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Abstract

Every semester universities are faced with the challenge of creating timetables for the courses.
Creating these timetables is an important task to ensure that students can attend the courses
they need for their education. Creating timetables that are feasible can be challenging, and
when di erent preferences are taken into account, the problems become even more challenging.
Therefore, automating the processes of generating these timetables is a great help for the plan-
ners and the universities. Scheduling and timetabling has been studied before in the literature,
and two international conferences are dedicated to this research eld.

This thesis considers a University Timetabling problem, more speci cally the Curriculum-
based Course Timetabling (CTT) problem. The objective of the CTT problem is to assign a set
of lectures to time slots and rooms. The literature has focused mainly on heuristic applications
which are also apparent in the di erent surveys. The drawback of the heuristics is that they
are problem speci ¢ and do not provide any information on the quality of the solutions they
generate. The objective of this thesis is to minimize the gap between the best-known upper
bounds and the best-known lower bounds for CTT by using Mixed Integer Programming (MIP)
based approaches.

We present a total of 15 di erent MIP based approaches that we have implemented, ranging
from Cutting Plane techniques and Lagrangian Relaxation to Benders' Decomposition and
Dantzig-Wolfe Decomposition. Most of these implementations did not provide satisfying results.
However, they provide valuable insights into the di culties of the problem. We discuss all the
approaches, the diculties we have encountered, and suggestions on how to bring research
further.

Four of the implementations have led to articles submitted to international peer-reviewed
journals. The rst two articles focus on exact methods and extend each other. The last two
focus on generating high-quality lower bounds by applying an extended formulation, which is
then decomposed. The articles in this thesis have brought us closer to the goal of closing the
gap between the best-known upper and lower bounds for CTT. Though CTT was the problem
in focus, the methods implemented here are general enough to be applied for other scheduling
problems as well.






Resumé (Danish Abstract)

Hvert semester star universiteter over for udfordringen med at planlaegge deres kurser. Denne
planleegning er en vigtig opgave for at sikre, at de studerende kan deltage i de kurser der
er ngdvendige for at komme igennem deres uddannelse. Opgaven med at fa skemaerne til
at ga op kan veere udfordrende i sig selv, og nar forskellige praeferencer tages i betragtning,
bliver opgaven blot endnu vanskeligere. Derfor er automatiserede planlsegningssystemer en stor
hjeelp for planleeggerne og universiteterne. Planlaegning og skemalaegning er blevet studeret i
litteraturen far, og to internationale konferencer er dedikeret til dette omrade.

Denne afhandling studerer et universitetsskemalaegningsproblem, mere speci kt Pensum-
baseret Kursus Skemalaegningsproblemet (PKS). Formalet med PKS er at tildele et saet af
forelaesninger til ugentlige tidsintervaller og lokaler. 1 litteraturen er der fokuseret primeert
pa heuristiske metoder. Ulempen ved disse heuristikker er, at de er problem-speci kke og de
giver ikke nogen oplysninger om kvaliteten af de lgsninger de genererer. Formalet med denne
afhandling er at minimere den afstand der er mellem de bedst kendte gvre greenser og de bedst
kendte nedre graenser for PKS ved hjeelp metoder baseret pd matematisk programmering (MP).

Vi preesenterer i alt 15 forskellige metoder baseret pA MP, som vi har implementeret. De
este af disse implementeringer gav ikke tilfredsstillende resultater, men de giver veerdifuld
indsigt til vanskelighederne ved PKS og ideér til videre forskning. Vi diskuterer alle de metoder,
de vanskeligheder vi er stadt pa, og forslag til, hvorledes forskningen kan viderefares.

