliques. A course-clique

 2 � is a set of coursesC
 such that for each periodp 2 P at most one lecture fromC


can be scheduled in that period. We �nd the set of course-cliques in the same way as Bagger
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et al. (2016). For each coursec 2 C we have the number of lectures that needs to be scheduled
L c 2 Z+ , whereZ+ is the set of non-negative integers, and the minimum number of requested
working daysM c 2 Z+ . We also have the number of students attending the courseSc 2 Z+ and
for each periodp 2 P the parameterFc;p 2 B specifying whether or not it is feasible to schedule
c in p. For each room, we have the parameterCr 2 Z+ which is the capacity of the room. We
have W MWD 2 R+ , W IL 2 R+ , W RC 2 R+ and W RStab 2 R+ which are the non-negative
weights of the soft constraints,MWD , IL , RC and RStab respectively. Lastly, for any value
x 2 R we use the notation(x)+ to denote that we are taking the maximum ofx and zero.

5.2.1 Master Problem

The model we use for the decomposition is the multi-commodity �ow formulation that we
presented in Bagger et al. (2016). We start by describing this model, and then we describe how
we reformulate it using Benders' decomposition.

For each coursec 2 C and period p 2 P there is a binary variablexc;p which is set to one
if c is scheduled inp and zero otherwise. To calculate the violation of the requested minimum
working days we need to calculate which days the courses are scheduled to. We de�ne a binary
variable tc;d for each coursec 2 C and day d 2 D which is set to one ifc is scheduled in at least
one of the periodsPd and zero otherwise. Letwc for each coursec 2 C be an integer variable
counting the number of days, below the minimum requested, thatc has lectures scheduled.
Lastly for each curriculum q 2 Q and period p 2 P there is a binary variablesq;p that is set
to one if q has an isolated lecture inp and zero otherwise. We can then formulate the time
scheduling part of the problem as follows:

X

p2P

xc;p = L c 8c 2 C (5.6)

xc;p � Fc;p 8c 2 C; p 2 P (5.7)
X

c2C


xc;p � 1 8
 2 � ; p 2 P (5.8)

X

p2P d

xc;p � tc;d 8c 2 C; d 2 D (5.9)

X

d2D

tc;d + wc � M c 8c 2 C (5.10)

X

c2Cq

0

@xc;p �
X

p02 � p

xc;p0

1

A � sq;p 8q 2 Q ; p 2 P (5.11)

xc;p 2 B 8c 2 C; p 2 P (5.12)

tc;d 2 B 8c 2 C; d 2 D (5.13)

wc 2 Z+ 8c 2 C (5.14)

sq;p 2 B 8q 2 Q ; p 2 P (5.15)

Constraints (5.6) and (5.7) ensure that all lectures are scheduled, that they are scheduled in
di�erent periods and that they are only scheduled in the periods where the courses are available.
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Constraints (5.8) ensure that at most one lecture from each course-clique is scheduled in every
period. The violation of the MWD constraint is calculated in (5.9) and (5.10). Lastly, the
constraints (5.11) calculate in which periods the curricula have isolated lectures. The domains
of the variables are given in (5.12) � (5.15).

For the room assignment part of the problem we de�ne an integer variableyc;r for each
coursec 2 C and room r 2 R which counts the number of times thatc has been assigned to
r . zc;r is a binary variable that is set to one if coursec 2 C is assigned to roomr 2 R at least
once and zero otherwise. The room assignment part can then be formulated as follows:

X

r 2R

yc;r = L c 8c 2 C (5.16)

yc;r � L czc;r 8c 2 C; r 2 R (5.17)

yc;r � zc;r 8c 2 C; r 2 R (5.18)
X

r 2R

zc;r � 1 8c 2 C; r 2 R (5.19)

yc;r 2 Z+ 8c 2 C; r 2 R (5.20)

zc;r 2 B 8c 2 C; r 2 R (5.21)

Constraints (5.16) ensure that all lectures is assigned a room. For every coursec 2 C and
room r 2 R the variable yc;r must be set to zero ifzc;r is zero and it must be set to a positive
value if zc;r is set to one. This is ensured by the constraints (5.17) and (5.18). Since every
lecture must be scheduled, then every course must be assigned to at least one room which is
re�ected by the constraints (5.19). The domains of the variables are given in (5.20) � (5.21).

Finally, from the two parts; (5.6) � (5.15) and (5.16) � (5.21), we can formulate the objective
function which is to be minimized:

o(x; y; z):= W MWD
X

c2C

wc

+ W RC
X

c2C ;r 2R

(Sc � Cr )+ yc;r

+ W RStab
X

c2C

 
X

r 2R

zc;r � 1

!

+ W IL
X

q2Q ;p2P

sq;p (5.22)

Until now, we have given the time scheduling and room assignment part of the problem as
separate parts. Given a binary variablef c;p;r for each coursec 2 C, period p 2 P and room
r 2 R , which is set to one ifc is scheduled in roomr at period p, the two parts can be connected
as follows:
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X

p2P

f c;p;r = yc;r 8c 2 C; r 2 R (5.23)

X

r 2R

f c;p;r � xc;p 8c 2 C; p 2 P (5.24)

X

c2C

f c;p;r � 1 8r 2 R ; p 2 P (5.25)

f c;p;r 2 B 8c 2 C; p 2 P ; r 2 R (5.26)

We show in Bagger et al. (2016) that the integrality requirements (5.26) can be relaxed to
non-negativity constraints such that thef variables are continuous. This means that we can
project them out and replace (5.23) � (5.26) by the following Benders' cuts:

X

c2C;p2P

� k
c;pxc;p +

X

c2C;r 2R

� k
c;r yc;r � � k 8k 2 K (5.27)

The set K is the set of Benders' cuts. For each cutk 2 K the coe�cient of the variable
xc;p is � k

c;p for each coursec 2 C and p 2 P , and for each coursec 2 C and room r 2 R the
coe�cient of the variable yc;r is � k

c;r . The parameter� k is a constant for eachk 2 K . SinceK
can be exponentially large we add the cuts dynamically when needed. We add some of the cuts
statically. For instance, we cannot schedule more courses to a single period than the number
of rooms available:

X

c2C

xc;p � jRj 8 p 2 P (5.28)

Similarly the total number of times that some room is assigned to by the courses cannot
exceed the total number of periods:

X

c2C

yc;r � jPj 8 r 2 R (5.29)

The cuts (5.28) and (5.29) are added to the master problem before we start the solution
process, and we generate the remaining cuts when an integer solution violates them.

5.2.2 Subproblems

In this section, we describe the subproblems. Our �rst subproblem is based on the problem
connecting thex and y variables (5.23) � (5.26). These cuts are necessary and su�cient to
ensure that the solutions obtained in our decomposed model are equivalent to the solutions
in our non-decomposed model. We base the second subproblem on the indirect connection
between thex and z variables. The applicability of the second subproblem is to generate cuts
on the z variables as they are connected with they in the constraints (5.17) and (5.18) so the
cuts will also have an indirect a�ect on they variables.
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5.2.2.1 Dual LP

The �rst subproblem we use, directly follows from the LP relaxation of (5.23) � (5.26), as it was
mentioned before that the integrality constraints can be neglected. Given a solution(x; y; z)
we �x the x and y variables and if (5.23) � (5.26) is infeasible then we need to identify a cut.
It can be veri�ed that due to constraints (5.6) and (5.16) if we remove constraints (5.25) then
the problem is feasible. So to �nd out if (5.23) � (5.26) is infeasible for the given solution, we
subtract a non-negative variableu from the left-hand-side of each of the constraints (5.25). We
then search for the solution that minimizesu:

min u (5.30)

s.t.
X

p2P

f c;p;r = yc;r 8c 2 C; r 2 R (5.31)

X

r 2R

f c;p;r = xc;p 8c 2 C; p 2 P (5.32)

X

c2C

f c;p;r � u � 1 8r 2 R ; p 2 P (5.33)

f c;p;r � 0 8c 2 C; p 2 P ; r 2 R (5.34)

u � 0 (5.35)

Note that we have changed the inequality (5.24) into the equality (5.32). This is because
any solution

�
x; y; z; f

�
that is feasible must meet equality in the constraints (5.24), since

L c =
P

r 2R yc;r =
P

p2P ;r 2R f c;p;r �
P

p2P xc;p = L c must hold for eachc 2 C. The problem
(5.23) � (5.26) is feasible for the given solution(x; y; z) if and only if there exists a solution
for (5.30) � (5.35) where the variablesx and y are �xed at the valuesx and y respectively and
where the value ofu is zero. We can, therefore, use this problem to generate feasibility cuts.

Given a solution(x; y; z), we �x the variables x and y in (5.30) � (5.35) to the valuesx and
y, i.e., setting the boundsx � x � x and y � y � y, and solve the problem to optimality. Let
r x

c;p and r y
c;r be the reduced costs of the variablesx and y respectively and letu be the value of

the variable u. According to Fischetti (2015) we can derive the Benders' cut as follows:

X

c2C;p2P

r x
c;p (xc;p � xc;p) +

X

c2C;r 2R

r y
c;r

�
yc;r � yc;r

�
+ u � 0 (5.36)

We add the cut (5.36) whenever it is violated by an integer solution(x; y; z).

5.2.2.2 Maximum Flow / Minimum Cut

In the previous section we described how to obtain the cuts from (5.23) � (5.26). Those cuts
only connect thex and y variables together. In this section, we look at the link between the
x and z variables. Though they are not directly connected in any constraints, they have an
indirect relation since the y and z variables are contained in some of the same constraints.
Consider the model (5.23) � (5.26). It can be shown that the constraints (5.24) must be met
by equality in any feasible solution. When changing the inequality in (5.24) into an equality,
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then the equality in (5.23) can be changed to a less-than-or-equal inequality. Combining this
with constraint (5.17) we have that:

X

p2P

f c;p;r � L czc;r 8c 2 C; r 2 R (5.37)

The consequence of (5.37) is that for some coursec 2 C and some roomr 2 R , if zc;r is zero
then f c;p;r must be zero for each periodp 2 P . This leads to the following model:

f c;p;r � zc;r 8c 2 C; p 2 P ; r 2 R (5.38)
X

r 2R

f c;p;r = xc;p 8c 2 C; p 2 P (5.39)

X

c2C

f c;p;r � 1 8r 2 R ; p 2 P (5.40)

f c;p;r � 0 8c 2 C; p 2 P ; r 2 R (5.41)

Note that model (5.38) � (5.41) is decomposable by the periods, i.e., to �nd out if the model
is feasible we can consider one period at a time. We can formulate this problem as a maximum
�ow problem. Given the solution (x; y; z) construct a graph Gp =

�
Vp; A p

�
for each period

p 2 P . The graph contains a source node(u) and a sink node(v). Furthermore there is a node
(c) for each coursec 2 C and a node(r ) for each roomr 2 R . For each coursec 2 C there is an
arc (u; c) 2 A p where the capacity is set toxc;p. For each roomr 2 R there is an arc(r; v ) 2 A p

with a capacity of one. For each coursec 2 C and roomr 2 R there is an arc(c; r) 2 A p where
the capacity is set tozc;r . An example of the graph, for an instance with two courses and two
rooms for some periodp 2 P , is illustrated in Figure 5.2.

c1

c2

u

r1

r2

v

x c1;p

xc2 ;p

zc1 ;r 1

z
c1 ;r

2

z c2
;r 1

zc2 ;r 2

1

1

Figure 5.2: Illustration of the maximum �ow graph Gp =
�
Vp; A p

�
for period p 2 P of an

instance with two courses and two rooms to validate the(x; z) pair. The labels above the arcs
are the corresponding capacities.

As we state in the next proposition 5.1, we can use this graph to check whether or not (5.38)
� (5.41) is feasible for a given solution.

Proposition 5.1. The model (5.38) � (5.41) is feasible for a given solution(x; y; z) if and only
if for each periodp 2 P there exists some �ow in graphGp where the value is equal to

P
c2C xc;p
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Proof of proposition 5.1. Consider the solution(x; y; z) and the graphGp for some periodp 2 P .
We �rst prove that if the model is feasible for the period, then there exists some �ow in the
graph where the value of the �ow is equal to

P
c2C xc;p. We then prove that if there exists

some �ow in the graph where the value of the �ow is equal to
P

c2C xc;p then there is a feasible
solution for the model for the period.

Consider some solutionf to the model (5.38) � (5.41) for (x; y; z). Consider the graphGp for
some periodp 2 P . For each coursec 2 C and roomr 2 R the amount of �ow we send on the
path (u) ! (c) ! (r ) ! (v) is equal to f c;p;r . To validate that this is a �ow for the graph we
need to check if the node balancing constraints and the capacity constraints are met. Since we
are only sending �ow on paths from the source to the sink, then the node balancing constraints
must be met. The �ow leaving node(c) is equal to

P
r 2R f c;p;r and due to the node balancing

constraints and the constraints (5.39) then the �ow on the arc(u; c) must be equalxc;p which
is the capacity of that arc. The �ow on the arc(c; r) is f c;p;r and due to constraint (5.38) this
is less than or equal tozc;r which is the capacity on the arc. The total amount of �ow entering
node(r ) is equal to

P
c2C f c;p;r and due to the node balancing constraints then the �ow on the

arc (r; v ) must be equal to this value. Because of the constraint (5.40) the �ow on the arc(r; v )
must, therefore, be less than or equal to one which is the capacity of the arc. The value of
the �ow must be equal to

P
c2C xc;p because of the constraints (5.39). So if (5.38) � (5.41) is

feasible for the given solution then there is a �ow for the graph where the value of the �ow isP
c2C xc;p.
Now consider some �ow for the graphGp for period p 2 P where the value of the �ow is

equal to
P

c2C xc;p. For each coursec 2 C and roomr 2 R let f c;p;r denote the amount of �ow
on the arc(c; r). f is a feasible solution for thef variables if the constraints (5.38) � (5.40) are
not violated. Since the capacity on the arc(c; r) for coursec 2 C and room r 2 R is zc;r then
the constraints (5.38) cannot be violated. Since the sum of the capacities leaving the source
node is equal to

P
c2C xc;p then this means that the �ow on arc(u; c) for each coursec 2 C must

be equal toxc;p and due to the node balancing constraints then all the �ow leaving(c) must
also equal this value, i.e.,

P
r 2R f c;p;r must be equal toxc;p, meaning that the constraints (5.39)

are ful�lled. The total amount of �ow entering node (r ) must be equal to
P

c2C f c;p;r and
due to the node balancing constraints this value cannot exceed one, which means that the
constraints (5.40) are not violated. So if there exists some �ow for the graph where the value
of the �ow is equal to

P
c2C xc;p then the model is feasible.

Since we considered an arbitrary period, then this concludes our proof of proposition 5.1.

For the source node(u) and sink node(v) a u � v cut is a cut that separates the graph
into two parts; the u side containing the source node, and thev side containing the sink node.
For the maximum �ow problem, the value of any �ow in the graph is upper bounded by the
sum of the capacities for anyu � v cut (Ahuja et al., 2013, property 6.1). In the remainder of
the section whenever we mention a cut we mean au � v cut unless speci�ed otherwise. If we
consider some cut� p � A p in the graph Gp then the sum of the capacities in the cut must be
greater than or equal to

P
c2C xc;p for the solution to be feasible. So given the solution(x; y; z)

we solve the maximum �ow problem by the labeling algorithm described by Ahuja et al. (2013,
chapter 6). This algorithm also �nds a minimum cut � p � A p and if the value of the maximum
�ow (capacity of the minimum cut) is less than

P
c2C xc;p we add the following cut to the master

problem:
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X

(u;c)2 � p

xc;p +
X

(c;r )2 � p

zc;r +
�
�(r; v ) 2 � p

�
� �

X

(u;c)2 A p

xc;p (5.42)

For ease of notation in (5.42) we write(u; c) 2 A which means; for eachc 2 C where the
arc (u; c) is in the set A . Similarly, (r; v ) 2 A means for each roomr 2 R where the arc(r; v )
is in the set A and (c; r) 2 A is the set of all the arcs(c; r) for eachc 2 C and r 2 R in the
set A . We use the notationj � j on these sets to denote the cardinalities. We use this notation
throughout the remainder of the paper.

We can rewrite (5.42) into a simpler form:

X

(u;c)2 A p nf � pg

xc;p �
X

(c;r )2 � p

zc;r �
�
�(r; v ) 2 � p

�
� (5.43)

Whenever we get an integer solution(x; y; z) we add the cut (5.43) for each periodp 2 P
where it is violated.

5.3 Primal Heuristic

The solutions obtained are often infeasible during the Branch-and-Bound process, which means
that it is hard for the MIP solver to achieve upper bounds used for pruning. Therefore, we have
implemented a heuristic to regain feasibility whenever a cut is generated to help the solver. In
the heuristic we exploit the property that the courses can be assigned to any room. Due to
constraints (5.28) we know that given any solution(x; y; z) the time-schedule partx of the
solution is feasible, meaning that it is possible to create a room assignment based in the time-
schedule to obtain a complete solution. The heuristic runs through every period and in each
period the lectures that are scheduled in that period are each assigned to a distinct room. This
will always be possible since no more courses are scheduled in any period than the number of
rooms available. Based on this assignment we then calculate the values of they and z variables.

For each periodp 2 P we �nd a minimum cut � p in the graph Gp as described in sec-
tion 5.2.2.2. Then we calculate the valuevp

�
� p

�
:

vp
�
� p

�
:=

X

(u;c)2 A p nf � pg

xc;p �
X

(c;r )2 � p

zc;r �
�
�(r; v ) 2 � p

�
� (5.44)

If vp
�
� p

�
> 0 then we cannot schedule all lectures inp and we need to change the values of

the z variables to obtain feasibility. We do this by ordering the periods according to the values
of vp

�
� p

�
from the largest to the smallest. We then iterate over the periods in the given order

and for each periodp 2 P we perform the following steps:

1. Let the graphGp be de�ned as in section 5.2.2.2 with the same capacities. For each course
c 2 C and room r 2 R let the weight on the arc(c; r) 2 A p be W RC (Sc � Cr )

+ and let
the weights of the remaining arcs be zero.

2. If vp
�
� p

�
� 0, then stop.
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3. For every arc(c; r) 2 � p, if zc;r (the capacity) is zero then weopen the room, i.e., we
change the value to one.

4. We then �nd the minimum cost maximum �ow f (minimum cut � p) and for every arc
(c; r) were we changed the capacity in step 3, if there is no �ow on the arc, i.e., iff c;p;r = 0,
we change the capacity back to zero.

5. Given the new minimum cut� p, update the valuevp
�
� p

�
and go back to step 2.

When we have processed all periods we set the valuesy as follows:

yc;r =
X

p2P

f c;p;r c 2 C; p 2 P ; r 2 R (5.45)

We then set thez values as follows to ensure that the constraints (5.18) are ful�lled:

zc;r =

(
1 if yc;r > 0

0 otherwise
c 2 C; p 2 P ; r 2 R (5.46)

In step 3 we solve a minimum cost maximum �ow problem, which is to �nd a minimum-cost
�ow among all the maximum �ows. The reason we are solving a minimum cost maximum �ow
problem instead of just a maximum �ow problem is that we want to create a feasible solution
without increasing the penalty of theRStab constraint too much. The algorithm we use is
a modi�ed version of the algorithm described by Ahuja et al. (2013, section 9.7) which �nds
the minimum cost �ow given the demands and supplies on the nodes. We have a supply on
the source node and a demand on the sink node both equal to

P
c2C xp and on the rest of the

nodes, the demands and supplies are zero. The modi�cation to the algorithm is the stopping
criterion. In its pure form the algorithm assumes that there it is possible to meet all demands
of the nodes. Since we do not always have a feasible �ow, we add the stopping criterion that if
no path exists from the source node to the sink node in the residual graph, then the algorithm
must stop. So the modi�ed algorithm �nds the minimum cost �ow among all the maximum
�ows that exists. We can �nd the minimum cut from this �ow in the same way as we did in
section 5.2.2.2.

We need to show that the algorithm is �nite and returns a feasible solution. If the algorithm
assigns all lectures to rooms in each period, then the overall solution is feasible. So we need
only to show that the algorithm is �nite and returns a feasible solution for a single period since
there is a �nite number of periods. For periodp 2 P , if all the arcs (c; r) 2 A p have a capacity
of one then all lectures scheduled in the period can be assigned to a room. So if the period is
infeasible then some of the arcs(c; r) 2 A p must have a capacity of zero. As long as at least one
of the lectures cannot be assigned a room, i.e., as long asvp

�
� p

�
> 0, the algorithm changes

at least one valuezc;r from zero to one for some arc(c; r) in each iteration, assuming step 3 is
correct. The correctness of step 3 is given by proposition 5.2. Since there is a �nite number of
these arcs, then the algorithm must also be �nite. Furthermore, since the algorithm does not
stop as long asvp

�
� p

�
> 0 then the solution will also be feasible, for the periodp 2 P , since

all capacities on the arcs(c; r) 2 A p are set to one in the worst case.
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Proposition 5.2. For a solution (x; y; z), a periodp 2 P and a minimum cut� p, if vp
�
� p

�
> 0

then there must exist a coursec 2 C and room r 2 R where the arc(c; r) is in the cut � p and
the capacity is zero, i.e.,zc;r = 0

To prove proposition 5.2 we �rst prove that in the minimum cut � p, at least one of the arcs
(c; r) 2 A p must be in the cut. Afterwards, we prove that the arcs(c; r) 2 � p cannot all have
a capacity of one.

Proof. At least one arc(c; r) 2 A p is in the cut � p. We begin the proof by showing that not all
the arcs(u; c) 2 A p can be in the minimum cut� p nor can all the arcs(r; v ) 2 Ap. In Figure 5.3
we give an illustration of the graphGp and two cuts; � 1

p and � 2
p.

c1

c2

u

r1

r2

v

x c1;p

xc2 ;p

zc1 ;r 1

z
c1 ;r

2

z c2
;r 1

zc2 ;r 2

1

1

� 1
p � 2

p

Figure 5.3: Illustration of the two cuts; cut � 1
p containing all arcs leaving the source node and

� 2
p containing all arcs entering the sink node.

The cut � 1
p contains all the arcs(u; c) 2 A p and the cut � 2

p contains all the arcs(r; v ) 2 A p.
Since we knowvp

�
� p

�
< 0 for the minimum cut � p then neither � 1

p nor � 2
p can be a minimum

cut. The reason that � 1
p cannot be a minimum cut is that the total capacity of the minimum

cut � p is strictly less than
P

c2C xc;p, however, since the cut� 1
p contains all the arcs(u; c) 2 A p

then the total capacity of � 1
p must be greater than or equal to

P
c2C xc;p. The reason that

� 2
p cannot be a minimum cut is that

P
c2C xc;p � jRj due to constraint (5.28) thus the total

capacity of the minimum cut � p is strictly less than jRj since not all lectures are assigned to a
room, however, since the cut� 2

p contains all the arcs(r; v ) 2 A p then the total capacity of � 2
p

must be greater than or equal tojRj .
As we cannot have all arcs(u; c) 2 A p in the minimum cut then there must exist some

coursec 2 C where the node(c) is on the same side of the cut as the source node(u). Similarly,
as we cannot have all arcs(r; v ) 2 A p in the minimum cut then there must exist some room
r 2 R where the node(r ) is on the same side of the cut as the sink node(v). Hence, the arc
(c; r) must be in the cut which concludes our proof.

We have shown that at least one of the arcs(c; r) 2 A p must be in the minimum cut. One
side e�ect of our proof is that since not all of the arcs(u; c) 2 A p can be in the cut then we
have the following:

�
�(u; c) 2 � p

�
� � jCj � 1 (5.47)
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Similarly, since not all the arcs(r; v ) 2 A p can be in the minimum cut then we have the
following:

�
�(r; v ) 2 � p

�
� � jRj � 1 (5.48)

Before the next proof, we make the assumption thatjRj � 2. It is fair to make this
assumption since ifjRj = 0 the problem is infeasible and ifjRj = 1 then at most one course is
scheduled in each period and can be assigned to whichever room it has selected.

Proof. zc;r = 0 for at least one arc(c; r) 2 � p. We showed in the previous proof that there is
at least one arc(c; r) in the minimum cut for some coursec 2 C and room r 2 R . Now we
show for at least one of the arcs(c; r) 2 � p the capacity is zero. To prove this, we assume that
every arc(c; r) 2 � p has a capacity of one and show that this leads to a contradiction.

Since we consider an infeasible solution then due to constraint (5.43) the following must
hold:

X

(c;r )2 � p

zc;r +
�
�(r; v ) 2 � p

�
� <

X

(u;c)2 A p n� p

xc;p (5.49)

All capacities in the graph are either zero or one and so we can calculate an upper bound
of the right-hand side of (5.49) as follows:

X

(u;c)2 A p n� p

xc;p �
�
�(u; c) 2 A pn� p

�
� = jCj �

�
�(u; c) 2 � p

�
� (5.50)

If we insert (5.50) into (5.49) together with our assumption that the capacities of all the
arcs (c; r) 2 � p are one then we get the following:

�
�(c; r) 2 � p

�
� +

�
�(r; v ) 2 � p

�
� < jCj �

�
�(u; c) 2 � p

�
� (5.51)

Consider an arc(c; r) for some coursec 2 C and some roomr 2 R . For this arc to be in the
cut, the node(c) must be on the same side of the cut as the source node and the node(r ) must
be on the same side as the sink node. The node(c) is on the source side if and only if the arc
(u; c) is not in the cut. Similarly, the node(r ) is on the sink side if and only if the arc(r; v ) is
not in the cut. So we can express

�
�(c; r) 2 � p

�
� as the product of the arcs(u; c) and (r; v) that

are not in the cut:

�
�(c; r) 2 � p

�
� =

�
�(u; c) 2 A pn� p

�
�
�
�(r; v ) 2 A pn� p

�
� (5.52)

We can rewrite (5.52) by noting that the number of arcs leaving the source that are not in
the cut is equal to the number of arcs leaving the source minus the arcs in the cut, and similarly
for the arcs entering the sink:

�
�(c; r) 2 � p

�
� =

�
jCj �

�
�(u; c) 2 � p

�
� � �

jRj �
�
�(r; v ) 2 � p

�
� � (5.53)

Expanding the expression gives us the following:

�
�(c; r) 2 � p

�
� = jCjjRj +

�
�(u; c) 2 � p

�
�
�
�(r; v ) 2 � p

�
�

� jRj
�
�(u; c) 2 � p

�
� � jCj

�
�(r; v ) 2 � p

�
� (5.54)
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Substituting (5.54) into (5.51) gives the following:

jCjjRj +
�
�(r; v ) 2 � p

�
� < jCj �

�
�(u; c) 2 � p

�
�
�
�(r; v ) 2 � p

�
�

+ jRj
�
�(u; c) 2 � p

�
� + jCj

�
�(r; v ) 2 � p

�
� �

�
�(u; c) 2 � p

�
� (5.55)

Next we rearrange the terms:

jCj(jRj � 1) < (jCj � 1) (jRj � 1)

�
�
(jRj � 1) �

�
�(r; v ) 2 � p

�
� � �

(jCj � 1) �
�
�(u; c) 2 � p

�
� � (5.56)

An upper bound can be found for the right-hand side of (5.56) by �nding a lower bound for
the expression:

�
(jRj � 1) �

�
�(r; v ) 2 � p

�
� � �

(jCj � 1) �
�
�(u; c) 2 � p

�
� � (5.57)

Since we know that
�
�(r; v ) 2 � p

�
� � jRj � 1 then

�
(jRj � 1) �

�
�(r; v ) 2 � p

�
� � � 0 must hold.

Similarly
�
(jCj � 1) �

�
�(u; c) 2 � p

�
� � � 0 must also hold which means that the minimum value

that (5.57) can take must be zero. So the right-hand side of (5.56) must be less than or equal
to (jCj � 1) (jRj � 1) and since we assumejRj � 2 we can divide with jRj � 1 and we get the
following:

jCj < jCj � 1 (5.58)

As (5.58) is a contradiction then we have concluded our proof and at least one of the arcs
(c; r) 2 � p must have a capacity of zero.

We have now proven that our algorithm is �nite and returns a feasible solution. We run
this heuristic whenever we retrieve an integer solution where a cut is generated.

5.4 Computational Experiments

In this section, we report our computational experiments. We conducted all our tests on a
3.40GHz Intel® Core—processor running Windows 10 with 8GB memory RAM. We used Gurobi
6.5.2 provided by Gurobi Optimization Inc. (2015) both for the master problem and also for
the subproblem described in section 5.2.2.1. We set all parameters in Gurobi to their default
except, Presolve , Threads and LazyConstraints. We set Presolve to 2 (the most aggressive
level), Threads to 1 as this was the maximum allowed threads for the ITC2007 competition
and LazyConstraints to 1 to be able to add cuts on integer solutions.

We tested our approach on four datasets; TEST, COMP, DDS and ERLANGEN. The
TEST dataset consists of four data instances, test1 � test4, proposed by Di Gaspero and
Schaerf (2003). The COMP dataset contains 21 data instances, comp01 � comp21, described
in Di Gaspero et al. (2007) mainly taken from the University of Udine. The DDS dataset
contains seven data instances, DDS1 � DDS7, taken from other Italian universities. The ER-
LANGEN dataset consists of six instances, erlangen2012_1, erlangen2012_2, erlangen2013_1,
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erlangen2013_1, erlangen2013_2 and erlangen2014_1, provided by Dr.-Ing. Moritz Mühlen-
thaler. All the datasets can be retrieved fromhttp://tabu.diegm.uniud.it/ctt/index.php .
For the ITC2007 competition, a benchmarking tool was provided, which can be obtained from
http://www.cs.qub.ac.uk/itc2007 . The tool calculates the time limit for the competition on
the machine the tool is executed on. This time limit is referred to as one CPU unit, which in our
case is 208 seconds. We have written all our implementations (including the �ow algorithms)
in C#.

The �ow diagram in Figure 5.4 is an illustration of our implementation of Benders' Decom-
position.

Initialize the model
(5.6) � (5.22),
(5.28), (5.29)

and setUB  1

Start Branch-and-Bound

Wait for next
solution (x; y; z)

Generate cut (5.36)
and cuts (5.43) for each

period if they are violated

Was at least one
cut generated?

Add cuts and run heuristic
to modify solution (x; y; z)

Set UB  min f o(x; y; z) ; UBg

yes

no

Figure 5.4: Flow diagram of the implemention of Benders' decomposition. The algorithm
continues until a stopping criterion is met, e.g., when a time limit is reached or the best
solution is proven optimal.

At �rst the model is initialized as (5.6) � (5.22), (5.28), (5.29) and we set the best known
solution value to be in�nity. We then start Gurobis Branch-and-Bound solver and in a callback
function we retrieve every integer solution that is obtained. Whenever we receive an integer
solution we generate the cut (5.36) and cuts (5.43) for each period if the solution violates them.
If we generate at least one cut, then we run the heuristic described in section 5.3 to repair
the solution. If the repaired solution is better than our current best-known solution, then we

105



reinsert the solution into Gurobi. The reason that we reinsert the solution is that Gurobi can
use the solution to prune nodes in the Branch-and-Bound tree and the heuristics can use the
solution to search for improvements.

In the following we compare our implementation with results obtained in the literature by
other MIP-based methods; Lach and Lübbecke (2012), Burke et al. (2010), Hao and Benlic
(2011) and Cacchiani et al. (2013). In section 5.4.1 we �rst compare the lower bounds obtained
by our implementation with Lach and Lübbecke (2012), Burke et al. (2010), Hao and Benlic
(2011) and Cacchiani et al. (2013) on the �rst fourteen data instances of COMP. Afterwards, we
compare the lower bounds obtained on all 21 data instances in COMP as well as all instances
from the sets DDS and TEST with Cacchiani et al. (2013) as they have reported lower bounds
for all these sets. In section 5.4.2 we compare both lower and upper bounds obtained by Lach
and Lübbecke (2012) and Burke et al. (2010) as these methods provide not only lower bounds
but also upper bounds. In section 5.4.3 we compare our implementation to the original model
without Benders' decomposition, i.e., model (5.6) � (5.26) where the integrality requirements
(5.26) are relaxed such that thef variables are non-negative continuous variables.

Before these comparisons we compare the implementation of Benders' decomposition with
the results from Bagger et al. (2016) when given a time limit of forty CPU units in Table 5.1;
the minimum cost �ow formulation (Min) and the multi-commodity �ow formulation (Mult).
If an approach obtains a lower bound for an instance which is at least as good as the other
approaches for the same instance, then we denote this using a bold font. If the lower bound
is better than all the other approaches, then we mark it with an underline. In the bottom of
the tables, we report the number of times that each approach obtains a lower bound which is
at least as good as the others (the lineBest) and the number of times a lower bound which is
better than all the other approaches (the line followingBest). Furthermore, we compute the
ranking of the approaches on each instance. For each instance, the approach that obtains the
best bound is given rank 1, the second best is given rank 2 and so on. If multiple approaches
are tied then they receive the average rank of the respective ranks, e.g., if two approaches are
tied for rank 3 and 4 then they both receive rank 3.5 as this is the average. In the last line of
the tables, we report the average of the ranks of each approach. The approach that obtains the
best rank is marked with a bold font. We use this notation throughout all the tables.

In Table 5.1 we see that the implementation of Benders' decomposition obtains a lower
bound which is at least as good as the other two in 27 instances and a bound which is better
in 11 out of 32 instances. Referring to Bonutti et al. (2016) we observe that for two of the
instances (marked with an * in the table), comp12 and test4, the lower bounds we obtain, 147
and 49, is an improvement of the currently best-known bounds of 142 and 46 respectively. The
upper bounds that we obtain in Benders' decomposition is never better than the Min nor the
Mult approaches and has an upper bound which is equal to at least one of the other on six
out of 32 instances. Thus, the current focus of the heuristic on feasibility is not enough to
improve the upper bounds. Future work could include the possibility of including improvement
techniques after the heuristic has regained feasibility.
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Table 5.1: Comparison of the lower bounds obtained on COMP, DDS and TEST for Min (mini-
mum cost �ow formulation from Bagger et al. (2016)), Mult (multi-commodity �ow formulation
from Bagger et al. (2016)) and Benders (our implementation in this article) with a time limit
of forty CPU units.

M
in

M
ult

Ben
de

rs

In
sta

nc
e

LB UB LB UB LB UB
comp01 5 5 5 5 5 5
comp02 8 45 8 59 9 112
comp03 38 123 37 99 42 107
comp04 35 35 35 35 35 76
comp05 186 355 181 377 168 466
comp06 16 92 16 92 20 139
comp07 0 179 6 - 6 183
comp08 37 37 37 41 37 99
comp09 74 105 73 103 82 113
comp10 4 18 4 68 4 72
comp11 0 0 0 0 0 0
comp12 142 423 140 500 147* 464
comp13 56 66 59 59 57 152
comp14 44 55 43 74 48 93
comp15 38 123 37 99 42 107
comp16 13 61 11 42 16 76
comp17 43 123 44 109 46 132
comp18 36 78 30 108 35 88
comp19 56 57 55 57 54 92
comp20 0 50 0 96 0 340
comp21 56 156 57 133 62 138

DDS1 46 70 44 76 45 214
DDS2 0 0 0 0 0 0
DDS3 0 0 0 0 0 0
DDS4 15 17 15 12079 15 1192
DDS5 0 0 0 0 0 0
DDS6 0 2 0 27 0 123
DDS7 0 0 0 0 0 0

test1 224 224 224 224 224 314
test2 16 19 16 19 16 104
test3 59 75 59 75 59 96
test4 44 91 43 107 49* 101

Best 19 25 17 19 27 6
4 13 1 7 11

Rank 2.03 1.59 2.27 1.84 1.70 2.56
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5.4.1 Lower Bounds

In this section we �rst compare the lower bounds obtained by our approach with Lach and
Lübbecke (2012), Burke et al. (2010), Hao and Benlic (2011) and Cacchiani et al. (2013).
Following the literature we compare the results using three time limits; one CPU unit, ten
CPU units and forty CPU units. We start by comparing our results with Cacchiani et al.
(2013) as they are the only ones to report lower bounds for the entire COMP dataset as well
as for DDS and TEST for forty CPU units. In Table 5.2 we compare their results with our
approach where we use the same notation as in Table 5.1.

In Table 5.2 we see that our approach obtains a bound which is at least as good as the
bound obtained by Cacchiani et al. (2013) on 23 of the 32 instances and a better bound on
eight of the 32 instances.

Next, we compare the lower bounds obtained by our approach with Lach and Lübbecke
(2012), Burke et al. (2010), Hao and Benlic (2011) and Cacchiani et al. (2013) on the �rst
fourteen data instances of COMP. The reason for only comparing the �rst fourteen instances is
that these were the only ones that were available for Lach and Lübbecke (2012) and Burke et al.
(2010). In the tables 5.3, 5.4 and 5.5 we report the lower bounds obtained for each approach
given a time limit of one, ten and forty CPU units respectively. We use the same notation as
in Table 5.1.

In Table 5.3 � 5.5 we see that our approach obtains a lower bound which is at least as good
as the other approaches in ten instances for one and ten CPU units and in eleven out of the
fourteen instances for forty CPU units. Benders' decomposition obtain a better bound in four,
three and three out of the fourteen instances for one, ten and forty CPU units respectively.
Considering the average rank obtained we see that our approach obtains a lower average rank
than all the other approaches on the �rst fourteen data instances of COMP for all three time
limits.

5.4.2 Upper Bounding Methods

In this section, we compare both the upper bounds that we obtain on the �rst fourteen data
instances from COMP with Lach and Lübbecke (2012) and Burke et al. (2010) as these are the
only methods besides ours that obtain both lower and upper bounds. We report the results in
the tables 5.6 � 5.8 where we use the same notation as in Table 5.1.

Regarding the upper bounds we see that in Table 5.6 we obtain upper bounds which are
better on six out of the fourteen instances and the two other approaches both obtain a better
upper bound on four of the instances each. For both ten (Table 5.7) and forty (Table 5.7) CPU
units our approach obtains a better upper bound for three of the instances, Lach and Lübbecke
(2012) obtains a better upper bound on ten and 8 instances respectively and Burke et al. (2010)
obtains a better upper bound on one and three instances respectively.
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Table 5.2: Comparison of the lower bounds obtained on COMP, DDS and TEST for CCRT13
(Cacchiani et al., 2013) and Benders (our implementation) with a time limit of forty CPU units.

Instance CCRT13 Benders
comp01 5 5
comp02 16 9
comp03 52 42
comp04 35 35
comp05 166 168
comp06 11 20
comp07 6 6
comp08 37 37
comp09 92 82
comp10 2 4
comp11 0 0
comp12 100 147
comp13 57 57
comp14 48 48
comp15 52 42
comp16 13 16
comp17 48 46
comp18 52 35
comp19 48 54
comp20 4 0
comp21 68 62

DDS1 40 45
DDS2 0 0
DDS3 0 0
DDS4 17 15
DDS5 0 0
DDS6 0 0
DDS7 0 0

test1 224 224
test2 16 16
test3 59 59
test4 46 49

Best 24 23
9 8
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Table 5.3: Comparison of the lower bounds obtained on the �rst fourteen data instances
of COMP for the di�erent approaches with a time limit of one CPU unit; LL12 (Lach and
Lübbecke, 2012), BMPR10 (Burke et al., 2010), HB11 (Hao and Benlic, 2011), CCRT13 (Cac-
chiani et al., 2013) and Benders (our implementation).

In
sta

nc
e

LL
12

BM
PR10

HB11
CCRT13

Ben
de

rs

comp01 4 0 4 5 5
comp02 0 0 10 0 7
comp03 0 25 26 24 37
comp04 22 35 35 35 35
comp05 92 119 19 6 145
comp06 7 13 12 0 17
comp07 0 6 5 0 6
comp08 30 37 37 37 37
comp09 37 68 39 92 78
comp10 2 3 4 0 4
comp11 0 0 0 0 0
comp12 29 101 43 0 91
comp13 33 52 46 57 56
comp14 40 41 41 32 43

Best 1 5 5 6 10
1 1 2 4

Rank 4.21 2.71 2.82 3.50 1.75
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Table 5.4: Comparison of the lower bounds obtained on the �rst fourteen data instances of
COMP for the di�erent approaches with a time limit of ten CPU units; LL12 (Lach and
Lübbecke, 2012), BMPR10 (Burke et al., 2010), HB11 (Hao and Benlic, 2011), CCRT13 (Cac-
chiani et al., 2013) and Benders (our implementation).

In
sta

nc
e

LL
12

BM
PR10

HB11
CCRT13

Ben
de

rs

comp01 4 4 4 5 5
comp02 8 0 12 16 8
comp03 0 33 34 52 41
comp04 28 35 35 35 35
comp05 25 111 69 6 167
comp06 10 15 12 11 19
comp07 2 6 6 6 6
comp08 34 37 37 37 37
comp09 41 65 67 92 81
comp10 4 4 4 2 4
comp11 0 0 0 0 0
comp12 32 95 78 0 144
comp13 39 52 53 57 57
comp14 41 42 43 48 47

Best 2 5 5 10 10
4 3

Rank 4.36 3.14 2.86 2.61 2.04
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Table 5.5: Comparison of the lower bounds obtained on the �rst fourteen data instances of
COMP for the di�erent approaches with a time limit of forty CPU units; LL12 (Lach and
Lübbecke, 2012), BMPR10 (Burke et al., 2010), HB11 (Hao and Benlic, 2011), CCRT13 (Cac-
chiani et al., 2013) and Benders (our implementation).

In
sta

nc
e

LL
12

BM
PR10

HB11
CCRT13

Ben
de

rs

comp01 4 5 4 5 5
comp02 11 1 12 16 9
comp03 25 33 36 52 42
comp04 28 35 35 35 35
comp05 108 114 80 166 168
comp06 10 16 16 11 20
comp07 6 6 6 6 6
comp08 37 37 37 37 37
comp09 46 66 67 92 82
comp10 4 4 4 2 4
comp11 0 0 0 0 0
comp12 53 95 84 100 147
comp13 41 54 55 57 57
comp14 46 42 43 48 48

Best 4 6 5 10 11
3 3

Rank 4.00 3.32 3.21 2.32 2.14
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Table 5.6: Comparison of the upper bounds (UB) obtained on the �rst fourteen data instances
of COMP for the di�erent approaches with a time limit of one CPU units; LL12 (Lach and
Lübbecke, 2012), BMPR10 (Burke et al., 2010) and Benders (our implementation).

Instance LL12 BMPR10 Benders
comp01 12 168 14
comp02 239 114 118
comp03 194 158 179
comp04 44 153 108
comp05 965 1447 604
comp06 395 277 227
comp07 525 - 260
comp08 78 173 106
comp09 115 112 142
comp10 235 70 101
comp11 7 288 0
comp12 1122 - 874
comp13 98 556 229
comp14 113 123 103

Best 4 4 6
4 4 6

Rank 2.00 2.36 1.64
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Table 5.7: Comparison of the upper bounds (UB) obtained on the �rst fourteen data instances
of COMP for the di�erent approaches with a time limit of ten CPU units; LL12 (Lach and
Lübbecke, 2012), BMPR10 (Burke et al., 2010) and Benders (our implementation).

Instance LL12 BMPR10 Benders
comp01 12 10 5
comp02 93 101 112
comp03 86 144 122
comp04 41 36 76
comp05 468 649 581
comp06 79 317 139
comp07 28 857 191
comp08 48 53 99
comp09 106 115 113
comp10 44 49 72
comp11 7 12 0
comp12 657 889 472
comp13 67 92 222
comp14 54 72 93

Best 10 1 3
10 1 3

Rank 1.36 2.43 2.21
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Table 5.8: Comparison of the upper bounds (UB) obtained on the �rst fourteen data instances
of COMP for the di�erent approaches with a time limit of forty CPU units; LL12 (Lach and
Lübbecke, 2012), BMPR10 (Burke et al., 2010) and Benders (our implementation).