Fire af implementeringerne har fart til artikler indsendt til internationale tidsskrifter. De
to farste artikler fokuserer pa eksakte metoder og ligger i forleengelse af hinanden. De sidste
to fokuserer p& at generere nedre graenser af hgj kvalitet og ligger ogsA¥ i forlAingelse af
hinanden. Artiklerne i denne afhandling har bragt os taettere pa malet om at mindske afstanden
mellem de bedst kendte gvre og nedre graenser for PKS. Selvom PKS har veeret problemet i
fokus her, sa er de metoder der er implementeret generelle nok til at blive anvendt til andre
planlaegningsproblemer.
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1 Background

The tasks of generating timetables are frequently occurring at universities. Each semester,
events, such as lectures, tutorials, seminars, and exams, need to be scheduled into periods and
assigned rooms. The problem is very time consuming to solve manually. Thus there is a need
for automated timetabling. Automated Timetabling has long been researched, and there are
even two biennial conferences dedicated to this eld; the International Series of Conferences
on the Practice and Theory of Automated Timetabling (PATAT) and the Multidisciplinary
International Scheduling Conference: Theory & Applications (MISTA).

To attract more attention to this research area, an International Timetabling Competi-
tion was organized in 2002 (ITC2002), where a university timetabling problem was provided.
Following the success of ITC2002, a second International Competition was organized in 2007
(ITC2007). Both of the competitions were sponsored by PATAT. The main contribution of
ITC2007 was the de nitions of University Timetabling problems. McCollum et al. (2010) split
the University Timetabling problem into two di erent problems; the Exam Timetabling prob-
lem and the Course Timetabling problem. The Course Timetabling problem is further divided
into two subproblems; Post Enrolment-based Course Timetabling (PE-CTT) (Lewis et al.,
2007) and Curriculum-based Course Timetabling (CB-CTT) (Di Gaspero et al., 2007). The
relation between the problems is illustrated in Figure 1.1.

[ Exam Timetabling

University [ Post Enrolment-based
Timetabling Course Timetabling

[ Course Timetabling

, Curriculum-based
Course Timetabling

Figure 1.1: The di erent types of University Timetabling problems presented at ITC2007.

The main di erence between PE-CTT and CB-CTT is that each course in PE-CTT consists
of a single event, whereas in CB-CTT each course can contain multiple lectures. Another
di erence is that in PE-CTT it is not allowed to put courses into rooms where the capacity is
not large enough. In CB-CTT it is allowed to schedule courses in rooms that are too small at
the cost of a penalty in the objective function. The problem that we consider throughout this
thesis is the CB-CTT problem de ned by Di Gaspero et al. (2007). In the remainder of the
thesis, we refer to CB-CTT as CTT. This problem has received most attention in the literature.
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One of the reasons for the popularity of this problem is that a website was created as a result of
the competition (The Scheduling and Timetabling Research Group at the University of Udine,
Italy, 2015). This website has made it possible for researchers to upload instances and compare
results.

Most of the research that considers these problems focus on heuristic implementations.
The drawback of the heuristics is that they are often problem-speci ¢ and do not provide any
guarantee of optimality. So provided a solution from a heuristic it is unknown how far from
optimality it is unless the optimal solution or a lower bound is known in advance (assuming
that it is a minimization problem). If a heuristic is 5% away from optimality, then this may be
considered as acceptable, but if the heuristic, for instance, is 60% away from optimality, then
maybe the implementation of the heuristic should be reconsidered.

Optimal solutions can often be di cult to obtain o that lower bounds can be used instead.
However, the quality of the lower bounds is important. For instance, when this Ph.D. project
started in 2014, the gap for one of the data instances from ITC2007 between the best-known
solution and the best-known lower bound was more than 65%. This large gap makes the
heuristic appear poor in performance, but this is not necessarily the case. During the work for
this thesis, we improved the lower bound for that particular instance such that the gap for the
same solution is decreased to approximately 15%. Therefore, we focus on methods that either
search for the optimal solutions or at least provide lower bounds so the quality of heuristics
can be veri ed.

In the following section 1.1 we describe CTT in details, and in section 1.2 we provide an
outline for the thesis. We assume that the reader is familiar with Mixed Integer Programming
(MIP) and Operations Research in general.