Instance LL12 BMPR10 Benders
comp01 12 9 5
comp02 46 63 112
comp03 66 123 107
comp04 38 36 76
comp05 368 629 466
comp06 51 46 139
comp07 25 45 183
comp08 44 41 99
comp09 99 105 113
comp10 16 23 72
comp11 7 12 0
comp12 548 785 464
comp13 66 67 152
comp14 53 55 93

Best 8 3 3
8 3 3

Rank 1.50 2.07 2.43
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5.4.3 Large Datasets (Erlangen)

In this section, we test our model on the ERLANGEN dataset. The data instances in this
set are larger than for the other datasets we have tested and for some of the instances even
solving the root note LP takes longer time than the forty CPU units we tested on. Therefore
we have tested them using 100 CPU units, and we have changed the parameter setting to
use the non-homogeneous barrier method as the LP solver (Method=2, NodeMethod=2 and
BarHomogeneous=0) and with the number of threads to be equal to the number of processors
(Threads=4) as this accelerates the solution time of the LP. We compare our implementation
to the original model (the model that we have based our decomposition on) to see the bene�ts
of the decomposition for such large datasets.

In Table 5.9 we report the lower and upper bounds obtained after running the MIP solver
for the given time limit (100 CPU) for both the original model and the decomposition. In
the last two columns we report how much the values are improved by Benders. In the
column LB we report the increase of the lower bound in percent which is calculated as
(LB Benders � LB Mult ) =LBMult whereLB Mult and LB Benders are the lower bounds obtained by
the original and the decomposed model respectively. Similarly, in columnUB we report the
decrease of the upper bound.

Table 5.9: Comparison of the lower bound (LB) and upper bound (UB) obtained for the original
model (Mult) and our implementation (Benders) on the ERLANGEN dataset when running
the Branch-and-Bound solver Gurobi. The last two columns (Impr.) report how much the
bound is improved by Benders in percentages.

MULT Benders Impr.
Instance LB UB LB UB LB UB
2011_2 2105 10390 2385 10127 13% 3%
2012_1 1235 21178 1393 18334 13% 13%
2012_2 1556 - 1766 21722 13% -
2013_1 1259 172474 1417 28529 13% 83%
2013_2 1086 - 1274 19808 17% -
2014_1 834 30985 975 18851 17% 39%
Avg. 14% 35%

We see in Table 5.9 that the decomposition approach obtains better bounds for all six
instances, where for two of the instances the original model does not obtain any solution. Our
decomposition gives an improvement of 14% and 35% on average for the lower and upper
bounds respectively. However, it should be noted that the average improvement on the upper
bounds is calculated on only four of the six insrances

In Table 5.10 we report the performance for the root LP, i.e., the results of solving the LP
relaxation in the root node before the MIP solver starts to add cuts and branch. For both the
original model and the decomposition we report the time spent by the solver in seconds (Time)
and the objective value of the LP (Obj). In the last two columns we report how much the
values are improved be Benders. In the column,Time we report the speed-up factor which we
calculate as the time that the solver spent on solving the root node LP in the original model
divided by the time spent in the decomposed model. In the columnObj we report the increase
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of the objective value in permille which is calculated as(ObjBenders � ObjMult ) =ObjMult where
ObjMult and ObjBenders are the objective values of the root node LP in the original and the
decomposed model respectively.

Table 5.10: Comparison of the time (Time) it takes to solve the root node LP and the objective
value (Obj) obtained for the original model (Mult) and our implementation (Benders) on the
ERLANGEN dataset. The last two columns (Impr.) report how much the values are improved
by Benders. The improvement of the time is reported as the speed-up factor and the improve-
ment of the objective value is reported in permille. The last line (Avg.) report the average
improvements.

Mult Benders Impr.
Instance Time Obj Time Obj Time Obj
2011_2 5836.7 1985.7 86.6 1994.8 � 57 5‡
2012_1 2518.9 1015.8 117.7 1019.8 � 21 4‡
2012_2 6306.5 1347.9 162.3 1347.9 � 39 0‡
2013_1 3083.1 1030.9 153.5 1032.4 � 20 1‡
2013_2 5634.6 959.9 199.9 967.7 � 28 8‡
2014_1 2740.6 734.9 224.8 737.6 � 12 4‡
Avg. � 31 4‡

In Table 5.10 we see that our decomposition speeds up the solution time for the root node
LP by more than thirty times on average. This speed-up makes sense as the majority of the
variables in the model are projected out in the decomposition. What may come as a surprise
is that the objective value for �ve of the instances is larger in the decomposition than in the
original model. The reason for this improvement is that the MIP solver manages to heuristically
generate some integer solutions for the decomposition before it starts to solve the LP. These
integer solutions are infeasible and some of the cuts we generate are the cuts (5.43) which are
based on more information than what is available for the original model, i.e., these cuts are based
on model (5.39) � (5.41). In our opinion, these results illustrate that Benders' decomposition
is a powerful tool for this problem, especially for massive datasets.

5.5 Conclusion

In this article, we proposed a Benders' decomposition on a Mixed Integer Programming (MIP)
model for the Curriculum-based Course Timetabling problem. We also described a heuristic to
repair the solutions that are cut away by the Benders' feasibility cuts. Regarding lower bounds,
our approach obtained better results on average compared to other MIP based approaches
for the �rst fourteen instances from the second international timetabling competition. We
compared our approach on a larger set of data (a total of 32 instances) with the state-of-the-
art algorithm. We obtained a lower bound which was at least good on 23 of the 32 instances
and we obtained a better bound on eight instances. Furthermore we improved the currently
best known lower bounds for two out of the 32 instances. Benders' decomposition did not
provide better upper bounds than the non-decomposed model, thus, the focus on feasibility
in the heuristic is not enough to improve the upper bounds. Lastly, we compared Benders'
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decomposition to the MIP model that the decomposition originates from on six additional data
instances that are much larger than the other 32 instances. The results showed the bene�t of
implementing Benders' decomposition as both the lower and upper bounds were better for all
the instances compared to the original model. To our knowledge, no other studies have tested
MIP based methods on these data instances, so we improved the best known lower bounds on
all six instances.

Acknowledgments

The authors would like to thank Assistant Professor Evelien van der Hurk for her valuable
feedback to improve the manuscript.

Funding: This work is part of an industrial PhD project funded by Innovation Fund Den-
mark (IFD). IFD has supported this work solely �nancially and has not taken part in any
research related activities.

References

Ahuja, R., Magnanti, T., and Orlin, J. (2013). Network Flows: Theory, Algorithms, and Appli-
cations. Always learning. Pearson Education Limited.isbn : 9781292042701.url : https:
//books.google.ca/books?id=rFuLngEACAAJ .

Bagger, N.-C. F., Simon, K., Sørensen, M., and Stidsen, T. R. (2016).Flow Formulations
for Curriculum-based Course Timetabling. Available on Optimization Online. url : http:
//www.optimization-online.org/DB_HTML/2016/12/5786.html .

Benders, J. (1962). �Partitioning procedures for solving mixed-variables programming prob-
lems�. English. In: Numerische Mathematik4.1, pp. 238�252.issn: 0029-599X.doi : 10.
1007/BF01386316. url : http://dx.doi.org/10.1007/BF01386316 .

Bettinelli, A., Cacchiani, V., Roberti, R., and Toth, P. (2015). �An overview of curriculum-based
course timetabling�. In: TOP, pp. 1�37.

Bonutti, A., De Cesco, F., Di Gaspero, L., and Schaerf, A. (2012). �Benchmarking curriculum-
based course timetabling: Formulations, data formats, instances, validation, visualization,
and results�. In: Annals of Operations Research194.1, pp. 59�70.

Bonutti, A., Gaspero, L. D., and Schaerf, A. (2016).Curriculum-Based Course TimeTabling.
http://tabu.diegm.uniud.it/ctt/index.php [Retrieved 30/12-2016].

Burke, E. K., Mare£ek, J., Parkes, A. J., and Rudová, H. (2008). �Penalising Patterns in Timeta-
bles: Novel Integer Programming Formulations�. In:Operations Research Proceedings 2007.
Ed. by J. Kalcsics and S. Nickel. Vol. 2007. Operations Research Proceedings. 10.1007/978-
3-540-77903-2_63. Springer Berlin Heidelberg, pp. 409�414.isbn : 978-3-540-77903-2.

Burke, E. K., Mare£ek, J., Parkes, A. J., and Rudová, H. (2010). �A supernodal formulation of
vertex colouring with applications in course timetabling�. In:Annals of Operations Research
179.1, pp. 105�130.

Burke, E. K., Mare£ek, J., Parkes, A. J., and Rudová, H. (2012). �A branch-and-cut proce-
dure for the Udine Course Timetabling problem�. In:Annals of Operations Research194.1,
pp. 71�87.

118



Cacchiani, V., Caprara, A., Roberti, R., and Toth, P. (2013). �A new lower bound for curriculum-
based course timetabling�. In:Computers and Operation Research40.10, pp. 2466�2477.doi :
10.1016/j.cor.2013.02.010 .

Di Gaspero, L., McCollum, B., and Schaerf, A. (2007).The Second International Timetabling
Competition (ITC-2007): Curriculum-based Course Timetabling (Track 3). Tech. rep. School
of Electronics, Electrical Engineering and Computer Science, Queenes University SARC
Building, Belfast, United Kingdom.

Di Gaspero, L. and Schaerf, A. (2003). �Multi-neighbourhood Local Search with Application
to Course Timetabling�. English. In: Practice and Theory of Automated Timetabling IV.
Ed. by E. Burke and P. De Causmaecker. Vol. 2740. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 262�275.isbn : 978-3-540-40699-0.doi : 10.1007/978-3-
540-45157-0_17. url : http://dx.doi.org/10.1007/978-3-540-45157-0_17 .

Fischetti, M. (2015). The simpler the better: Thinning out MIP's by Occam's razor. Presen-
tation at CORS/INFORMS 2015 Joint International Meeting in Montréal. Slides retrieved
December 16, 2016, from:http://www.dei.unipd.it/~fisch/papers/slides/2015%
20CORS%20%5bFischetti%20-%20Occam%20Razor%5d.pdf.

Geo�rion, A. M. (1972). �Generalized benders decomposition�. In:Journal of optimization the-
ory and applications10.4, pp. 237�260.

Gurobi Optimization Inc. (2015). Gurobi Optimizer Reference Manual. url : http : / /www.
gurobi.com .

Hao, J. K. and Benlic, U. (2011). �Lower bounds for the ITC-2007 curriculum-based course
timetabling problem�. In: European Journal of Operational Research212.3, pp. 464�472.

Lach, G. and Lübbecke, M. (2012). �Curriculum based course timetabling: new solutions to
Udine benchmark instances�. In:Annals of Operations Research194, pp. 255�272.issn:
0254-5330.

Lach, G. and Lübbecke, M. E. (2008). �Optimal University Course Timetables and the Par-
tial Transversal Polytope�. In: International Workshop on Experimental and E�cient Algo-
rithms. Springer, pp. 235�248.

Lübbecke, M. E. (2015). �Comments on: An overview of curriculum-based course timetabling�.
In: TOP 23.2, pp. 359�361.

Martin, R. K. (1999). Large scale linear and integer optimization: a uni�ed approach. Kluwer
Academic Publishers.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Gaspero, L. D.,
Qu, R., and Burke, E. K. (2010). �Setting the Research Agenda in Automated Timetabling:
The Second International Timetabling Competition�. In: INFORMS Journal on Computing
22.1, pp. 120�130.

119





Part III

Lower Bounding Methods

121





6 Daily Course Pattern Formulation and
Valid Inequalities for the
Curriculum-based Course Timetabling
Problem

Niels-Christian F. Baggera,b � Guy Desaulniersc,d � Jacques Desrosierse

amORetime research group, Management Science, Department of Management Engineering,
Technical University of Denmark, Produktionstorvet, Building 426B, DK-2800 Kgs. Lyngby,
Denmark, http://www.moretime.man.dtu.dk/

bMaCom A/S, Vesterbrogade 48, 1., DK-1620 København V, Denmark

cGERAD � HEC Montréal 3000, Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

dPolytechnique Montréal, Montréal, Canada H3C 3A7

eHEC Montréal, Montréal, Canada H3T 2A7

Status: Submitted to Journal of Scheduling

Abstract: In this paper, we propose an integer programming model for obtaining
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the number of variables and valid inequalities are derived and added to the model.
The proposed model is tested on 21 real-world data instances. On 17 of these
instances the best know solutions have been proven optimal and for the remaining
four our model improves the lower bounds for three of them.

Keywords: Course Timetabling � Integer Programming � Preprocessing� Valid
Inequalities

123



6.1 Introduction

The problem considered in this paper is theCurriculum-based Course Timetabling Problem
(CCT) as described by Di Gaspero et al. (2007). The interest in this problem has increased
as it was used as one of three problems for theSecond International Timetabling Competition
(ITC2007) in 2007 (Di Gaspero et al., 2007; McCollum et al., 2010). In connection to ITC2007,
a website was developed (Bonutti et al., 2016) where it is possible for researchers to upload
solutions and to report re�ned lower bounds. Twenty-one data sets were provided for the com-
petition based on real world instances. Seven of these were hidden until after the competition.
For the 21 data sets, most of them has beenclosed, meaning that the best solutions found have
been proven optimal. However there are still fouropen data sets left and the aim of this paper
is to reduce the gaps by improving the lower bounds.

6.1.1 Problem Description

A set of courses is given, each having a predetermined number of lectures to be scheduled.
Each course is taught be exactly one lecturer. A set of curricula is also given, each consisting
of a set of courses. A course can belong to several curricula. Furthermore a time horizon in
terms of a number of days that all the lectures need to be scheduled in is given. Each day is
divided into a number of uniform time slots and a day and time slot pair is referred to as a
period. It is assumed that each lecture takes up exactly one period. Besides scheduling the
lectures into periods, it is also needed to choose a room for the lecture to take place in. Finally
some constraints are also given. These can either behard or soft. Any feasible timetable
should ful�l all the hard constraints, i.e., a timetable is considered feasible if and only if all
the hard-constraints have no violations. The objective is then to �nd a feasible timetable while
minimizing a weighted sum of the violation of the soft constraints.

The problem formulated by Di Gaspero et al. (2007) contains four hard constraints as listed
below:

Availability (A ): A course can have speci�c periods de�ned asunavailable periods. Every
lecture scheduled in such a period is considered as one violation.

Con�icts (C): A pair of lectures is considered as con�icting if they belong to the same cur-
riculum or are taught by the same lecturer. If a con�icting pair of lectures is scheduled
in the same period, this is considered as one violation.

Lectures (L): Each course has a predetermined number of lectures to be scheduled in di�erent
periods. If a lecture is not scheduled or if two lectures of a course are scheduled in the
same period, this is counted as one violation.

Room Occupancy (RO ): For every room and every period, at most one lecture should be
scheduled. For every room and period, every additional lecture is considered as one
violation.

In our approach, we are only focusing on scheduling the courses into the periods. The only
hard constraint involving the rooms isRO and this constraint can still be ful�lled since it is
possible to put any course into any room. Therefore we just have to ensure that we do not

124



schedule more courses into a single period than the number of available rooms in the data
instance. The problem also contains four soft constraints for which we minimize the number of
violations. These are listed below:

Isolated Lectures (IL ): It is desired to create compact schedules. A lecture isisolated if
no other lectures are scheduled for a curriculum on the same day in either a directly
preceding or successive time slot (i.e., in consecutive time slots). Each isolated lecture is
counted as one violation.

Example 6.1. Consider a curriculum containing
courses C001 and C002, a day with six time slots, and the following schedules on that
day:

C001: R001

C002: R002

The schedules shows that course C001 has a lecture in the second time slot while C002 has
a lecture in the fourth time slot. Since these time slots are not adjacent, this means that
the schedules count two violations on that day. Consider now the following schedules:

C001: R001

C002: R002

Course C001 has a lecture in the fourth time slot while C002 has a lecture in the third
one. These time slots are adjacent and these schedules do not count any violations on
that day.

Minimum Working Days (MWD ): For each course, a day is de�ned as aworking dayif at
least one lecture is scheduled on it. For each course, a minimum number of working days
is requested and each day below this minimum counts as one violation.

Room Capacity (RC ): There is a number of students attending a given course and each
room has a speci�c capacity. If the number of students assigned is greater than the room
capacity, then every student that cannot be accommodated counts as one violation.

Room Stability (RStab ): For every course, it is desired to schedule all lectures in just one
room. Every additional room is counted as one violation.

As mentioned before, we only consider the scheduling of the courses into periods and ignore
the assignment of rooms. Therefore we can only take the soft constraintsIL and MWD into
account which means that our approach is a relaxation of the original problem. Hence any
valid lower bounds for our model are also valid lower bounds for the original problem.

It should be noted that the constraint IL is usually referred to ascurriculum compactness
in the literature. We have chosen to name itisolated lecturesas multiple ways of formulating
curriculum compactness are described in Bonutti et al. (2012) and this is the name they give
for this formulation.
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6.1.2 Related Work

As our focus is on lower bounds, we focus on the literature that have reported lower bounds as
well. For the interested reader, we refer to Bettinelli et al. (2015) as they give more detailed
descriptions of all the methods presented here as well as descriptions of many more methods
including those to obtain upper bounds.

Burke et al. (2008), Burke et al. (2010), and Burke et al. (2012) describes a compact Integer
Linear Programming (ILP) formulation which can be solved by a commercial ILP solver. They
discover that this formulation is very hard to solve and tackle this in various ways. In Burke
et al. (2010), one way to get a lower bound is to consider a relaxed version of the problem by
setting the weights of the two room-related constraintsRC and RStab to zero. This allows
them to only consider the time-scheduling part of the problem. Furthermore a constraint is
added to ensure that no more courses are scheduled in any time period than the total number
of rooms available. Note that this is the same relaxation of the original problem that we are
considering. They note that the before mentioned approach can be thought of as aggregating
all the rooms into a singlemulti-room, where the capacity of this room is equal to the largest
room. Another approach is to divide the rooms into sets of multi-rooms. For each multi-room,
the capacity is equal to the largest room in the set and the maximum number of lectures that
can take place in a multi-room in any period is equal to the number of rooms in the set. This
allows them to partially include the room related soft constraints. After �nding a solution to
one of the before mentioned relaxations, the rooms are included in the model again and the
solution obtained from the relaxation is used to guide the search by either �xing the periods
that the lectures are assigned to or by �xing the days. In Burke et al. (2008), they enumerate
all patterns for each day and for each curriculum and add the costs of these patterns as cuts.
These cuts are also used in Burke et al. (2012) where they develop a cutting plane procedure
and the cuts from Burke et al. (2008) are added dynamically as they are violated. Furthermore
other cuts are derived includingclique cutsand some more problem speci�c cuts. The reported
results show that the cutting plane approach leads to better performances compared to the
compact ILP formulation.

In Lach and Lübbecke (2012), the problem is decomposed into two stages: the �rst �nds
a feasible time-schedule, the second assigns the rooms to the lectures. This is based on their
work in Lach and Lübbecke (2008) where they considered only hard constraints and showed
that speci�c cuts could be added to the �rst stage problem to ensure feasible solutions. In
Lach and Lübbecke (2012), they show how theRC constraint can be included in the �rst stage
problem leaving only theRStab constraint for the second stage.

In Hao and Benlic (2011), the focus is on obtaining lower bounds for the �rst stage problem
from Lach and Lübbecke (2012). Their approach is to decompose the courses and compute lower
bounds for each of the decomposed sets of courses. A lower bound for the original problem is
then calculated as the sum of the lower bounds of the decomposed sets of courses. The selection
of the decomposition is embedded in a Tabu Search procedure (see Glover and Laguna, 2013).

Asín Achá and Nieuwenhuis (2012) encodes the constraints as satis�ability clauses. They
apply di�erent encodings both treating all constraints as hard and relaxing some or all of the
soft constraints. They are able to prove optimality of more than half of the ITC2007 data sets.

Finally, Cacchiani et al. (2013) consider a model based on column generation. The idea is to
split up the problem into two subproblems. One subproblem focuses on the room related soft
constraints RC and RO . The other subproblem focuses on the time related soft constraints
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MWD and IL . The overall lower bound is then the sum of the lower bounds obtained on the
subproblems. They are able to obtain improved lower bounds and for three of the instances,
they prove that the best known solutions are optimal.

Our approach is similar to Burke et al. (2008) in the sense that we enumerate all patterns
for each day. The di�erence is that we apply them for the courses instead of the curricula and
include them as variables instead of cuts. This gives us the possibility to make some prepro-
cessing that may not be possible on the compact formulation and to derive valid inequalities
from a con�ict graph build on the pattern variables.

6.2 Pattern-based Formulation

In this section we present the pattern-based formulation. First the notation used throughout
the article is given and then the mathematical model is described.

6.2.1 Notation

Throughout this article we refer to the following sets:C (courses),L (lecturers), Q (curricula),
D (days), and T (time slots). Furthermore let P denote the set of periods, i.e.,P = D � T .
Then for each dayd 2 D , the set Pd denotes the periods that belong to dayd. The set of
courses in curriculumq 2 Q is Cq, and similarly for a coursec 2 C, the set of curricula that it
belongs to is denotedQc. The set of courses taught by lecturerl 2 L is Cl and l(c) 2 L refers
to the lecturer teaching coursec.

We also de�ne a set� of course cliques. Consider a so-calledcourse con�ict graph that
contains a node for every course. Two nodes are connected by an edge if they cannot be
scheduled in the same period, i.e., if they are taught by the same lecturer or are in the same
curriculum. As an example, consider the four coursesc1; c2; c3 and c4. Let there be a curriculum
consisting of the coursesc1, c2, and c3 and let there be a lecturer teaching coursesc3 and c4.
The corresponding course con�ict graph is illustrated in Figure 6.1. All maximal cliques in
� are enumerated (see Bron and Kerbosch, 1973), i.e., a clique
 2 � is a set of coursesC


where for each period at most one of the courses can have a lecture scheduled. LetNc � Cn f cg
be the set of courses that is con�icting withc 2 C. In the con�ict graph this corresponds to
the neighborhood of the node representingc, i.e. all the nodes that are adjacent toc. As an
example consider the node representingc1 in Figure 6.1. The neighborhoodNc1 then consists
of the nodes representingc2 and c3. Note that for any coursec1 2 C and c2 2 N c1 it must hold
that c1 2 N c2 .

c1 c2

c3 c4

Figure 6.1: Con�ict graph where a curriculum consists of coursesc1, c2 and c3 while c3 and c4

are taught by the same lecturer.
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For a coursec 2 C, the minimum number of days requested is denoted by the parameter
D min

c . If course c is available in a speci�c periodp = ( d; t) 2 P , then we set the parameter
Fc;d;t = Fc;p = 1 otherwise zero, andPc refers to the set of periods whereFc;p = 1, i.e.,

Pc = f p 2 P j Fc;p = 1g:

The number of lectures that needs to be scheduled for coursec is denotedL c and the total
number of lectures to schedule for a clique
 2 � is denotedL 
 , i.e.,

L 
 =
X

c2C


L c:

Lastly let R denote the number of available rooms andW IL and W MWD be the non-negative
weights of violating the constraintsIL and MWD , respectively. Forx 2 R, let the function
(x)+ be de�ned by (x)+ := max f 0; xg.

6.2.2 Mathematical Model

The pattern-based formulation aims at assigning a pattern to each day for each course. Given
a pattern, the number of lectures scheduled in a pattern is independent on which day it is
scheduled to. Therefore we generate all possible patterns based on the time slotsT . Consider
the casejT j = 4: sixteen di�erent patterns exist which are all illustrated in Table 6.1. The �rst
column refers to the time slotst 2 T and the remaining columns refer to the patternsk 2 K .
The symbol �� � in a cell means that the pattern contains the corresponding time slot. The
last row (L k) counts how many lectures patternk contains.

Table 6.1: The patterns whenjT j = 4.

time slot pattern index k
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 � � � � � � � �
2 � � � � � � � �
3 � � � � � � � �
4 � � � � � � � �

L k 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

For a pattern k 2 K and a time slot t 2 T , the parameter ak
t is set to one if pattern k

contains a lecture in time slott and zero otherwise. The setP k
d � P is the set of periods that

some course is scheduled in if it is assigned to patternk at day d. Based on this set, we need
to de�ne the feasible patternsKc;d for each coursec and for each dayd:

Kc;d =
�

k 2 K j ak
t � Fc;d;t 8t 2 T

	
; c 2 C; d 2 D :

For each coursec 2 C, day d 2 D , and pattern k 2 K c;d, let � k
c;d be a binary variable taking

value one if coursec is assigned to patternk at day d, zero otherwise. For each curriculum
q 2 Q , day d 2 D , and time slot t 2 T , let binary variable sq;d;t take value one if curriculumq
has an isolated lecture at dayd in time slot t, zero otherwise. Finally, for each coursec 2 C,
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integer variable wc counts the number of days below the requested minimum that coursec is
scheduled.

The pattern-based formulation of the curriculum-based course timetabling problem is as
follows.

min W IL
X

q2Q ;d2D ;t2T

sq;d;t + W MWD
X

c2C

wc (6.1)

s.t.
X

k2K c;d

� k
c;d = 1; 8c 2 C; d 2 D (6.2)

X

d2D ;k2K c;d

L k � k
c;d = L c; 8c 2 C (6.3)

X

c2C
 ;k2K c;d

ak
t � k

c;d � 1; 8
 2 � ; d 2 D ; t 2 T (6.4)

X

c2C;k2K c;d

ak
t � k

c;d � R; 8d 2 D ; t 2 T (6.5)

X

d2D ;k2K c;d :L k � 1

� k
c;d + wc � D min

c ; 8c 2 C (6.6)

X

c2Cq ;k2K c;d

�
ak

t � max
�

ak
t � 1; ak

t+1

	�
� k

c;d � sq;d;t; 8q 2 Q ; d 2 D ; t 2 T (6.7)

� k
c;d 2 B; 8c 2 C; d 2 D ; k 2 K c;d (6.8)

sq;d;t 2 B; 8q 2 Q ; d 2 D ; t 2 T (6.9)

wc 2 N0; 8c 2 C (6.10)

The objective function (6.1) seeks to minimize a weighted sum of the violations of the soft
constraints IL and MWD . Constraints (6.2) ensure that exactly one pattern is chosen for each
course and day, whereas constraints (6.3) enforce the scheduling of all lectures of all courses.
For every clique
 2 � , at most one lecture can be scheduled in any period as stipulated by
constraints (6.4). The total number of rooms available is imposed by constraints (6.5). The
number of violations for the soft constraintsIL and MWD are computed through constraints
(6.6) and (6.7), respectively. Finally, binary and integrality requirements (6.8)�(6.10) restrict
the domains of the decision variables.

6.3 Preprocessing

In this section we show how some variables can be removed from the model and speci�cally
how some patterns can never be feasible for some days and courses.

6.3.1 Simple Reductions

Some simple reductions can be made to model (6.1)�(6.10). Since a coursec 2 C must haveL c

lectures scheduled, these require at leastdL c=jT je days. So if the minimum working days
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requested for a coursec is less than or equal to this number, i.e.,D min
c � d L c=jT je, the

constraint MWD can never be violated by that course and we can remove the variablewc and
the associated constraint (6.6). Another reduction is to consider a coursec whereL c = D min

c ,
i.e., where the requested number of minimum working days is equal to the number of lectures.
The only way for the course to not violate the constraintMWD is to only use the patterns
containing at most one lecture. Assume that the course has chosen one lecture for each day.
If the course then chooses to increase the number of lectures for one of the days, then it has
to remove a lecture from one of the other days thus increasing the violation of the constraint
MWD by one. This means that we can substitute the variablewc throughout the model by
the sum of the patterns containing at least two lectures where the coe�cients are the number
of lectures in the patterns minus one:

wc =
X

d2D ;
k2K c;d :
L k � 2

(L k � 1) � k
c;d; 8c 2 C : L c = D min

c : (6.11)

Another special case is when coursec requests two working days, i.e., thatD min
c = 2. The

only way that the constraint MWD can be violated is when all lectures of the course are
scheduled in a single day. Therefore the variablewc can be substituted throughout the model
by the sum of the patterns scheduling all lectures on one day:

wc =
X

d2D ;k2K c;d :L k = L c

� k
c;d; 8c 2 C : D min

c = 2: (6.12)

Some of the variables used for calculating the isolated lectures can also be substituted.
Consider some curriculumq 2 Q , day d 2 D and time slot t 2 T , and let Cq;d;t be the set of
courses in the curriculum that can be scheduled in either that period or an adjacent period:

Cq;d;t = f c 2 Cq j Fc;d;t � 1 = 1 _ Fc;d;t = 1 _ Fc;d;t+1 = 1g: (6.13)

If jCq;d;t j = 1 and the associated course chooses a pattern where a lecture is scheduled at dayd
in time slot t but not in an adjacent period, then this lecture must be an isolated lecture forq.
This means we can substitute the variablesq;d;t in the objective function (6.1):

sq;d;t =
X

c2Cq ;k2K c;d :
ak

t =1 ^ ak
t � 1= ak

t +1 =0

� k
c;d; 8q 2 Q ; d 2 D ; t 2 T : jCq;d;t j = 1: (6.14)

6.3.2 Pattern Elimination

When all patterns are generated, not all of them need to be considered for some coursec 2 C.
The total number of lectures to schedule forc is L c. Clearly if some pattern contains more
than L c lectures, then this pattern can be excluded from all days. Furthermore, suppose that
a pattern k 2 K c;d for some dayd 2 D has been selected. This means that no more patterns
can be selected for dayd so the remaining patterns for the daysDnf dg must be able to cover
the remaining lecturesL c � L k :

X

d02Dnf dg

max
k02K c;d 0

f L k0g � L c � L k ; 8d 2 D ; c 2 C; k 2 K c;d: (6.15)
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If for any day d 2 D and pattern k 2 K c;d the condition (6.15) is not met, then this pattern
is removed from that day. Similarly if for all days exceptd, patterns are chosen to cover a
minimum number of lectures, then any pattern inKc;d cannot cover more than the remaining
lectures: X

d02Dnf dg

min
k02K c;d 0

f L k0g � L c � L k ; 8d 2 D ; c 2 C; k 2 K c;d: (6.16)

So we scan through all patterns and remove the ones that do not ful�ll conditions (6.15) and
(6.16). If any patterns are removed during this scan, we iterate until no more patterns are
removed.

The next elimination considers a course and checks if choosing a pattern would overlap too
many feasible periods for some other courses. Consider the coursec1 2 C and the con�icting
coursec2 2 N c1 . Coursec1 can at most be scheduled injPc2 j � L c2 of the periods that are
feasible forc2 since all lectures must be scheduled:

�
�Pc2 \ P k

d

�
� � jP c2 j � L c2 ; 8d 2 D ; c1 2 C; c2 2 N c1 ; k 2 K c1 ;d: (6.17)

The left-hand side in (6.17) is the number of periods that are feasible forc2 and occupied byc1

if pattern k is chosen. The right-hand side is the total number of feasible periods forc2 minus
the number of lectures that must be scheduled. Any pattern not ful�lling condition (6.17) is
then removed from the model. This can be extended to the course cliques. Consider clique

 2 � and a coursec 2 C
 and let P
 nc be the feasible periods for all the courses inC
 except
c: P
 nc =

S
c02C
 nf cg Pc0: Any pattern chosen byc may not occupy more than the number of

periods inP
 nc minus the sum of all the lectures to schedule for the courses in the clique except
c since all lectures must be scheduled:

�
�P
 nc \ P k

d

�
� �

�
�P
 nc

�
� �

X

c02C
 nf cg

L c0; 8d 2 D ; 
 2 � ; c 2 C
 ; k 2 K c;d: (6.18)

The left-hand side in (6.18) is the number of periods in the union of all feasible periods for the
courses in the clique exceptc which is occupied byc if pattern k is selected. The right-hand
side is the size of the union of the feasible periods of all the courses in the clique exceptc minus
the total number of lectures that must be scheduled for these courses. Any pattern not ful�lling
(6.18) are then removed.

The last elimination procedure solves a series of maximum �ow problems. The idea is to
consider a speci�c pattern for some course and then see if the remaining lectures in some clique
can be scheduled. Consider a clique
 2 � , a pattern k 2 K c;d for some coursec 2 C
 and
day d 2 D . Let m = L k , n = jPj , and assume without loss of generality that the periods are
numbered such that the �rst m periods,p1, p2, : : :, pm , are those contained in patternk. Let
the next n � m periodspm+1 , pm+2 , : : :, pn be the remaining ones, i.e., all the periods that are
not contained in the pattern. Since the course must choose exactly one pattern for each day, we
know that if pattern k is selected then the course cannot be scheduled in the remaining periods
on day d. Furthermore since we are considering a clique, we know that only the course under
consideration can be scheduled in the �rstm periods. Assume that the courses are numbered
such that the �rst jC
 j are the courses that are in clique
 : c1, c2, : : :, cjC
 j . Create a graph
with a source nodes and a sink nodet (see Figure 6.2). An additional nodes' is created to act
as a dummy source of the non-selected periods. An arc with capacityL 
 � L k is added from
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the sources to the dummy sources' to model that the �rst L k lectures must be scheduled by
the source and the remainingL 
 � L k lectures must be scheduled by the dummy source. For
each periodp1, p2, : : :, pn , create a node and add an ingoing arc from the sources if the period
is in the set f p1; p2; : : : ; pmg and add an ingoing arc from the dummy sources' if the period is
in the set f pm+1 ; pm+2 ; : : : ; png. The capacities of all these arcs are set to one. For each course
c0 2

�
c1; c2; : : : ; cjQ 
 j

	
, add a node to the graph and add an outgoing arc to the sinkt with a

capacity of L c0. For each nodep 2 f p1; p2; : : : ; png and each nodec0 2
�

c1; c2; : : : ; cjC
 j

	
, add an

arc from p to c0 with capacity a (c0; p) which is set depending onc and k:

a (c0; p) =

8
>>>>>><

>>>>>>:

Fc0;p if p 2 f p1; : : : ; pmg

and c0 = c

Fc0;p if p 2 f pm+1 ; : : : ; png

and (c0 6= c _ p =2 Pd)

0 otherwise:

(6.19)

If p is one of the �rst m periods, the capacity is set toFc0;p if c0 = c; if p is one of then � m
last periods, the capacity is set toFc0;p if p does not belong to dayd or if c0 6= c. A maximum
�ow problem is solved and if the total amount of �ow is less than the total number of lectures
that need to be scheduled for the clique, then patternk can never be feasible for coursec at
day d, and can thus be removed fromKc;d.

s pm

...

p2

p1

pm+1
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pn

s'
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cjC
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j

Figure 6.2: Given a clique
 , maximum �ow graph to verify if pattern k for coursec 2 C
 and
day d can be discarded.
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6.4 Valid Inequalities

In this section some strengthened bounds and valid inequalities are presented.

6.4.1 Implied Bounds

Burke et al. (2012) noted that since all lectures must be scheduled, then at least one day must
be used by each coursec 2 C meaning that the constraint MWD can at most be violated by
D min

c � 1. This can be strengthened a bit by noting that at mostjT j lectures can be scheduled
every day and so coursec must be scheduled in at leastdL c=jT je days:

0 � wc �
�

D min
c �

�
L c

jT j

�� +

; 8c 2 C: (6.20)

By considering the constraintA , this can be slightly improved. LetDc =
�

d1; d2; : : : ; djDj

	

be the days for coursec which are sorted such that
P

t2T Fc;di ;t �
P

t2T Fc;dj ;t for every i; j 2
f 1; 2; : : : ; jDjg wherei < j . Then the minimum number of days that coursec will be scheduled
is the smallest indexi 2 f 1; 2; : : : ; jDjg such that the total amount of feasible periods in the
days d1; d2; : : : ; di is enough to schedule all lectures of the course. We can then calculate an
upper bound on the violation of the constraintMWD :

wu
c = D min

c � min
i 2f 1;:::; jDjg

8
>>><

>>>:

i

�
�
�
�
�
�
�
�
�

X

j 2f 1;:::;i g;
p2P dj

Fc;p � L c

9
>>>=

>>>;

; 8c 2 C: (6.21)

It is also possible to calculate the maximum number of days coursec can be scheduled in.
Obviously it is not possible to schedule more thanL c days. Using the constraintA , it is not
possible to schedule more days than the set of days where at least one of the time slots is
feasible for the course. So a lower bound on the violation of the constraintMWD can also be
calculated:

wl
c = D min

c � max

(

L c;

�
�
�
�
�

(

d 2 D
�
�

X

p2P d

Fc;p � 1

) �
�
�
�
�

)

; 8c 2 C: (6.22)

This gives the following bounds:

�
wl

c

� +
� wc � (wu

c )+ ; 8c 2 C: (6.23)

Furthermore since we have just found the minimum and maximum number of days that a course
can have scheduled lectures, we can add the following inequalities to model (6.1)�(6.10):

X

d2D ;
k2K c;d :
L k � 1

� k
c;d � min

i 2f 1;:::; jDjg

8
>>><

>>>:

i

�
�
�
�
�
�
�
�
�

X

j 2f 1;:::;i g;
p2P dj

Fc;p � L c

9
>>>=

>>>;

; 8c 2 C: (6.24)
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X

d2D ;
k2K c;d :
L k � 1

� k
c;d � max

(

L c;

�
�
�
�
�

(

d 2 D j
X

p2P d

Fc;p � 1

) �
�
�
�
�

)

; 8c 2 C: (6.25)

6.4.2 Extended Cover Inequalities

Consider clique
 2 � . Since we must schedule the lectures for all courses, trivially the following
must hold: X

c2C
 ;d2D ;k2K c;d

L k � k
c;d � L 
 ; 8
 2 � : (6.26)

Note that the conditions (6.26) are knapsack constraints. This means that we can apply known
valid inequalities such ascover inequalities, see e.g. Van Roy and Wolsey (1987). As an
example, consider some clique
 2 � with L 
 = 5. Assume we only choose patterns containing
two lectures, then surely we cannot choose more than two of these patterns otherwise the
knapsack constraint is violated. This means that if we choose three patterns, e.g.� k1

c1 ;d1
, � k2

c2 ;d2

and � k3
c3 ;d3

whereL k1 = L k2 = L k3 = 2, then we have a cover and we can add thecover inequality:

� k1
c1 ;d1

+ � k2
c2 ;d2

+ � k3
c3 ;d3

� 2:

We can then add each variable to the inequality whereL k � 2 creating an extended cover
inequality. This can be generalized to the following inequalities:

X

c2C
 ;d2D ;
k2K c;d :L k � i

� k
c;d �

�
L 


i

�
; 8
 2 � ; i 2

�
2; : : : ;

�
L 


2

�
+ 1

�
: (6.27)

These inequalities consider that each clique
 2 � can at most be scheduled forL 
 lectures.
Since all lectures must be scheduled,L 
 is also a lower bound on the number of lectures that
must be scheduled: X

c2C
 ;d2D ;k2K c;d

L k � k
c;d � L 
 ; 8
 2 � : (6.28)

To be able to add the extended cover inequalitiesby using constraints (6.28), we need to
reformulate it into a knapsack constraint similar to (6.26). To do this, we �rst de�ne Lmax

c;d as
the maximum number of lectures that coursec 2 C can be scheduled on dayd 2 D :

Lmax
c;d := max

k2K c;d

f L kg: (6.29)

Taking constraints (6.2) and multiplying by Lmax
c;d gives us the following:

X

k2K c;d

Lmax
c;d � k

c;d = Lmax
c;d ; 8c 2 C; d 2 D : (6.30)

Obviously we can addL k � L k to the coe�cient of � k
c;d in (6.30) and rearrange the terms:
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X

k2K c;d

�
L k + Lmax

c;d � L k
�

� k
c;d = Lmax

c;d ; 8c 2 C; d 2 D : (6.31)

X

k2K c;d

L k � k
c;d = Lmax

c;d �
X

k2K c;d

�
Lmax

c;d � L k
�

� k
c;d; 8c 2 C; d 2 D : (6.32)

Substituting into (6.28) and rearranging the terms gives the following:

X

c2C
 ;d2D

0

@Lmax
c;d �

X

k2K c;d

�
Lmax

c;d � L k
�

� k
c;d

1

A � L 
 ; 8
 2 � : (6.33)

X

c2C
 ;d2D ;k2K c;d

�
Lmax

c;d � L k
�

� k
c;d �

X

c2C
 ;d2D

Lmax
c;d � L 
 ; 8
 2 � : (6.34)

SinceLmax
c;d is the maximum number of lectures that can be scheduled for coursec on day d,

then Lmax
c;d � L k for every pattern k 2 K c;d. Furthermore we assume that

P
d2D Lmax

c;d � L c

for each coursec, otherwise it can easily be seen that the problem would be infeasible. Hence
constraints (6.34) are the wanted knapsack constraints. For ease of notation, we de�ne:

L
k
c := Lmax

c;d � L k ; 8c 2 C; d 2 D ; k 2 K c;d: (6.35)

L 
 :=
X

c2C
 ;d2D

Lmax
c;d � L 
 ; 8
 2 � : (6.36)

We can then add theextended cover inequalitiesin the same way as the inequalities (6.27) for
constraints (6.26):

X

c2C
 ;d2D ;

k2K c;d :L
k
c � i

� k
c;d �

�
L 


i

�
; 8
 2 � ; i 2

�
2; : : : ;

�
L 


2

�
+ 1

�
: (6.37)

Not all of extended cover inequalitiesare necessarily added. Consider some clique
 2 �
and
i; j 2 f 2; : : : ; bL 
 =2c + 1g wherei < j . If bL 
 =ic = bL 
 =j c, constraint (6.27) with respect toj is
redundant and is not added to the model. The same argument can be used for constraints (6.37).

6.4.3 The Pattern Con�ict Graph and Inequalities

The inequalities we focus on in this section are based on creating apattern con�ict graph
G = ( V; E), where for each coursec 2 C, day d 2 D and pattern k 2 K c;d, we create a node
vk

c;d 2 V . Two nodesvk1
c1 ;d1

; vk2
c2 ;d2

2 V are connected with an edge if the corresponding patterns
cannot both be included in a feasible solution, i.e., if they arecon�icting . We then use this
graph to derive valid inequalities. Some of these inequalities are clique inequalities derived
by �nding the cliques in the pattern con�ict graph. This graph can become very large so it
is not practical to enumerate all the maximal cliques as we did in Section 6.2 for thecourse
con�ict graph. Instead we run a heuristic aimed at minimizing the number of cliques needed to
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cover all edges as described by Kou et al. (1978). Let� be the set of cliques returned by the
heuristic and let V� � V be the set of nodes in clique� 2 � . We then add the following clique
inequalities:

X

vk
c;d 2V �

� k
c;d � 1; 8� 2 � : (6.38)

The next set of valid inequalities is based on constraints (6.7) and inspired by theLifted
Class Compactnessinequalities described in Avella and Vasil'ev (2005, Proposition 5.4). In
the left-hand side of constraint (6.7) for curriculumq 2 Q and time slot t 2 T , let ak

t be the
coe�cient of the pattern variable � k

c;d for coursec 2 Cq, day d 2 D and pattern k 2 K c;d:

ak
t := ak

t � maxf ak
t � 1; ak

t+1 g =

8
><

>:

1 if ak
t = 1 ^ ak

t � 1 = ak
t+1 = 0

� 1 if ak
t = 0 ^

�
ak

t � 1 = 1 _ ak
t+1 = 1

�

0 otherwise:

(6.39)

Let V+
q;d;t and V�

q;d;t be the sets of nodes representing the patterns for which the coe�cient is
equal to one and to minus one, respectively:

V+
q;d;t :=

�
vk

c;d 2 V j c 2 Cq; k 2 K c;d; ak
t = 1

	
: (6.40)

V�
q;d;t :=

�
vk

c;d 2 V j c 2 Cq; k 2 K c;d; ak
t = � 1

	
: (6.41)

Based on these sets, we can reformulate constraints (6.7):

X

vk
c;d 2V +

q;d;t

� k
c;d �

X

vk
c;d 2V �

q;d;t

� k
c;d � sq;d;t; 8q 2 Q ; d 2 D ; t 2 T : (6.42)

In constraints (6.42), it can be seen that for a curriculumq 2 Q , there is an isolated lecture
at day d and time slot t if one of the patterns inV+

q;d;t is selected and none of the patterns in
V�

q;d;t are selected. Consider now some cliqueH q;d;t � V , where every node inH q;d;t is con�icting
with every node in V�

q;d;t. If any pattern in H q;d;t is included in a solution, then none of the
patterns in V�

q;d;t can be chosen. This means that if a pattern has been chosen from the setV+
q;d;t

and a pattern has been chosen from the setH q;d;t, then curriculum q must have an isolated
lecture at day d and time slot t. Therefore the followingadjacent isolated lecture inequalities
can be added:

X

vk
c;d 2V +

q;d;t

� k
c;d +

X

vk
c;d 02H q;d;t

� k
c;d � 1 � sq;d;t; 8q 2 Q ; d 2 D ; t 2 T : (6.43)

The way we generate a cliqueH q;d;t is to take the subgraph induced by the neighbors of
V�

q;d;t. We then run the heuristic described by Kou et al. (1978) to get a clique cover of the
neighbors and, for each clique returned by the heuristic, an inequality (6.43) is added, where
the clique de�nes setH q;d;t.
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6.4.4 Generating Edges for the Pattern Con�ict Graph

The pattern con�ict graph was brie�y described in Section 6.4.3. Here we explain how we
derive the edges, i.e., how we �gure out which of the patterns are con�icting. The �rst set
of edges are derived from constraints (6.2). Since at most one pattern can be chosen for each
course and each day, we can add an edge between nodesvk1

c;d and vk2
c;d for each coursec 2 C, day

d 2 D , and patterns k1 2 K c;d and k2 2 K c;dnf k1g. Next we can also add edges between nodes
vk1

c;d1
and vk2

c;d1
if L k1 + L k2 > L c.

Another set of edges comes from the constraintC. For two con�icting coursesc1; c2 2 C, we
add an edge between nodesvk1

c1 ;d and vk2
c2 ;d for day d 2 D and patterns k1 2 K c1 ;d and k2 2 K c2 ;d

if there exists some time slot contained in both patterns, i.e., if9t 2 T : ak1
t = ak2

t = 1.
The next set of edges is derived by extending the methods to eliminate the patterns as dis-

cussed in Section 6.3, where instead of checking for infeasibility of selecting only one pattern,
we check for infeasibility of selecting a pair of patterns. For example, it was checked in con-
straint (6.15) whether selecting a speci�c pattern would make it possible to cover the remaining
lectures on the other days. Consider some coursec 2 C, two days d1; d2 2 D , and two patterns
k1 2 K c;d1 and k2 2 K c;d2 whered1 6= d2. If both patterns are selected, then it must be possible
to cover the remainingL c � L k1 � L k2 lectures from the patterns associated with the days in
set Dnf d1; d1g. We add an edge between nodesvk1

c;d1
and vk2

c;d2
if the following condition is not

met: X

d2Dnf d1 ;d2g

max
k2K c;d

f L kg � L c � L k1 � L k2 : (6.44)

Similarly if the two patterns k1 2 K c;d1 and k2 2 K c;d2 are chosen, then the patterns containing
the smallest number of lectures on the other days cannot exceed the remaining lectures. We
add an edge between nodesvk1

c;d1
and vk2

c;d2
if the following condition is not met:

X

d2Dnf d1 ;d2g

min
k2K c;d

f L kg � L c � L k1 � L k2 : (6.45)

We can also verify if selecting a pair of patterns would overlap too many feasible periods for
some courses as in (6.17) and (6.18). First all pairs of con�icting courses are considered. Let
c1; c2 2 C be con�icting. If pattern k2 2 K c2 ;d2 is chosen for coursec2 on day d2 2 D , we know
that no other pattern can be chosen for coursec2 for that day. Therefore it is not possible to
choose a patternk1 2 K c1 ;d1 for coursec1 on day d1 2 Dnf d2g if that pattern occupies more
than L c2 � L k2 of the feasible periods forc2 in the days Dnf d2g. Hence, for the pair of nodes
vk1

c1 ;d1
and vk2

c2 ;d2
, we add an edge if the following condition does not hold:

�
�Pc2 \ P k1

d1

�
� � jP c2 n Pd2 j � L c2 + L k2 : (6.46)

Consider now two coursesc1; c2 2 C that need not be con�icting nor distinct. In the course
con�ict graph, we look at the nodes representingc1 and c2 and the neighborhood of these two
nodes, i.e., the nodes that are connected by an edge to bothc1 and c2. Let Nc1 ;c2 be this
neighborhood (illustrated in Figure 6.3) and de�ned as

Nc1 ;c2 = Nc1 \ N c2 : (6.47)

It is not possible to assign a pair of patterns to coursesc1 and c2 that together occupy more
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c1 c2

Nc1 ;c2

Figure 6.3: NeighborhoodNc1 ;c2 of the coursesc1; c2 2 C in the course clique graph.

than jPc3 j � L c3 of the feasible periods ofc3 2 N c1 ;c2 . Therefore we get the following conditions:
�
�Pc3 \

�
P k1

d1
[ P k2

d2

� �
� � jP c3 j � L c3 : (6.48)

Hence for each pair of nodesvk1
c1 ;d1

and vk2
c2 ;d2

, we add an edge if conditions (6.48) are not met.
This can be extended by considering a pair of nodes in the neighborhood ofc1 and c2 that are
themselves con�icting. Let c3; c4 2 N c1 ;c2 be such a pair, i.e.,c4 2 N c3 . It is not feasible to
assign to coursesc1 and c2 patterns that together occupy more thanjPc3 [ P c4 j � L c3 � L c4

of the feasible periods forc3 and c4 because all of their lectures must be scheduled in distinct
periods. The following conditions must be met:

�
�(Pc3 [ P c4 ) \

�
P k1

d1
[ P k2

d2

� �
� � jP c3 [ P c4 j � L c3 � L c4 : (6.49)

We can extend it even further by considering cliques in the neighborhood ofc1 and c2. Let
� c1 ;c2 be a set of cliques of the neighborhoodNc1 ;c2 found by iterating through each clique
 2 �
and then add the coursesC0 = Nc1 ;c2 \ C 
 if C0 6= ; :

� c1 ;c2 = fC0 � N c1 ;c2 j 9
 2 � : C0 � C 
 g: (6.50)

As for a clique in� , we also refer to the courses in
 2 � c1 ;c2 by C
 . The set of feasible periods
of all the courses inC
 is denoted byP c1 ;c2


 :

P c1 ;c2

 =

[

c2C


Pc: (6.51)

Note that P c1 ;c2

 does not necessarily include the feasible periods forc1 and c2 as they are not in

the set of coursesC
 . We add an edge between nodesvk1
c1 ;d2

and vk2
c2 ;d2

if the following conditions
are not met: �

�P c1 ;c2

 \

�
P k1

d1
[ P k2

d2

� �
� �

�
�P c1 ;c2




�
� �

X

c02C


L c0: (6.52)

The last method to identify edges in the pattern con�ict graph is to solve a series of maximum
�ow problems. The maximum �ow graph is an extension to the graph used for eliminating
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patterns in Section 6.3.2. Consider a clique
 2 � , a pattern k1 2 K c1 ;d1 for some course
c1 2 C
 and day d1 2 D and a pattern k2 2 K c2 ;d2 for some coursec2 2 C
 and day d2 2 D .
Let m1 = L k1 , m2 = L k2 + L k1 and n = jPj and assume that the periods are numbered such
that the �rst m1 periodsp1, p2, : : :, pm1 are the periods contained in patternk1 and the next
m2 � m1 periodspm1+1 , pm1+2 , : : :, pm2 are the periods contained in patternk2. Let the next
n � m2 periodspm2+1 , pm2+2 , : : :, pn be the remaining periods, i.e., all the periods that are not
contained in the patterns. Since exactly one pattern must be chosen for each coursec1 and
c2 and each day, we know that if patternsk1 and k2 are selected, then the courses cannot be
scheduled in the remaining periods on dayd1 and d2, respectively. Furthermore since we are
considering a clique, we know that onlyc1 can be scheduled in the �rstm1 periods and onlyc2

can be scheduled in the nextm2 � m1 periods. Assume that the courses are numbered such that
the �rst jC
 j are the courses in clique
 : c1, c2, : : :, cjC
 j . Create a graph with a source nodes, a
dummy source nodes', and a sink nodet (see Figure 6.4). An arc with capacityL 
 � L k1 � L k2

is added from the sources to the dummy sources'. For each periodp1, p2, : : :, pn , create
a node and add an ingoing arc from the sources if the period is in the set f p1; p2; : : : ; pm2 g
and an ingoing arc from the dummy sources' if the period is in the set f pm2+1 ; pm2+2 ; : : : ; png.
The capacities of all these arcs are set to one. For each coursec0 2

�
c1; c2; : : : ; cjQ 
 j

	
, add a

node to the graph and an outgoing arc to the sinkt with a capacity of L c0. For each node
c0 2

�
c1; c2; : : : ; cjC
 j

	
and for each nodep 2 f p1; p2; : : : ; png, add an arc from p to c0 with

capacity a (p; c0) de�ned as follows:

a (p; c0) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Fc0;p if p 2 f p1; : : : ; pm1 g

and c0 = c1

Fc0;p if p 2 f pm1+1 ; : : : ; pm2 g

and c0 = c2

Fc0;p if p 2 f pm2+1 ; : : : ; png

and (c0 6= c1 _ p =2 Pd1 )

and (c0 6= c2 _ p =2 Pd2 )

0 otherwise:

(6.53)

If p is one of the �rst m1 periods, the capacity is set toFc0;p if c0 = c1; if p is one of the next
m2 � m1 periods, the capacity is set toFc0;p if c0 = c2; if p is one of then � m2 last periods,
the capacity is set toFc0;p if p does not belong to dayd1 or if c0 6= c1 and if p does not belong
to d2 or c0 6= c2. A maximum �ow problem is then solved and if the total amount of �ow is less
than L 
 , then the two patterns cannot both be selected in a feasible solution and an edge in
the con�ict graph is added betweenvk1

c1 ;d2
and vk2

c2 ;d2
.

Even if the maximum �ow problem can be solved e�ciently, we need to solve many problems,
resulting in a long total running time. This can be speeded up by, instead of creating a graph for
each pair of nodes in the con�ict graph, we create the graph for an entire clique and then adjust
the capacities according to the courses and patterns that are under consideration. Consider a
clique 
 2 � and create the same nodes as above, i.e., the source nodes, the dummy source
node s', the sink t, a node for each period and a node for each course. As before, each node
representing a coursec 2 C
 has an outgoing arc connected to the sinkt with a capacity of
L c. There is an arc from the sources to the dummy sources', but this time the capacity is
initially set to zero. Each period node has an incoming arc from both the sources and the
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Figure 6.4: Given a clique
 2 � , maximum �ow graph to identify if patterns k1 2 K c1 ;d1 and
k2 2 K c2 ;d2 for some coursesc1; c2 2 C
 and days d1; d2 2 D cannot both be contained in a
feasible solution.

dummy sources' and has an outgoing arc to each coursec 2 C
 that can be feasibly scheduled
in that period. The capacities of all the arcs entering and leaving the periods are initially
set to zero. All capacities that are initially set to zero are adjusted according to the courses,
days and patterns that are under consideration. At �rst the �ow on all arcs is zero. This �ow
is a maximum integer �ow since all arcs leaving the source have zero capacity, no capacities
are violated and all node balancing constraints are satis�ed. After this, the approach is then
to run an iterative algorithm that maintains a maximum integer �ow as the loop invariant.
Each iteration consists of three steps that �rst picks two patterns to investigate and adjust
the capacities accordingly, possibly creating an infeasible �ow. The second step is to repair
the possibly infeasible �ow created by the adjustment of the capacities. The last step is to
recalculate the maximum �ow.

Step 1 � Select Patterns and Adjust Capacities. Select coursesc1; c2 2 C
 , daysd1; d2 2
D and patternsk1 2 K c1 ;d1 and k2 2 K c2 ;d2 which have not been considered yet and where there
is no edge betweenvk1

c1 ;d1
and vk2

c2 ;d2
in the pattern con�ict graph. The capacities are then

adjusted according to the selected patterns. First the capacity on the arc from the sources to
the dummy s' is set to the total amount of lectures that need to be scheduled for the clique
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minus the amount of lectures in the two patterns:

a (s; s0) = L 
 � L k1 � L k2 : (6.54)

The capacities from the sources to a node for some periodp are set to one if the period is part
of any of the two patterns, otherwise it is set to zero:

a (s; p = ( d; t)) =

8
><

>:

1 if d = d1 ^ ak1
t = 1

1 if d = d2 ^ ak2
t = 1

0 otherwise:

(6.55)

The capacities froms' to a node for some periodp are the opposite of the arcs from the source
s:

a (s0; p = ( d; t)) =

8
><

>:

0 if d = d1 ^ ak1
t = 1

0 if d = d2 ^ ak2
t = 1

1 otherwise:

(6.56)

Capacities (6.54), (6.55) and (6.56) together ensure that the maximum �ow can only be equal
to the total number of lectures if some �ow is sent through all the periods from the selected
patterns. One must also ensure that the �ow leaving the periods from the selected patterns are
only sent to the designated courses, i.e., for each periodp = ( d; t), if d = d1 ^ ak1

t = 1, the �ow
can only be sent toc1 and if d = d2 ^ ak2

t = 1, the �ow can only be sent to c2. Furthermore,
since one pattern must be selected for each course and each day, thenc1 cannot be scheduled
in any period at dayd1 which is not contained in patternk1; the same holds true for coursec2,
day d2 and pattern k2. This results in the following capacities:

a (p = ( d; t); c) =

8
>>>>>><

>>>>>>:

Fc;p ak1
t if d = d1 ^ c = c1

Fc;p ak2
t if d = d2 ^ c = c2

Fc;p (1 � ak1
t ) if d = d1 ^ c 6= c1

Fc;p (1 � ak2
t ) if d = d2 ^ c 6= c2

Fc;p otherwise:

(6.57)

Step 2 � Repair Flow. If the capacity adjustment from Step 1 is making the �ow infeasible,
then the �ow is adjusted to regain feasibility. Let f (u; v) be the �ow on arc (u; v) and f viol be
the sum of all the excess �ow on the arcs:

f viol =
X

(u;v )

(f (u; v) � a(u; v))+ :

The adjustments are done by going through all the arcs in the �ow graph. If the capacity is
violated on an arc(u; v), it must be because the amount of �ow is at least one unit more than
the capacity: f (u; v) � a(u; v) + 1 . This is because we know from the loop invariant that the
�ow is integral and because the capacities are either changed from one to zero or from zero to
one. This means that there must exist some directed path going from the sources to the sink
t through arc (u; v) with a �ow of at least one unit on all its arcs. Such a path is illustrated
in Figure 6.5 and can easily be found by identifying two shortest paths (with respect to the
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number of arcs), froms to u and from v to t using only arcs where there are at least one unit
of �ow. These paths are then put together into one path with the arc(u; v). Let � s;t

(u;v ) � 1 be

the smallest excess �ow on that path, we then decrease the �ow on this path by� s;t
(u;v ) . This

reducesf viol and we can just repeat this process untilf viol is equal to zero. Since the �ow is
initially integral, � s;t

(u;v ) is always integer and the repaired �ow remains integral.

s u v t
f (u; v) � a(u; v) + 1

Figure 6.5: Illustration of a path with at least one unit �ow from s to t through an arc (u; v)
where the capacity is violated.

Step 3 � Maximum Flow. The last step is to run a maximum �ow algorithm initialized
with the possibly repaired �ow. Any augmenting path algorithm can be used. For our imple-
mentation we used the algorithm described by Edmonds and Karp (1972).

6.5 Computational Results

We have compared our results to the best ones that can be found in the literature. For the
ITC2007 competition, a benchmarking tool was provided. It returns the number of seconds
that the competitors were allowed to run their algorithms on their own computers, restricted to
one core. This number of seconds is referred to as one CPU unit. Our tests are conducted on an
Intel® Core—I5-3570K 3.4GHz CPU with 16GB RAM running Windows 10. The benchmark
tool returned 208 seconds as one CPU unit for our computer. The ILP solver we used is from
Gurobi Optimization Inc. (2015) version 6.5.

Since our mixed-integer programming (MIP) algorithm provides lower bounds, we are only
comparing our algorithm with other MIP-based algorithms from the literature that obtain lower
bounds. The algorithms we compare are those identi�ed by LL12 (Lach and Lübbecke, 2012),
BMPR10 (Burke et al., 2010), HB11 (Hao and Benlic, 2011), CCRT13 (Cacchiani et al., 2013)
and Patterns (this paper). We have run the tests with time limits of 1, 10 and 40 CPU units
as it has also been done for the other algorithms. The running time of the preprocessing and
the generation of the valid inequalities is included in the total time spent by our algorithm. 21
data sets have been provided for the competition, however only 14 of these were available for
some of the algorithms. All data sets can be obtained from Bonutti et al. (2016).

Table 6.2 � 6.4 presents results for comparing these di�erent algorithms on the �rst fourteen
data sets. For each algorithm, we provide the lower bound obtained (lb) and the relative distance
(%gap) to the best known upper bound (ub) calculated as(ub� lb)=ub. The lower bounds in
bold font are best lower bounds. Those underlined are obtained by a single algorithm.
Line Avg. %gap speci�es the average percentage gap obtained for all the fourteen instances.
The two last lines report the number of times an algorithm obtains a best lower bound (Best
lb) and a better one than the others (Betterlb).
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Table 6.2: Lower bounds for various algorithms given 1 CPU time unit.

LL12 BMPR10 HB11 CCRT13 Patterns
Instance ub lb %gap lb %gap lb %gap lb %gap lb %gap
comp01 5 4 20.0 0 100.0 4 20.0 5 0.0 0 100.0
comp02 24 0 100.0 0 100.0 10 58.3 0 100.0 10 58.3
comp03 64 0 100.0 25 60.9 26 59.4 24 62.5 41 35.9
comp04 35 22 37.1 35 0.0 35 0.0 35 0.0 35 0.0
comp05 284 92 67.6 119 58.1 19 93.3 6 97.9 154 45.8
comp06 27 7 74.1 13 51.9 12 55.6 0 100.0 19 29.6
comp07 6 0 100.0 6 0.0 5 16.7 0 100.0 6 0.0
comp08 37 30 18.9 37 0.0 37 0.0 37 0.0 37 0.0
comp09 96 37 61.5 68 29.2 39 59.4 92 4.2 82 14.6
comp10 4 2 50.0 3 25.0 4 0.0 0 100.0 4 0.0
comp11 0 0 0.0 0 0.0 0 0.0 - - - -
comp12 298 29 90.3 101 66.1 43 85.6 0 100.0 109 63.4
comp13 59 33 44.1 52 11.9 46 22.0 57 3.4 59 0.0
comp14 51 40 21.6 41 19.6 41 19.6 32 37.3 45 11.8
Avg. %gap 56.5 37.3 35.0 50.4 27.9
Best lb 1 4 5 4 11
Better lb 2 6

In Table 6.2, it can be seen that the pattern formulation yields a best lower bound for
11 of the 14 data sets. The three exceptions are for data sets comp01, comp09 and comp11.
For data set comp01, we do not achieve the best lower bound because we do not consider the
room penalties whereas the others do. For data set comp11, the number of time slots per day
is 9, resulting in a potential of 512 patterns for each course and each day. In this case, our
algorithm reaches the time limit of 1 CPU unit before completing the preprocessing and the
valid inequality generation. This is also the case when we look at Table 6.3. In Table 6.4, it
can be seen that our algorithm is the best for 13 instances, only producing a worse bound again
for data set comp01. In half of the instances, the pattern formulation provides a better bound.
Furthermore, for instance comp12, the lower 165 are an improvement over the currently best
known bound 138.

Because Cacchiani et al. (2013) also report results on the last seven instances for a time
limit of 40 CPU units, we also compare our algorithm to their algorithm on all data sets, except
comp11. Indeed, an optimal solution of this data set has a zero cost and therefore Cacchiani
et al. (2013) deemed this uninteresting as a trivial lower bound is also zero. The results are
presented in Table 6.5 where it can be seen that the pattern formulation provides the best
lower bound 19 times out of 20. We only get a worse bound for data set comp01 because we
do not consider any room related penalties. Finally, in half of these data sets, a better lower
bound is obtained by our algorithm compared to CCRT13. The last comparison is against the
best known lower bounds as reported on the website of Bonutti et al. (2016). The algorithms
or the computational times used for these bounds are not always clear, so we have chosen to
run our algorithm with a time limit of 100 CPU units to see if we can improve some of the
bounds. The results are presented in Table 6.6 where it can be seen that for comp03, comp12
and comp15, new lower bounds are obtained. The pattern formulation is also able to match
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Table 6.3: Lower bounds for various algorithms given 10 CPU time units.

LL12 BMPR10 HB11 CCRT13 Patterns
Instance ub lb %gap lb %gap lb %gap lb %gap lb %gap
comp01 5 4 20.0 4 20.0 4 20.0 5 0.0 0 100.0
comp02 24 8 66.7 0 100.0 12 50.0 16 33.3 14 41.7
comp03 64 0 100.0 33 48.4 34 46.9 52 18.8 46 28.1
comp04 35 28 20.0 35 0.0 35 0.0 35 0.0 35 0.0
comp05 284 25 91.2 111 60.9 69 75.7 6 97.9 178 37.3
comp06 27 10 63.0 15 44.4 12 55.6 11 59.3 20 25.9
comp07 6 2 66.7 6 0.0 6 0.0 6 0.0 6 0.0
comp08 37 34 8.1 37 0.0 37 0.0 37 0.0 37 0.0
comp09 96 41 57.3 65 32.3 67 30.2 92 4.2 94 2.1
comp10 4 4 0.0 4 0.0 4 0.0 2 50.0 4 0.0
comp11 0 0 0.0 0 0.0 0 0.0 - - - -
comp12 298 32 89.3 95 68.1 78 73.8 0 100.0 159 46.6
comp13 59 39 33.9 52 11.9 53 10.2 57 3.4 59 0.0
comp14 51 41 19.6 42 17.6 43 15.7 48 5.9 51 0.0
Avg. %gap 45.6 28.8 27.0 26.6 21.7
Best lb 2 5 5 6 10
Better lb 3 6

Table 6.4: Lower bounds for various algorithms given 40 CPU time unit.

LL12 BMPR10 HB11 CCRT13 Patterns
Instance ub lb %gap lb %gap lb %gap lb %gap lb %gap
comp01 5 4 20.0 5 0.0 4 20.0 5 0.0 0 100.0
comp02 24 11 54.2 1 95.8 12 50.0 16 33.3 20 16.7
comp03 64 25 60.9 33 48.4 36 43.8 52 18.8 52 18.8
comp04 35 28 20.0 35 0.0 35 0.0 35 0.0 35 0.0
comp05 284 108 62.0 114 59.9 80 71.8 166 41.5 191 32.7
comp06 27 10 63.0 16 40.7 16 40.7 11 59.3 24 11.1
comp07 6 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0
comp08 37 37 0.0 37 0.0 37 0.0 37 0.0 37 0.0
comp09 96 46 52.1 66 31.3 67 30.2 92 4.2 96 0.0
comp10 4 4 0.0 4 0.0 4 0.0 2 50.0 4 0.0
comp11 0 0 0.0 0 0.0 0 0.0 - - 0 0.0
comp12 298 53 82.2 95 68.1 84 71.8 100 66.4 165 44.6
comp13 59 41 30.5 54 8.5 55 6.8 57 3.4 59 0.0
comp14 51 46 9.8 42 17.6 43 15.7 48 5.9 51 0.0
Avg. %gap 32.8 26.5 25.1 20.2 16.0
Best lb 4 6 5 6 13
Better lb 7
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Table 6.5: Cacchiani et al. (2013) vs. our algorithm, given 40 CPU units.

CCRT13 Patterns
Instance ub lb %gap lb %gap
comp01 5 5 0.0 0 100.0
comp02 24 16 33.3 20 16.7
comp03 64 52 18.8 52 18.8
comp04 35 35 0.0 35 0.0
comp05 284 166 41.5 191 32.7
comp06 27 11 59.3 24 11.1
comp07 6 6 0.0 6 0.0
comp08 37 37 0.0 37 0.0
comp09 96 92 4.2 96 0.0
comp10 4 2 50.0 4 0.0
comp12 298 100 66.4 165 44.6
comp13 59 57 3.4 59 0.0
comp14 51 48 5.9 51 0.0
comp15 62 52 16.1 52 16.1
comp16 18 13 27.8 18 0.0
comp17 56 48 14.3 52 7.1
comp18 61 52 14.8 52 14.8
comp19 57 48 15.8 57 0.0
comp20 4 4 0.0 4 0.0
comp21 74 68 8.1 68 8.1
Avg. %gap 18.1 12.9
Best lb 9 19
Better lb 1 10

most of the currently best known bounds, that is, 16 times out of 21. For the data sets where
it produces worse bounds, it can be seen that it is still very close except for data set comp18.
The reason for this is hard to identify as it is not known what was the time limit when this
bound was obtained.

6.6 Perspective

The pattern formulation improves three of the lower bounds for the ITC2007 data sets. It also
has some other bene�ts such as the possibility of including specialized constraints to the daily
time patterns. For example, if a course has two lectures in a given day, these should not be
too far apart, or if a course has any lectures in a day, there should be a minimum or maximum
number of lectures scheduled that day. These constraints could either be hard or soft and it
can easily be checked whether the patterns are violating them. Such constraints can even be
included non-linearly, e.g. if the distance between two lectures for some courses scheduled on
the same day is de�ned as the number of empty time slots between them, then such distance
could be penalized by squaring the number or by some other non-linear expression.
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Table 6.6: Comparison with the best known bounds given 100 CPU units.

Best known Patterns
Instance ub lb %gap lb %gap
comp01 5 5 0.0 0 100.0
comp02 24 24 0.0 24 0.0
comp03 64 52 18.8 54 15.6
comp04 35 35 0.0 35 0.0
comp05 284 211 25.7 210 26.1
comp06 27 27 0.0 26 3.7
comp07 6 6 0.0 6 0.0
comp08 37 37 0.0 37 0.0
comp09 96 96 0.0 96 0.0
comp10 4 4 0.0 4 0.0
comp11 0 0 0.0 0 0.0
comp12 298 138 53.7 175 41.3
comp13 59 59 0.0 59 0.0
comp14 51 51 0.0 51 0.0
comp15 62 52 16.1 54 12.9
comp16 18 18 0.0 18 0.0
comp17 56 56 0.0 53 5.4
comp18 61 61 0.0 52 14.8
comp19 57 57 0.0 57 0.0
comp20 4 4 0.0 4 0.0
comp21 74 74 0.0 74 0.0
Avg. %gap 5.4 10.5
Best lb 16
Better lb 3

The pattern formulation could be extended to consider an entire week instead of only one day
at a time. This however results in many more patterns, which might require the implementation
of a Branch-and-Price algorithm. One drawback is that we loose the bene�t of the cutting
planes already available in a commercial code such as Gurobi. A shift to a Branch-and-Price
framework such as SCIP (Achterberg, 2009) could be a way to get around this issue.

In this paper, we describe how a con�ict graph on the patterns is constructed. This is used
to statically generate clique cuts for the pattern formulation. It could be interesting to �nd out
if more edges can be added to the graph. Furthermore instead of adding the cuts statically,
another approach could be to use the graph to generate the clique cuts dynamically as in a
Branch-and-Cut algorithm.
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Abstract: In this paper, we consider the Curriculum-based Course Timetabling
problem, which consists of assigning weekly lectures to a time schedule and assign
them to rooms. We develop a Column Generation algorithm based on a pattern
formulation of the time scheduling part of the problem. The pattern formulation is
an enumeration of all schedules to which each course can be assigned on each day,
and it is a lower bounding model. We apply a Dantzig-Wolfe Decomposition that
exploits the block diagonal structure of the pattern formulation such that we have
a pricing problem for each day.

We provide a preprocessing technique that on average removes more than 40%
of the pattern variables of the pricing problems. We then extend the preprocessing
technique into inequalities that we add to the model. Lastly, we describe how
we apply Local Branching to the pricing problem by using columns generated in
previous iterations.

We compare the lower bounds we obtain with other methods from literature on
20 data instances originating from real-world applications. For 16 of the instances
the optimal solutions are known, but the remaining four are stillopen. The average
gap between the lower bounds obtained and the best-known solutions is lower than
the other approaches from the literature, except the pattern formulation from which
the decomposition originates from. However, our approach is able to improve the
best-known lower bound for all four open instances, which decreases the average
gap from 24% to 11%.

149



Keywords: Timetabling � Integer Programming � Education � Column Genera-
tion � Local Branching

7.1 Introduction

In this article we focus on the Curriculum-based Course Timetabling problem (CTT) as de-
scribed by Di Gaspero et al. (2007). The problem has received much attention as it was used for
the second International Timetabling Competition in 2007 (ITC2007) (Di Gaspero et al., 2007;
McCollum et al., 2010). Following the competition, a website (The Scheduling and Timetabling
Research Group at the University of Udine, Italy, 2015) has been created where researchers can
upload data instances, solutions and bounds. Most of the work conducted on CTT is dominated
by heuristic approaches (Asín Aschá and Nieuwenhuis, 2014; Lübbecke, 2015). These heuristic
methods have provided most of the best-known solutions according to the website The Schedul-
ing and Timetabling Research Group at the University of Udine, Italy (2015). For ITC2007
21 data instances were provided arising from real-world applications. Four of these instances
are still open, meaning that the best-known upper bound does not equal the best-known lower
bound. The lower bounds are necessary as the heuristics themselves do not provide a quality
measurement. Our goal of this work is to strengthen the best-known lower bounds. We do
this by applying a Dantzig-Wolfe decomposition of a previous formulation which is solved by
column generation. Column generation approaches have been considered before by Cacchiani
et al. (2013), but it is still worthwhile to investigate such methods further (Lübbecke, 2015).

In section 7.1.1 we describe the problem in details, and in section 7.1.2 we provide an
overview of other methods in literature that have considered CTT. In section 7.2 we describe
the pattern formulation suggested by Bagger et al. (2016) as this model is the basis of our
work in this article. We assume that the reader is familiar with Dantzig-Wolfe Decomposition
and Column Generation. However, in section 7.3 we provide a brief overview of the techniques
followed by our application of the decomposition of the pattern formulation. In section 7.4 we
describe the preprocessing techniques we apply, as well as some inequalities we derive followed
by the framework we use in the solution process; Local Branching (Fischetti and Lodi, 2003).
We report the results of our computational experiments in section 7.5, and lastly, we provide
our conclusion in section 7.6.

7.1.1 Curriculum-based Course Timetabling

The CTT problem consists of the following entities; courses, days, time slots, lecturers, rooms
and curricula. Each course is taught by exactly one lecturer and contains lectures that must
all be scheduled in a weekly timetable and assigned to rooms. The week is divided into days,
and each day is divided into time slots which are all equal in size. A day and time slot pair is
referred to as a period, so the total number of periods is the number of days multiplied by the
number of time slots. The length of one lecture corresponds to one period. A curriculum is a
set of courses where for every pair there is a set of students attending both courses.

The hard constraints are as follows: All lectures of a course must be scheduled, and they
must be scheduled in di�erent periods. If a lecture is not scheduled, then it is counted as one
violation of the Lectures(L) constraint, and if two lectures of the same course are scheduled in
the same period, then this is also counted as one violation. A course can have speci�c periods
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de�ned as unavailable periods. Every lecture scheduled in such a period is considered as one
violation of the Availability (A ) constraint. The constraint Con�icts (C) is violated by one
if two courses that are taught by the same lecturer or belonging to the same curriculum have
lectures scheduled in the same periods. Every room cannot accommodate more than one lecture
in any given period. If more than one lecture is scheduled in the same room and same period,
then the constraint Room Occupancy(RO ) is violated by one for every lecture minus one.

Besides the hard constraints, the problem also contains four soft constraints. We are allowed
to schedule any course into any room. However, it is desired to be able to accommodate as
many students as possible when scheduling the courses into rooms. Every room has a capacity,
and if the number of students attending a lecture is larger than the capacity of the room that
the lecture is assigned, the constraint Room Capacity(RC ) is violated by one for each student
more than the capacity. Furthermore, as the courses contain multiple lectures, it can also be
an advantage that the lectures are all scheduled in the same room during the week. For every
course the constraint Room Stability(RStab ) is violated by one for every distinct room to
which the course is assigned minus one. For every course it is preferred to spread the lectures
across a predetermined number of days. This number is calledminimum working days. If
the lectures are scheduled in fewer days than the minimum working days, then the constraint
Minimum Working Days (MWD ) is violated by one for each day below the minimum working
days on which the lectures are scheduled. The last soft constraint is the Isolated Lectures(IL )
constraint. If two periods belong to the same day and are in consecutive time slots, then we say
that the periods areadjacent. Consider a curriculum and a course belonging to the curriculum.
If the course has a lecture scheduled in a period and no lecture from any of the courses belonging
to the curriculum has a lecture scheduled in an adjacent period, then we say that the lecture
is isolated. For every curriculum, the constraint Isolated Lectures(IL ) is violated by one for
every isolated lecture.

Note that the IL constraint is usually referred to as thecurriculum compactnessconstraint
in literature. We use the nameisolated lecturesas Bonutti et al. (2012) mentions di�erent ways
of de�ning curriculum compactness, and they use the nameisolated lecturesfor the formulation
used here and in ITC2007.

Any feasible timetable must ful�l all the hard constraints, i.e., a timetable is considered
feasible if, and only if, all the hard constraints have no violations. The objective is then to �nd
a feasible timetable while minimising the soft constraints. Each soft constraint has a weight
associated such that a single objective is de�ned by a weighted sum of all the soft constraints.

7.1.2 Related Work

In this section, we describe approaches from literature that have considered CTT. As our
method is a lower bounding method, we focus on other lower bounding methods for CTT in
literature. For a comprehensive overview of the literature regarding CTT, we refer to Bettinelli
et al. (2015).

Burke et al. (2010a) introduce an exact mixed integer programming (MIP) model of CTT.
They formulate the IL by using a variable for each curriculum and each period. Burke et al.
(2008) remove those variables and instead they have just one variable for each curriculum and
each day. The value of this variable is then calculated by adding exponentially many constraints.
In Burke et al. (2012) they keep a subset of the beforementioned constraints and then add the
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remaining dynamically whenever they are violated. Burke et al. (2010b) take the model from
Burke et al. (2010a) and split it into two stages; �rst the courses are scheduled into periods
and then they are assigned to rooms. This approach is executed iteratively.

Splitting the problem into two stages is also considered by Lach and Lübbecke (2008) and
Lach and Lübbecke (2012), where the problem is also split into two stages; the �rst stage
schedules the courses to periods and assign them to capacities, and the second stage then
assigns the rooms with respect to the assigned capacities.

Hao and Benlic (2011) consider the �rst stage problem of Lach and Lübbecke (2012). They
make a decomposition by relaxing some of the constraints such that the problem can be divided
into subproblems. They then compute a lower bound for each subproblem and sum them up
to get a lower bound for the overall problem.

Cacchiani et al. (2013) also compute lower bounds. They do this by splitting the problem
into two parts, where one part considers the time related constraints and the other part considers
the room related constraints. A lower bound is then calculated by summing up lower bounds
for both parts. They, therefore, apply a Dantzig-Wolfe decomposition of the part with the time
related constraints such that the pricing problem is decomposable by days and the model is
solved by column generation.

Asín Aschá and Nieuwenhuis (2014) propose multiple satis�ability encodings. They start by
treating the soft constraints as hard constraints and solve the problem as a pure satis�ability
problem. Then they relax the constraints one by one, to move towards a weighted partial
maximum satis�ability encoding.

In Bagger et al. (2017) a decomposition of the problem is considered similar to Lach and
Lübbecke (2012) and Burke et al. (2010b) where the problem is split into a time scheduling
model and a room allocation model. The two models are then reconnected by an underlying
�ow problem to get an exact formulation.

In Bagger et al. (2016) the time scheduling part of the problem is considered. Here a pattern
formulation is suggested where each variable corresponds to a time schedule for one course on
one day.

In this article we apply Dantzig-Wolfe decomposition to the pattern formulation in Bagger
et al. (2016). The decomposition makes the pricing problem decomposable by days, and we
solve the problem by a column generation algorithm. Note that this is similar to the work
by Cacchiani et al. (2013). Cacchiani et al. (2013) apply the decomposition on the basis of
a formulation where the main decision variables each represent one course and one period.
Furthermore, the formulation does not guarantee a feasible schedule, i.e., some of the hard
constraints can be violated. We apply the decomposition on the pattern formulation described
in Bagger et al. (2016) which is an extensive model where each variable represents an entire
schedule for one course on one day. Furthermore, the formulation ensures that none of the hard
constraints is violated.

7.2 Pattern Formulation

In this section we provide an overview of the pattern formulation provided by Bagger et al.
(2016), which we refer to for details. The idea of the pattern formulation is to have a binary
variable represent an entire schedule for a course on one day. This formulation contains an
exponential number of variables. However, as most of the data instances used in literature have
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�ve or six time slots for each day, then the number of variables for each course and each day is
32 or 64. Before we describe the pattern formulation, we start by providing the notation used
throughout this article. The set of courses, days and time slots are denoted asC, D and T
respectively. The combination of a dayd 2 D and time slot t 2 T is referred to as a period. For
a time slot t 2 T the time slot that is right before t is denoted byt � 1 and the time slot right
after t is denotedt + 1. The set of curricula is denotedQ, and for each curriculumq 2 Q , the
setCq � C is the set of courses that belongs to the curriculumq. The last set is the set ofcourse
cliques� . The course cliques are derived from a graph constructed by creating a node for each
course. If two courses are taught by the same lecturer or belong to the same curriculum, then
their corresponding nodes are connected by an edge. Next, all maximal cliques are enumerated
Bron and Kerbosch (see 1973), i.e., for each clique
 2 � , every node (course) is connected to
all the other nodes (courses) in the clique. The set of courses corresponding to the nodes in
the course clique
 2 � is denotedC
 .

For each coursec 2 C, the number of lectures to schedule is given by the parameterL c,
and the requested minimum number of working days is given by the parameterD min

c . For each
curricula q 2 Q the parameterLq is the total number of lectures that must be scheduled for the
coursesCq, i.e., Lq =

P
c2Cq

L c. Lastly, for each coursec 2 C, day d 2 D and time slot t 2 T
the parameterFc;d;t is one if the course is available in the corresponding period, otherwise it is
zero. If time slot t 2 T is the �rst time slot, then the parameter Fc;d;t � 1 is de�ned as zero and
likewise if t is the last time slot, the parameterFc;d;t+1 is zero for each coursec 2 C and day
d 2 D .

As all periods are uniform it is only necessary to generate the di�erent patterns that are
possible for the set of time slotsT once and then apply them to each course and day. An
example of all the patterns is illustrated in Table 7.1 whenjT j = 4.

Table 7.1: Illustration of all the patterns for jT j = 4. Each column corresponds to a pattern,
and each row corresponds to a time slot. The symbol �� � indicates whether or not a pattern
schedules a lecture in the corresponding time slot.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 � � � � � � � �
1 � � � � � � � �
2 � � � � � � � �
3 � � � � � � � �

The set of all the patterns is denotedK. For each patternk 2 K and time slot t 2 T the
parameterak

t is set to one ifk contains a lecture int. If t 2 T is the �rst time slot, then ak
t � 1

is de�ned as zero and likewise ift is the last time slot, then ak
t+1 is de�ned to be zero. The

number of lectures contained in patternk 2 K is denotedL k , i.e., L k =
P

t2T ak
t . For each

coursec 2 C and day d 2 D the set Kc;d � K denotes the set of patterns that is feasible for
c on day d. A pattern is feasible for a coursec 2 C and daysd 2 D if assigning coursec to
the pattern on day d does not schedulec in any unavailable periods. In Bagger et al. (2016)
some preprocessing techniques are presented to decrease the sizes of the setsKc;d and we refer
to that article for details, as we do not go through these techniques.

Let � k
c;d be a binary variable taking value one if coursec 2 C is assigned patternk 2 K c;d

for day d 2 D . The following constraints ensure that every course selects exactly one pattern
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for each day, that all lectures are scheduled, and that no more than one lecture is scheduled in
any room in any period:

X

k2K c;d

� k
c;d = 1; 8c 2 C; d 2 D (7.1)

X

d2D ;k2K c;d

L k � k
c;d = L c; 8c 2 C (7.2)

X

c2C;k2K c;d

ak
t � k

c;d � R; 8d 2 D ; t 2 T (7.3)

The constraints (7.1) � (7.3) ensure that the constraintsA , L and RO are not violated. To
model constraintC a pattern con�ict graph G = ( V; E) is constructed. For every coursec 2 C,
day d 2 D and pattern k 2 K c;d there is a nodevk

c;d 2 V corresponding to the variable� k
c;d. If

coursec1 2 C chooses patternk1 2 K c1 ;d1 for day d1 2 D and coursec2 2 C chooses pattern
k2 2 K c2 ;d2 for day d2 2 D and this results in a con�ict, then there is an edgee 2 E between
the two nodesvk1

c1 ;d1
and vk2

c2 ;d2
. These con�icts contain theC constraints, and in Bagger et al.

(2016) more con�icts are identi�ed to add more edges to the graph. A clique in the graph is a
subgraph of the graph such that every node in this subgraph is connected by an edge to every
other node in the subgraph. Let� be a set of cliques such that for each edge(u; v) 2 E both
the nodesu and v are contained in at least one clique. We refer to these cliques aspattern
cliquesto be able to distinct them from the course cliques� . For each pattern clique� 2 � in
the graph let V� be the set of nodes in the clique. Adding the following constraints ensure that
the C constraints are not violated:

X

vk
c;d 2V �

� k
c;d � 1; 8� 2 � (7.4)

Let wc be an integer variable calculating how much the soft constraintMWD is violated.
The value of these variables can be calculated by the following constraints:

X

d2D ;k2K c;d :L c � 1

� k
c;d + wc � D min

c ; 8c 2 C (7.5)

To calculate the violation of the soft constraint IL the parameter ak
t is de�ned for each

pattern k 2 K and time slot t 2 T :

ak
t := ak

t � max
�

ak
t � 1; ak

t+1

	
; k 2 K ; t 2 T (7.6)

The variable sq;d;t is introduced for each curriculumq 2 Q , day d 2 D and time slot t 2 T .
The variable sq;d;t is a binary variable that takes value one ifq has an isolated lecture in time
slot t for day d:

X

c2Cq ;k2K c;d

ak
t � k

c;d � sq;d;t; 8q 2 Q ; d 2 D ; t 2 T (7.7)
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Let W MWD and W IL be the non-negative weights of the soft constraintsMWD and IL
respectively. Then the objective function to minimize can be formulated as follows:

X

q2Q ;d2D ;t2T

W IL sq;d;t +
X

c2C

W MWD wc (7.8)

It was shown by Bagger et al. (2016) that ifD min
c = L c or D min

c = 2, then the following
substitutions can be made:

wc =
X

d2D ;
k2K c;d :L k � 2

(L k � 1) � k
c;d; 8c 2 C : D min

c = L c (7.9)

wc =
X

d2D ;
k2K c;d :L k = L c

� k
c;d; 8c 2 C : D min

c = 2 (7.10)

Consider a curriculumq 2 Q , a day d 2 D and time slot t 2 T . Let the set of coursesCq;d;t

be de�ned as follows:

Cq;d;t :=

8
<

:
c 2 Cq

�
�
�
�
�
�

X

t02f t � 1;t;t +1 g

Fc;d;t0 � 1

9
=

;
(7.11)

It was shown by Bagger et al. (2016) that if the number of courses inCq;d;t is one, the
following substitution can be made:

sq;d;t =
X

c2Cq ;k2K c;d :
ak

t =1 ^ ak
t � 1= ak

t +1 =0

� k
c;d; 8q 2 Q ; d 2 D ; 2 T : jCq;d;t j = 1 (7.12)

Bagger et al. (2016) also describes valid inequalities that are added to the model. We do not
go through them here, but we refer to that article for details. In this article, we do one more
preprocessing that is not described in Bagger et al. (2016). We consider the model including
all the valid inequalities, but excluding thew and s variables and their associated constraints,
i.e., we only consider the feasibility part of the model. We then iterate through each variable
� k

c;d and set the lower bound to one. Then we solve the LP relaxation, and if it is infeasible,
we remove the variable from the model. Otherwise, we change the lower bound of� k

c;d back to
zero.

7.3 Dantzig-Wolfe Decomposition

In this section we provide a brief description of Dantzig-Wolfe decomposition followed by our
application. In section 7.3.1 an introduction to the Dantzig-Wolfe decomposition for Mixed
Integer Programs (MIP) is given, and in section 7.3.2 we describe how we apply it to the
pattern formulation of CTT.
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7.3.1 Brief Introduction to Dantzig-Wolfe Decomposition

Our introduction to the Dantzig-Wolfe Decomposition is speci�c for MIP models and we refer to
Martin (1999, chapter 11) and Desrosiers and Lübbecke (2010) for thorough and more general
descriptions. We consider an MIP of the form:

min c> x (7.13)

s.t. Ax � b (7.14)

Bx � d (7.15)

x 2 Zn (7.16)

wherec, x, band d are vectors andA and B are matrices. To get a lower bound of the model
(7.13) � (7.16) the linear programming (LP) relaxation is solved. In Figure 7.1 an example of
the solution space is illustrated.

Ax � b Bx � d

LP solution space

Integer solution

Figure 7.1: Illustration of the solution space.

The idea of the Dantzig-Wolfe decomposition for an MILP is to take the convex hull of
f x 2 X j Bx � dg, and replace it by variables. For simplicity, we assume that the convex hull
conv(f x 2 X j Bx � dg) is a polytope. Then any pointx in this polytope can be written as a
convex combination of the extreme points, i.e., if

�
xh

	
h2H

is the set of all the extreme points
of conv(f x 2 R j Bx � dg), then x can be written as follows:
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X

h2H

xh � h = x (7.17)

X

h2H

� h = 1 (7.18)

� h � 0; 8h 2 H (7.19)

We can take this representation and insert it into the LP-relaxation of the model (7.13) �
(7.16):

min
X

h2H

�
c> xh

�
� h (7.20)

s.t.
X

h2H

�
Axh

�
� h � b (7.21)

X

h2H

� h = 1 (7.22)

� h � 0; 8h 2 H (7.23)

Model (7.20) � (7.23) is referred to as the LP relaxation of the Dantzig-Wolfemaster problem.
Let z�

IP be the optimal objective value of the model (7.13) � (7.16), letz�
LP be the optimal

objective value of the LP relaxation of the same model and letz�
DW be the optimal objective

value of the model (7.20) � (7.23). Then the bene�t of rewriting the model is that the LP
relaxation of the Dantzig-Wolfe master problem is a stronger relaxation in the sense that we
have the following relation:

z�
LP � z�

DW � z�
IP (7.24)

Figure 7.2 illustrates the impact on the solution space whenBx � d from Figure 7.1 is
replaced byconv(f Bx � d; x 2 Z ng).

Explicitly describing model (7.20) � (7.23) can be di�cult as the number of extreme points
in conv(f x 2 X j Bx � dg) can be exponentially large. So a way to solve the model is to start
with a restricted set H 0 � H and then solve the model (7.20) � (7.23) with this restricted set.
The model with this restricted set is referred to as therestricted master problem(RMP). Let
� be the dual vector of the constraints (7.21) and� 0 be the dual variable of constraint (7.22).
For a dual solution (�; � 0) the reduced cost of a columnh 2 H is ch = ( c � A> � )> xh � � 0. If
the dual solution is optimal then the RMP is optimal whench � 0 for every h 2 H . We know
that ch � 0 for every h 2 H 0, but there may exist some columnh 2 HnH 0 wherech < 0 so we
need to check if any such column exist. This can be done by solving the following problem,
known as thepricing problem (PP):

min (c � A> � )> x � � 0 (7.25)

s.t. Bx � d (7.26)

x 2 Zn (7.27)
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Ax � b conv(f Bx � d; x 2 Zn g)

LP solution space

Eliminated by DW

Integer solution

Figure 7.2: Illustration of the solution space of the master problem.

If PP contains any solution where the objective value is negative, then the RMP is not
proven optimal, and we need to add the solution as a column to the RMP. This process is
known as thecolumn generationalgorithm. First solve the RMP to obtain the dual solution
(�; � 0). Given the dual solution �nd a solution for model (7.25) � (7.27) with a negative
objective value. If a solution with a negative reduced cost exists, then extend the restricted set
H 0 with this solution and iterate the process. We continue this iterative process until the model
(7.25) � (7.27) does not contain any solution with a negative objective value. This iterative
process is illustrated in Figure 7.3.

Master problem

Pricing problem

Dual solution �New columnxh

Figure 7.3: The iterative loop of the column generation algorithm.

Another bene�t of the Dantzig-Wolfe decomposition is that it is possible to exploit if the
constraint matrix B has ablock diagonalstructure as follows:
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B =

2

6
6
6
4

B1

B2
. . .

Bm

3

7
7
7
5

; d =

2

6
6
6
4

d1

d2
...

dm

3

7
7
7
5

(7.28)

Let I = f 1; 2; : : : ; mg and for eachi 2 I let H i be the extreme points of
conv(f x i 2 Z j B i x i � di g) where x i is the subset of variables inx that corresponds to the
submatrix B i . Similarly, ci and A i are the subvector and submatrix of the vectorc and matrix
A corresponding to the submatrixB i . Then the LP relaxation of the master problem can be
written as follows:

min
X

i 2I ;h2H i

�
c>

i xh
i

�
� h

i (7.29)

s.t.
X

i 2I ;h2H i

�
A i xh

i

�
� h

i � b (7.30)

X

h2H i

� h
i = 1; 8i 2 I (7.31)

� h
i � 0; 8i 2 I ; h 2 H i (7.32)

The columns with a negative reduced cost are then found by solving them independent
pricing problems. We use this idea to decompose the CTT.

7.3.2 Dantzig-Wolfe for the Pattern Formulation

Here, we describe how we apply the Dantzig-Wolfe decomposition to the CTT problem by
using the pattern formulation described in section 7.2. In the introduction of Martin (1999,
chapter 11) it is mentioned that the decomposition should be chosen such that the pricing
problem contains avast majority of the constraints and such that the pricing problem has a
special structure. The model we decompose is the model from section 7.2 with the additional
preprocessing that we mentioned at the end of the section. However, we do not include all the
valid inequalities described by Bagger et al. (2016). We only include the ones where all the
variables that contribute can be associated with a single day. The reason is that we decompose
the model such that we have a pricing problem for each dayd 2 D and we want to keep the
master problem simple. So we only keep the constraints that ensure integer feasibility or where
the variables contained correspond to the same day. Figure 7.4 illustrates the constraint matrix
of the model applied to data instance comp03 from the ITC2007 competition. In the �gure, the
black pixels correspond to non-zero entries in the matrix. The large rectangles illustrate the
separation of theA and B matrix and the block diagonal structure inB after we have sorted
the variables and constraints according to the days.

In Figure 7.4 the top rectangle is theA matrix and the rectangles below correspond to the
B matrix, where each rectangle is associated with a day. So decomposing the model according
to days exploits the block diagonal structure and put avast majority of the constraints in the
pricing problems.
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Figure 7.4: Illustration of the block diagonal structure of the constraint matrix for data instance
comp03 when ordered by days.

For each dayd 2 D let H d be the set of columns associated withd. Let xh
b be a binary

variable that takes value one if columnh 2 H d is selected for dayd 2 D and let � h
d be the

associated cost. For each dayd 2 D and columnh 2 H d the parameter�
k;h
c;d is one if the column

assigns coursec 2 C to pattern k 2 K c;d. Furthermore, we de�ne the setCmin � C as the set
of courses where thew substitutions (7.9) and (7.10) do not apply. Lastly, we de�ne the set
� � 2 � � , which is the set of the pattern cliques in� that contains variables from at least two
di�erent days. We formulate the LP relaxation of our master problem as follows:

min
X

c2Cmin

W MWD wc +
X

d2D ;h2H d

� h
dxh

d (7.33)

s.t.
X

d2D ;h2H d ;
k2K c;d

L k �
k;h
c;d xh

d = L c; 8c 2 C (7.34)

X

d2D ;h2H d ;
k2K c;d :L k � 1

�
k;h
c;d xh

d + wc � D min
c ; 8c 2 Cmin (7.35)

X

h2H d ;c2C;k2K c;d

ak
t �

k;h
c;d xh

d � R; 8d 2 D ; t 2 T (7.36)

X

vk
c;d 2V � ;h2H d

�
k;h
c;d xh

d � 1; 8� 2 � � 2 (7.37)

X

h2H d

xh
d � 1; 8d 2 D (7.38)

xh
d � 0; 8d 2 D ; h 2 H d (7.39)

The model (7.33) � (7.39) is very similar to the master problem that Cacchiani et al. (2013)
use for their column generation algorithm. The main di�erence is that we use the pattern
formulation instead of a compact formulation and we also include theRO constraints (7.36).
Note that we have replaced the equality sign in the convexity constraint (7.2) with an inequality
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sign. The reason is that if we consider a column for a day where no lecture is scheduled, then
this column has a cost of zero, and it will not contribute to any other constraint. We solve
the model by the beforementioned column generation algorithm. The �rst columns we add are
found by solving the model described in section 7.2 excluding the variablesw and s and all the
associated constraints to these variables, i.e., we consider only the feasibility part. The solution
to the model is then the �rst set of columns.

Let the dual variables of the constraints (7.34), (7.35), (7.36), (7.37) and (7.38) be denoted
� c, � c, � d;t , � � and � 0

d respectively. Consider an optimal dual solution
�
�; �; �; �; � 0

�
for the

restricted master problem in some iteration of the column generation algorithm. We de�ne the
parameter �

k
c to be equal to � c if c 2 Cmin and L k � 1, otherwise we set it to zero. For each

coursec 2 C, day d 2 D and pattern k 2 K c;d we de�ne � k
c;d:

� k
c;d := L k � c + �

k
c +

X

t2T

ak
t � d;t +

X

� 2 � � 2 :vk
c;d 2V �

� � (7.40)

For a day d 2 D we describe the pricing problem for that day in the following. let� k
c be

a binary variable taking value one if coursec 2 C is assigned to patternk 2 K c;d and zero
otherwise. Let sq;t be a binary variable taking value one if curriculumq 2 Q has an isolated
lecture scheduled in time slott 2 T . For each dayd 2 D let � d be a set of cliques found in
the same way as the cliques� in section 7.2. However, here we restrict the cliques to be in the
subgraph of the pattern clique graph induced by considering only the nodes belonging to day
d. Note that, as we apply the substitutions mentioned in section 7.2, the variablesq;t is only
de�ned for jCq;d;t j > 1. Lastly, let � k

c;d be the cost of patternk 2 K c;d for coursec 2 C and day
d 2 D after the substitutions. We can then formulate the pricing problem for dayd 2 D :

min
X

q2Q ;t2T :

jCq;d;t j> 1

W IL sq;t +
X

c2C;k2K c;d

�
� k

c;d � � k
c;d

�
� k

c � � 0
d (7.41)

s.t.
X

k2K c;d

� k
c = 1; 8c 2 C (7.42)

X

vk
c;d 2V �

� k
c � 1; 8� 2 � d (7.43)

X

c2Cq ;k2K

ak
t � k

c � sq;t; 8q 2 Q ; t 2 T : jCq;d;t j > 1 (7.44)

� k
c 2 B; 8c 2 C; k 2 K c;d (7.45)

sq;t 2 B; 8q 2 Q ; t 2 T (7.46)

Consider a solution
�
�; s

�
to the pricing problem (7.41) � (7.46) for day d 2 D . If the

solution has a negative objective value then we can add it to the master problem as a new
column h 2 H d by setting �

k;h
c;d = �

k
c for every coursec 2 C and pattern k 2 K c;d.

We also include the valid inequalities from Bagger et al. (2016) that can be associated with
the speci�c day. The constraints (7.36) could be included in the pricing problem instead of the
master problem as each of them can be associated with a speci�c day. However, keeping these
constraints in the master ensures that the pricing problem has aspecial structure. We describe
how we can exploit thisspecial structure in section 7.4.
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7.4 Preprocessing, Inequalities and Solution Method for
the Pricing Problem

The pricing problem described in section 7.3.2 can be hard to solve for a generic MIP solver. In
this section we describe the techniques we use to speed up the solution process. In section 7.4.1
we describe how we remove some of the variables of the pricing problem in an iteration of
the column generation algorithm. In section 7.4.2 we describe how we can use the presolving
technique to derive inequalities. In section 7.4.3 we describe how we use Local Branching as
described by Fischetti and Lodi (2003) to solve the pricing problem.

7.4.1 Preprocessing

In this section we provide a preprocessing technique to eliminate some of the variables from
the pricing problem. The technique is based on the objective function coe�cients of the�
variables. Since the coe�cients change in each iteration of the column generation algorithm,
the variables we remove in one iteration must be reinserted for the next iteration.

Consider some coursec 2 C in the pricing problem for the day d 2 D in any iteration of
the column generation algorithm. Consider the patternsk1; k2 2 K c;d wherek1 6= k2. The idea
of the preprocessing technique is to check for any feasible solution wherec is assigned tok2,
whether assigningc to k1 instead is still a feasible solution and whether the objective value
does not increase by this change. First, we must be able to guarantee that the new solution
is feasible. Here we exploit that we make the room occupancy constraints part of the master
problem, so we only have to consider the constraints (7.42) and (7.43) in the pricing problem for
feasibility. All the other constraints in the pricing problem are used for calculating the values
of the s variables. Sincec is assigned tok2, then the value of the variable� k2

c is one. Assigning
c to k1 instead ofk2 corresponds to setting the value of the� k2

c to zero and the value of� k1
c to

one. Both � k1
c and � k2

c are in the constraint (7.42) associated withc, which means that since
the solution was feasible before, then this constraint cannot be violated in the new solution.
Let Gd = ( Vd; Ed) � G be the subgraph, whereVd � V is the set of nodes associated with dayd
and Ed � E is the set of edges where both end points are inVd. Every edge inEd is contained
in at least one of the constraints (7.43). To check if the constraints (7.43) are ful�lled we need
to consider the neighbourhoods inGd of the nodesvk1

c;d; vk2
c;d 2 Vd. Let the neighbourhood of

vk1
c;d, excluding every node that corresponds toc, be denotedN k1

c;d � V d. Note that vk1
c;d and vk2

c;d
must be connected by an edge sincec cannot be assigned to more than one pattern. Assume
that every node inN k1

c;d is also a neighbour ofvk2
c;d. vk2

c;d may have other neighbours that are not
neighbours ofvk1

c;d. This case is illustrated in Figure 7.5.
For any solution wherec is assigned tok2 the values of all the variables that correspond to

the neighbours ofvk2
c;d must be zero. SinceN k1

c;d is contained in the neighbourhood ofvk2
c;d, then

all the variables in N k1
c;d must also be zero. When we reassignc from k2 to k1 it means that we

are changing the value for� k2
c from one to zero and the value for� k1

c from zero to one. As all
of the variables inN k1

c;d are also zero and we have now changed� k2
c to zero � k1

c , then in all the
constraints (7.43) where� k1

c contributes all other variables must be zero, which means that the
solution must be feasible. We did not account for the nodesvk

c;d for k 2 K c;dnf k1; k2g, but as
c is assigned to exactly one pattern, then all these variables must be zero as well. As the new
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vk1
c;d vk2

c;d

N k1
c;d

Figure 7.5: Illustration of the nodes in the pattern con�ict graph Gd corresponding to the
patterns; k1 and k2 for coursec and the neighbourhoodN k1

c;d � V d.

solution is feasible, we now need to check if we can guarantee that the objective value does not
increase.

Consider the objective function (7.41) which consists of a sum of thes variables followed by a
sum of the� variables and a constant. The change of the sum of the� variables is the di�erence
between the coe�cients of � k1

c and � k2
c no matter how all the other courses are assigned. We

cannot know the change in the sum of thes variables as it depends on the assigned patterns of
the other courses. However, if we assume that we know an upper bound� k1 ;k2

c;d on how much the
value can increase, then the total objective value cannot increase under the following condition:

�
� k2

c;d � � k2
c;d

�
�

�
� k1

c;d � � k1
c;d

�
� � k1 ;k2

c;d (7.47)

The upper bound � k1 ;k2
c;d is determined by how many isolated lectures that at most get

introduced when we make the reassignment. So we need to consider the di�erence in the time
slots that are contained in the two patterns. As an example letjT j = 6 and let pattern k2

contain lectures in time slotst2 and t3 and let pattern k1 contain lectures in time slotst2, t3 and
t5. This example is illustrated in a matrix in Figure 7.6. Each row in the matrix corresponds
to a pattern and the columns correspond to the time slots. A cross denotes that the pattern
contains a lecture in the corresponding time slot.

t1 t2 t3 t4 t5 t6

k2

k1

Figure 7.6: Illustration of the example of changing out patternk2 with k1. Here a lecture is
added.

As we are reassigningc from k2 to k1, then this means thatc is assigned an extra lecture in
time slot t5. Since the patternk1 does not contain a lecture in either time slott4 nor in time
slot t6, then the lecture in t5 is potentially a new isolated lecture for every curriculum thatc
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belongs to. So for every lecture that is added in the reassignment, ifk1 does not have a lecture
in an adjacent time slot, then there is a potentially isolated lecture.

The next step is to consider the case where lectures are removed. Consider an example
wherek2 contains lectures in time slotst3 and t5 and k1 contains a lecture int3. This example
is illustrated in Figure 7.7.

t1 t2 t3 t4 t5 t6

k2

k1

Figure 7.7: Illustration of the example of changing out patternk2 with k1. Here a lecture is
removed.

Before the reassignment,c has a lecture int5, and after the reassignment, it does not. The
time slots that are adjacent,t4 and t6, can then become potentially isolated lectures as we do
not know if some other courses belonging to the same curricula have lectures scheduled in these
time slots. However ask1 contains a lecture that is adjacent tot4, then only t6 can become
a potential isolated lecture. Even thoughk1 contains a lecture int3 and none in the adjacent
time slots, then this is not counted as a potentially isolated lecture. The reason is thatk2 also
contains a lecture int3, and therefore, if it is an isolated lecture, it would also have been so
before, and thus does not change the objective value. So when a lecture gets removed from the
reassignment, we consider the adjacent time slots as potentially isolated lectures unless there
are lectures adjacent to those time slots in the new pattern.

After we have found all the potentially isolated lectures, we iterate through every curriculum
that c belongs to, i.e.,Qc. For eachq 2 Q c we consider all the potentially isolated lectures
previously found. We then remove every time slott whereak

t = 0 for every k 2 K c0;d and every
c0 2 Cq, i.e., if no course can be scheduled int since this means that there cannot be an isolated
lecture. As an example let the potential isolated lectures forq be in time slots t2, t3 and t5

after the removal. This example is illustrated in Figure 7.8.

t1 t2 t3 t4 t5 t6

Figure 7.8: Illustration of the potential isolated lectures.

Let a sequence of these potentially isolated lectures be a set of consecutive time slots where
there is a lecture in each of them but no lecture after the last and before the �rst lecture. In
the example in Figure 7.8 there are two sequences; the �rst sequence consists of time slotst2

and t3, and the second sequence consists of time slott5. It is not possible to have two isolated
lectures in adjacent time slots, so the maximum number of isolated lectures in each sequence
is the number of time slots in the sequence divided by two and rounded up.

So to calculate the value of� k1 ;k2
c;d we start by setting it to zero. Then we iterate over all

the curricula Qc. For each curriculum we iterate over every sequencef t i ; t i +1 ; : : : ; t j g, after we
removed some of the time slots as mentioned before, and then we add the cost of the maximum
number of isolated lectures in this sequence to� k1 ;k2

c;d :
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� k1 ;k2
c;d  � k1 ;k2

c;d + W IL

�
j � i + 1

2

�
(7.48)

Now we have calculated an upper bound on the increase in the cost of the isolated lectures.
For a coursec 2 C and pattern k1; k2 2 K c;d we say that k1 dominatesk2 if (7.47) is ful�lled.
If one pattern dominates another, then it implies that we can remove the dominated pattern
from the solution. However, we cannot remove all patterns that are dominated. As an example,
consider a case where coursec has �ve patterns; k1, k2, k3, k4 and k5. Assume thatk1 dominates
k2, k2 dominatesk3, k3 dominatesk4, k4 dominatesk5 and k5 dominatesk1. This example is
illustrated in Figure 7.9.

k1

k2

k3k4

k5

Figure 7.9: Illustration of �ve patterns of the example. The arrows illustrate the dominance
between the patterns.

In the example, all the patterns are dominated so we could �x them all to zero. However,
this would make the problem infeasible asc must select exactly one of them. So the way we do
the preprocessing is by considering one patternk at a time, and if it is dominated by another
pattern which is not �xed to zero, then we �x k to zero, i.e., we change the upper bound of the
variable from one to zero. In the example from Figure 7.9 we would for instance start withk5.
Sincek5 is dominated byk4 and k4 has not been �xed to zero, then we �xk5 to zero. We then
go to k4 which is dominated byk3, so we �x k3 to zero and so we continue until we get tok1.
k1 is dominated byk5 but as k5 has already been �xed to zero we do not �xk1 to zero.

We apply the preprocessing technique described in this section before we solve the pricing
problem in every iteration of the column generation algorithm. When we have solved the pricing
problem we thenun�x the variables again, i.e., we change the upper bounds of the variables
back to one, so they are ready for the next iteration.

7.4.2 Optimality Inequalities

In this section we describe an extension to the preprocessing technique from section 7.4.1.
Like in the preprocessing phase, the inequalities we derive here are only applicable in a single
iteration of the column generation algorithm. Consider some coursec 2 C in the pricing problem
for a day d 2 D in any iteration of the column generation algorithm. Consider the patterns
k1; k2 2 K c;d, wherek1 6= k2. In section 7.4.1 we only considered the patternsk1 and k2 where
we could guarantee that if we had a feasible solution wherec was assigned tok2, then we
could create a new feasible solution by reassigningc to k1. In this section we do not keep this
restriction, but consider every pair of patternsk1 and k2 where the condition (7.47) is ful�lled,
i.e., wherek1 dominatesk2.
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Let the neighbourhood of the nodevk1
c;d in Gd, except for the nodes corresponding toc, be

denoted N k1
c;d 2 Vd. In section 7.4.1 every node inN k1

c;d was a neighbour ofvk2
c;d. As we have

removed this restriction in this section, then there might be some nodes inN k1
c;d which are

not neighbours ofvk2
c;d. We denote these nodes byN k1nk2

c;d , i.e., every node inN k1nk2
c;d is not a

neighbour ofvk2
c;d, but every node inN k1

c;d \ N k1nk2
c;d is a neighbour ofvk2

c;d. An illustration of this
is given in Figure 7.10.

vk1
c;d vk2

c;d

N k1
c;d \ N k1nk2

c;d

N k1nk2
c;d

Figure 7.10: Illustration of the nodes in the pattern con�ict graphGd corresponding to the
patterns; k1 and k2 for coursec and the set of nodesN k1nk2

c;d � V d and N k1
c;d \ N k1nk2

c;d .

Given any feasible solution wherec is assigned tok2 then reassigningc to k1 is a feasible
solution only if the values of the variables corresponding to the nodes inN k1nk2

c;d are all zero.

This means that if none of the variable inN k1nk2
c;d is selected (has a value of one), then we can

reassignc to k1 without increasing the objective value. So it can only be bene�cial to assign
c to k2 if at least one of the variables inN k1nk2

c;d is selected, which leads us to the following
inequality:

� k2
c �

X

vk
c0;d

2N k 1nk 2
c;d

� k
c0 (7.49)

Note that if N k1nk2
c;d = ; , then the right-hand side of the inequality is zero, and we have

the case from the preprocessing in section 7.4.1. Hence, we only considerk1 and k2 where
N k1nk2

c;d 6= ; . Similar to the preprocessing we have to be careful when we add these constraints
if we have a cyclic dominance as in the example of Figure 7.9. We get back to how we handle
this case. We do not add the inequalities (7.49) to the pricing problem as the number of these
constraints isO

�
jK c;dj

2�
, instead we do an aggregation.

Consider again the coursec and pattern k1 2 K c;d. Let V0 � K c;d be the set of patterns
where N k1nk0

c;d 6= ; for every k0 2 V 0 and which are all dominated byk1, i.e., for everyk0 2 V 0

we have that
�
� k0

c;d � � k0

c;d

�
�

�
� k1

c;d � � k1
c;d

�
� � k1 ;k0

c;d . In the neighbourhoodN k1
c;d we let N k1nV0

c;d
denote the nodes that are connected to none of the nodes represented by the patterns inV0.
We illustrate this in Figure 7.11.
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vk1
c;d

V0

N k1nV0

c;d

Figure 7.11: Illustration of the nodes in the pattern con�ict graphGd corresponding to the
coursec, the pattern k1 and the set of patternsV0. The set of nodesN k1nV0

c;d � V d is the
neighbourhood of the nodevk1

c;d excluding the neighbourhoods of the nodes inV0 and all nodes
corresponding to coursec.

As for the pair of patterns in Figure 7.10, we consider any feasible solution where none
of the nodes inN k1nV0

c;d are selected, i.e., the corresponding variables are all set to zero. In
this solution it is not bene�cial to assign c to any of the patterns in V0, as we can create a
new solution by reassigningc to k1 without increasing the objective value. So we can add the
following inequality:

X

vk 02V 0

� k0

c �
X

vk 0
c0;d

2N k nV 0

c;d

� k0

c0 (7.50)

As mentioned earlier we have to be careful about the dominance cycles when we add these
inequalities. The way we get around this issue is to create a listL of all the patterns that we
allow to be included in the left-hand-side of the inequality (7.50). Initially this list contains all
the patterns of c, i.e., L  K c;d. We then iterate through every patternk1 2 K c;d, removek1

from L and construct the setV0. We then remove the patterns fromV0 that are not in the set
L, i.e., V0  V 0 \ L . If V0 is non-empty, then we add the inequality (7.50) and continue until
all courses and patterns have been processed.

7.4.3 Local Branching

In this section we provide a brief introduction to Local Branching introduced by Fischetti
and Lodi (2003) and how we apply it to the pricing problem. In our description of the local
branching framework we focus on our implementation and do not cover every aspect of the
techniques described by Fischetti and Lodi (2003), instead we refer to their article for details
and a more general description.

Given a feasible solution� let �
�
�; �

�
be the distance between the solution� and any other

solution � . We de�ne the distance measurement to only count the number of binary variables
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that change value from zero to one:

�
�
�; �

�
:=

X

c2C;k2K :�
k
c =0

� k
c

This distance measurement is referred to as thesymmetric hamming distance(Fischetti and
Lodi, 2003). Given a solution� and an integer valuek we can branch the problem into two
subproblems:

�
�
�; �

�
� k

(left branch)

_ �
�
�; �

�
� k + 1

(right branch)

In the basic local branching framework the left branch is solved by a generic MIP solver to
optimality. If the optimal solution is an improvement of � , then this solution can be used to
branch further on in the right branch.

When the basic local branching framework cannot �nd improving solutions, then Fischetti
and Lodi (2003) describe methods to diversify. In its essence, the goal of the diversi�cation is
to �nd a new solution outside the neighbourhoods that have been explored. If such a solution
can be found, then the local branching framework can be reapplied on that solution.

The question that remains is how to select the solutions on which to apply the local branch-
ing framework. The goal of the pricing problem is to �nd solutions with a negative objective
value. So if we consider some solutions which almost have a negative objective value, then we
can use them in the local branching framework.

Assume that we are in some iteration of the column generation algorithm where we have
added columns to the master problem in previous iterations. As we are considering an optimal
solution of the master problem, none of these columns has a negative reduced cost, but some
of them might have a reduced cost of zero, e.g., the columns that are basic. The reduced cost
of these columns corresponds to the objective value of the pricing problem to these solutions.
Hence, the previously generated columns with a reduced cost of zero can be used as the solutions
for the local branching framework.

In our implementation, we take all the previously generated columns with a reduced cost
less than or equal to10� 5 (due to possible rounding errors). For each of these columns we
check how many of the variables that are selected in the corresponding solution that has been
�xed to zero in the preprocessing from section 7.4.1. If at leastk + 1 variables have been
�xed to zero, then adding the local branching constraint makes the model infeasible. We then
put the columns that do not lead to an infeasible model in a list ordered such that the �rst
column in the list is the last one that was previously generated and the second column in the
list is the second to last previously generated column. We use the �rst column in the list as
the initial solution for the basic local branching framework, and the remaining columns are
used for diversi�cation. To illustrate this, consider an example of four previously generated
feasible columns;�

1
, �

2
, �

3
and �

4
. We denote these columns as0-columns. In Figure 7.11a a

two-dimensional representation of the solution space of the pricing problem is represented with
the four 0-columns.

We �rst add �
�

�; �
1
�

� k to the model and solve it to optimality. Assume that the

optimal solution �
1
1 has a lower objective value than�

1
. We then replace�

�
�; �

1
�

� k by
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(a) The beginning of the search

�
1 �

2

�
3

�
4

(b) During the search (c) The end of the search

Previously generated0-column

Current solution
Next solution
Negative reduced cost column

Removed neighbourhood

Current neighbourhood

Next neighbourhood

Figure 7.12: Illustration of the solution space of the example.

�
�

�; �
1
�

� k +1 and add�
�

�; �
1
1

�
� k to the model. Again we solve the model to optimality

and �nd the solution �
1
2. In Figure 7.11b the current state of the search is illustrated. The

solution �
1
1 is illustrated as a triangle and denoted as thecurrent solution. The solution �

1
2 is

illustrated as a small diamond and denoted as thenext solution.
After the neighbourhood of�

1
2 is explored, then no further improving solutions are found.

The solution �
2

is skipped as it is inside the searched neighbourhoods. Next, the solution�
3
,

which is outside the neighbourhoods, is provided. The local branching framework is applied
once again, leading to the improved solution�

2
1. No improving solutions are found in the

neighbourhood of�
2
1, and so the neighbourhood of the last solution�

4
is searched. Here no

improving solutions are found, and the local branching is stopped. In Figure 7.11c the solution
space after running the local branching framework on all the0-columns is illustrated. The
squares mark the0-columns, the dots mark the columns found with a negative reduced cost

If any columns with a negative reduced cost were found during the local branching search,
then we add these to the master problem and stop. We do not search for solutions in the
remaining solution space in this iteration of the column generation algorithm. If no columns
with a negative reduced cost were generated, then we solve the model to optimality, with all
the added right local branching constraints�

�
�; �

�
� k + 1, and any columns found here with

a negative reduced cost is added to the master problem.

7.5 Computational Results

In this section we describe our computational experiments and compare our results with other
approaches from literature. We have conducted all tests on an Intel® Core— i7-6700K CPU @
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4.00GHz processor with four cores and eight logical processors and 32GB memory, running Win-
dows 10. We use Gurobi version 7.0.1 provided by Gurobi Optimization, Inc. (2016) both for the
master problem and in the pricing problems. We set the presolver to the most aggressive set-
ting (Presolve=2), the number of threads to be equal to the number of processors (Threads=8)
and the MIP gap to zero (MIPGap=0.0). The cut-o� value is set to � 10� 5 (CUTOFF=-1e-
5), such that the solver will not return solutions with objective values which are greater than
� 10� 5. We set the limit on the solutions to be returned to be the maximum possible (Solution-
Limit=int.MaxValue) so we can extract all the columns that Gurobi generates with a negative
reduced cost. The remaining parameters are set to their default value. We have implemented
our code in C#, and we use the Parallel.ForEach method from the System.Threading.Tasks
library to solve the pricing problems in parallel as they are independent.

We test our algorithm on 20 of the 21 data instances from ITC2007 named comp01 through
comp21. The data instance that we do not include in the tests is comp11. The reason for
not including this instance is the same reason that Cacchiani et al. (2013) do not include this
instance in their tests, which is that the best-known upper bound is zero, and so we cannot
improve the trivial lower bound of zero.

As the pricing problems that we solve are the same, except for the objective function, in
each iteration, we build the model in Gurobi once and then change the objective function
accordingly in each iteration. All the variables that areremoved in the preprocessing phase
described in section 7.4.1 are not removed from the model, but the upper bounds are set to zero
instead. After the preprocessing the inequalities from section 7.4.2 are added, and then the
local branching framework is provided with the model. All the calculations for the potentially
isolated lectures in section 7.4.1 and 7.4.2 are performed when the pricing problems are built
and the information is stored in a table so that we do not have to recalculate these values.
We retrieve every column found by Gurobi that has a negative reduced cost and add them to
the master problem. Afterwards, we remove all the constraints that we added in the pricing
problems and set the upper bounds back to one.

We need to decide the value fork in the local branching framework. Fischetti and Lodi
(2003) suggest to set it between 10 and 20, which in our case is between 5 and 10, as we
are using thesymmetric hamming distance. So we have tested the algorithm fork = 5 and
k = 10. Furthermore, we have also tested fork = 2. The reason for testing fork = 2 is to
mimic a 2-exchange heuristic (Wolsey, 1998). The total running time, including the time of
building the model, the preprocessing and the enumeration of cliques, is reported in Table 7.2
for k 2 f 2; 5; 10g. The timings are reported in the formathh:mm:sswherehh is the amount of
hours, mmis the amount of minutes andss is the seconds. In the line (Total) the total amount
of time spent is reported for each value ofk and (Best) counts the number of times each value
of k has the lowest running time.

In Table 7.2 we see that the algorithm is fastest fork = 2 regarding the total time to solve
all instances. In the table we also see that in 13 out of the 20 instances the settingk = 2 is
faster than for the other values. Thus, in the subsequent tests we report the results fork = 2.

In Table 7.3 we report the statistics of the column generation algorithm. For each data in-
stance we report the number of iterations (Iter.). Then in the two following columns (Columns),
we report the number of columns that were generated in total (Total) and how many of them
that where generated by local branching (LocBra.). In the next four columns (Time) we report
the timings of the algorithm. The total time spent by the algorithm is reported in the column
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Table 7.2: The total time spent in the column generation algorithm for di�erent values ofk.

Instance k = 2 k = 5 k = 10
comp01 4:49 4:56 5:06
comp02 41:42 49:49 39:16
comp03 19:13 26:11 31:34
comp04 13:25 11:02 14:01
comp05 1:24:43 3:09:19 4:27:34
comp06 50:56 1:21:40 1:14:51
comp07 34:41 35:22 38:58
comp08 4:50 13:22 12:58
comp09 25:02 18:26 20:14
comp10 1:06:11 48:22 38:57
comp12 28:12:21 30:33:25 41:45:45
comp13 14:58 28:25 20:38
comp14 15:16 13:43 18:37
comp15 18:45 22:32 31:27
comp16 57:43 49:58 55:07
comp17 58:38 1:37:46 1:50:46
comp18 59:39 1:08:27 1:47:18
comp19 10:40 20:53 18:37
comp20 1:49:58 1:58:21 1:38:43
comp21 1:03:57 1:34:33 1:42:48

Total 40:47:27 47:06:31 60:13:15
Best 13 4 3

(Total). The time spent on building the models, enumerating the cliques and preprocessing the
pattern formulation is reported in the column (Build). The next two columns report the total
time spent on solving the master problem (Master) and the total time spent on solving the pric-
ing problems (Pricing). In the time spent on the pricing problem, the preprocessing, constraint
generation and local branching is included. The timings are given in the formathh:mm:ssas
in Table 7.2. The last column (Patterns Removed) reports the percentage of pattern variables
that were removed in each iteration on average by the preprocessing in the pricing problems.
The last line reports the averages of the columns generated by local branching compared to
the total number of columns, the average time spent in each part compared to the total time
and the average number of pattern variables removed compared to the total number of pattern
variables in the pricing problems.

In Table 7.3 we see that the local branching framework is responsible for more than half of
the columns generated on average. We also see that more than 90% of the total running time
is spent on average on solving the pricing problems. Thus, more research on solution methods
for the pricing problems is needed before the column generation algorithm can e�ectively be
extended to a Branch & Price algorithm. Furthermore, we see that approximately 1% of the
time is spent on average on solving the master problem, and lastly, 7.5% of the time is on
average spent on building all the models and making the precalculations. We also see that
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Table 7.3: Statistics of the column generation algorithm.

Columns Time Patterns
Instance Iter. Total LocBra. Total Build Master Pricing Removed
comp01 37 1058 433 4:49 2:32 0 2:13 45.8%
comp02 191 13776 9160 41:42 1:55 18 39:13 40.1%
comp03 150 6762 1946 19:13 1:19 5 17:37 40.3%
comp04 227 7786 3821 13:25 56 8 12:03 50.7%
comp05 133 3909 2425 1:24:43 2:39 2 1:21:43 31.5%
comp06 284 20509 12076 50:56 1:34 1:01 47:52 48.1%
comp07 197 14451 6109 34:41 2:10 42 31:24 47.1%
comp08 239 6038 870 4:50 49 8 3:34 51.5%
comp09 208 10274 6914 25:02 56 9 23:42 46.3%
comp10 252 25381 18317 1:06:11 1:36 1:22 1:02:44 46.5%
comp12 301 12474 9794 28:12:21 3:27 31 28:07:14 28.6%
comp13 222 8641 3273 14:58 52 9 13:39 47.3%
comp14 180 10067 6079 15:16 1:10 10 13:40 47.3%
comp15 153 7119 2437 18:45 1:18 6 17:10 40.0%
comp16 236 20077 13168 57:43 1:34 48 54:55 49.8%
comp17 266 16640 8751 58:38 1:29 36 56:05 48.5%
comp18 231 5606 4205 59:39 1:22 5 57:42 46.1%
comp19 183 7857 4054 10:40 1:06 7 9:14 44.7%
comp20 307 32159 23802 1:49:58 1:55 2:34 1:44:50 46.3%
comp21 285 15251 5710 1:03:57 2:20 36 1:00:33 43.2%
Avg. 53.5% 7.5% 1.1% 90.1% 44.5%

almost half of the pattern variables are removed on average in each iteration of the algorithm.
Next, compare the lower bounds that we obtained for the four open instances with the best-
known bounds found reported on the website The Scheduling and Timetabling Research Group
at the University of Udine, Italy (2015). We report the results in Table 7.4, where we have
updated the best-known lower bounds with the bounds by Bagger et al. (2016). The last line
in the table reports the average gap from the best-known upper bound.

Table 7.4: Comparison with the best-known bounds for the four open instances.* Updated
value from Bagger et al. (2016).

Best DW
Instance UB LB Gap LB Gap
comp03 64 54* 16% 58 9%
comp05 284 211 26% 247 13%
comp12 294 175* 40% 248 16%
comp15 62 54* 13% 58 6%
Avg. 24% 11%

In Table 7.4 we see that our approach obtains a lower bound, which is an improvement of
the best-known lower bound for all four of the open data instances. These improvements reduce
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the average gap from the best-known upper bounds on these four instances from 24% to 11%.
In Table 7.5 we compare the lower bounds we obtained with the existing literature on the

data instances comp01�comp10 and comp12�comp14, as these were the only data instances
that were available for all the methods in literature. We compare the lower bounds obtained by
our approach (DW) with BMPR10 (Burke et al., 2010b), BMPR12 (Burke et al., 2012), LL12
(Lach and Lübbecke, 2012), HB11 (Hao and Benlic, 2011), CCRT13 (Cacchiani et al., 2013),
BKSS16 (Bagger et al., 2017) and BDG16 (Bagger et al., 2016). If an article reports multiple
lower bounds then we take the highest lower bound they obtain for each data instance. For
each approach and each instance we mark the lower bound obtained in bold font if the bound
is at least as good as the other approaches in the same table. If an approach obtains a lower
bound which is better than all the other approaches in the same table then we mark it with
an underline. In the table, we also report the average gap from the best-known upper bounds
(Avg.). In the second last line (Best) we report the number of times when each approach
obtains a lower bound which is at least as good as the other approaches. In the last line we
report the number of times when each approach obtain a lower bound which is better than the
other approaches. We use the same notation throughout all the tables.

Table 7.5: Comparison of the lower bounds for the di�erent approaches.

In
sta

nc
e

UB BM
PR10

BM
PR12

LL
12

HB11
CCRT13

AN14
BKSS16

BDG16

DW

comp01 5 5 5 4 4 5 0 5 0 0
comp02 24 1 6 11 12 16 16 8 24 20
comp03 64 33 43 25 38 52 28 38 54 58
comp04 35 35 2 28 35 35 35 35 35 35
comp05 284 119 183 108 183 166 48 186 210 247
comp06 27 16 6 10 22 11 27 16 26 23
comp07 6 6 0 6 6 6 6 6 6 6
comp08 37 37 2 37 37 37 37 37 37 37
comp09 96 68 0 46 72 92 35 74 96 92
comp10 4 4 0 4 4 2 4 4 4 4
comp12 294 101 7 53 109 100 99 142 175 248
comp13 59 54 0 41 59 57 59 59 59 59
comp14 51 42 0 46 51 48 51 44 51 49

Avg. 28.0% 77.5% 35.0% 19.4% 21.7% 31.0% 20.8% 14.3% 13.7%

Best 5 1 3 6 4 7 6 8 8
1 2 3

In Table 7.5 we see that our approach obtains a lower bound which is at least as good as the
lower bounds of the other approaches on eight of the instances. On three of these instances the
lower bound we obtain is better than for the other approaches. Furthermore, we see that our
approach has the lowest average gap (13.7%) to the best-known upper bounds. In Table 7.6 we
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compare our results on all 20 data instances to HB11, CCRT13, AN14, BKSS16 and BDG16
since they report results for all these instances.

Table 7.6: Comparison of the lower bounds for the di�erent approaches for all 20 data instances.

Instance UB HB11 CCRT13 AN14 BKSS16 BDG16 DW
comp01 5 4 5 0 5 0 0
comp02 24 12 16 16 8 24 20
comp03 64 38 52 28 38 54 58
comp04 35 35 35 35 35 35 35
comp05 284 183 166 48 186 210 247
comp06 27 22 11 27 16 26 23
comp07 6 6 6 6 6 6 6
comp08 37 37 37 37 37 37 37
comp09 96 72 92 35 74 96 92
comp10 4 4 2 4 4 4 4
comp12 294 109 100 99 142 175 248
comp13 59 59 57 59 59 59 59
comp14 51 51 48 51 44 51 49
comp15 62 38 52 28 38 54 58
comp16 18 16 13 18 13 18 17
comp17 56 48 48 56 44 53 56
comp18 61 24 52 27 36 52 52
comp19 57 56 48 46 56 57 51
comp20 4 2 4 4 0 4 3
comp21 74 61 68 42 57 74 71

Avg. 22.3% 19.0% 28.8% 26.2% 10.9% 12.2%

Best 6 6 10 6 13 11
1 4 4

In Table 7.6 we see that our approach obtains a lower bound which is at least as good as
the lower bound obtained by the other approaches on 11 of the instances. On four of these
instances, our approach obtains a better lower bound than the other approaches. These four
instances are the open instances. Lastly, we see that our approach obtains the second lowest
average gap (12.2%) to the best-known upper bounds, where the original pattern formulation
has the lowest average gap (10.9%).

As we solved the LP-relaxation of the Dantzig-Wolfe master problem, it could be interesting
to do more research in extending the algorithm into a full Branch & Price algorithm. It could
also be interesting to derive cutting plane techniques that can be incorporated in the column
generation algorithm to push the bounds even further as our approach shows great potential.
As the local branching is a generic method, it can be used in pricing problems for other column
generation algorithms. To the best of our knowledge, this work is the �rst implementation of
local branching in the pricing problem for a column generation algorithm. We think that many
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pricing problems, in general, �ts well with local branching since every iteration of the column
generation algorithm provides new solutions to be used in the framework.

7.6 Conclusion

In this article we applied a Dantzig-Wolfe Decomposition on a pattern formulation for the
Curriculum-based Course Timetabling problem. The pattern formulation is based on enu-
merating all the time schedules to which the courses can be assigned each day. The pattern
formulation only considers the time schedule of the problem. Thus, the formulation is a lower
bounding method for the original problem. The decomposition resulted in a pricing problem
for each day, where each pricing problem generates a schedule for an entire day. We showed
that the pricing problem contained a special structure which we exploited in a preprocessing
phase. We then showed how the preprocessing technique could be used to derive inequalities
for the pricing problem. Lastly, we described how we applied Local Branching to solve the
pricing problem. To the best of our knowledge, this is the �rst time Local Branching is imple-
mented in a pricing problem, but it is general enough to be applied in other column generation
algorithms. We tested our algorithm on 20 data instances used in the second International
Timetabling Competition. On these instances the preprocessing technique we applied removed
more than 40% of the pattern variables from the pricing problem on average. We compared the
lower bounds that we obtained with other approaches from literature. In 11 of the instances
our algorithm obtained a lower bound which was at least as good as the other approaches. Four
of these instances are stillopen, meaning that the best-known upper bound does not equal the
best-known lower bound. In all of these four instances our algorithm improved the lower bound,
such that the average gap was decreased from 24% to 11%. We showed that more than 90% of
the total time of the algorithm were spent on solving the pricing problem, and we concluded
that more research is needed in the pricing problems before the algorithm is extended into a
full Branch & Price Algorithm.
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