1.1 Curriculum-based Course Timetabling

In this section, we describe the CTT problem as de ned by Di Gaspero et al. (2007) and
McCollum et al. (2010) for ITC2007. We are provided with the following; courses, days, time
slots, lecturers, rooms, and curricula. Each course is taught by exactly one lecturer, and
contains lectures that must all be scheduled in a weekly timetable and assigned rooms. The
week is divided into days and each day is divided into time slots which are all equal in size.
We refer to a day and time slot pair as a period, so the total number of periods is the number
of days multiplied by the number of time slots. The length of one lecture corresponds to one
period. A curriculum is a set of courses where for every pair there is a set of students attending
both courses. Furthermore, we are given a setloérd and soft constraints. The weekly schedule
and assignment to rooms must ful Il all the hard constraints, which are as follows:

Lectures (L): Every lecture must be scheduled in a period. If two lectures correspond to
the same course, then they must be scheduled in di erent periods. If a lecture is not
scheduled, then it is counted as one violation, and if two lectures of the same course are
scheduled in the same period, then this is also counted as one violation.

Availability (A): A course can have specic periods de ned as unavailable periods. If a
lecture from the course is scheduled in an unavailable period, then this is counted as one
violation.



Conicts (C): If two courses are taught by the lecturer of if they belong to the same curricu-
lum, then they cannot have lectures scheduled in the same periods.

Room Occupancy (RO): Every room cannot accommodate more than one lecture in any
period. If more than one lecture fulll in the same room and same period, then this
constraint is violated by the number of lectures, minus one.

The problem contains the following four soft constraints, where the goal is to minimize the
violations:

Room Capacity (RC): We are allowed to schedule any course into any room. However, it
is desired to be able to accommodate as many students as possible when scheduling the
courses into rooms. Every room has a capacity, i.e., the number of students that the room
can accommodate. If a course is assigned to a room and the number of students attending
is larger than the capacity of the room, then the violation is one for each student more
than the capacity.

Room Stability (RStab ): As the courses contain multiple lectures, it can also be an advan-
tage that the lectures are all scheduled in the same room during the week. For every
course, the violation is one for every distinct room that the course is assigned to, minus
one.

Minimum Working Days (MWD ): For every course, it is preferred to spread the lectures
across a predetermined number of days. This number is callednimum working days
If the lectures are scheduled in fewer days than the minimum working days, then the
violation is one for each day below the minimum working days that the lectures are
scheduled.

Isolated Lectures (IL): If two periods belong to the same day and are in consecutive time
slots, then we say that the periods aradjacent Consider some curriculum and some
course belonging to the curriculum. If the course has a lecture scheduled in a period and
no lecture from any of the courses belonging to the curriculum has a lecture scheduled in
an adjacent illustrate, then we say that the lecture igsolated For every curriculum, the
violation is one for every isolated lecture.

Note that the IL constraint is usually referred to as theurriculum compactnessonstraint in
the literature. We use the namasolated lecturesas Bonutti et al. (2012) mentions di erent ways
of de ning curriculum compactnessand they use the namasolated lecturesfor the formulation
used here and in ITC2007.

Any feasible timetable must ful | all the hard constraints, i.e., a timetable is considered
feasible if, and only if, all the hard constraints have no violations. The objective is then to nd
a feasible timetable while minimizing the soft constraints. Each soft constraint has a weight
associated such that a single-objective is de ned by a weighted sum of all the violated soft
constraints.

Burke et al. (2010a) show that ful lling the hard constraints isN P -complete, which means
that the overall problem isN P -hard. Empirical studies also illustrate that the models are hard
to solve, even within hours of computational time.
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To get an idea of what makes this problem hard to solve, we have tested a MIP model
from the paper in chapter 4 without thelL constraints. We used Gurobi provided by Gurobi
Optimization, Inc. (2016) for these tests. In Table 1.1 we report the results for 21 data instances,
which were provided for ITC2007. The rst column is the data instance, which is followed by
the best-known upper bounds (UB) for CTT. The next three columns (B & B) report the
results from solving the model when the constraintd. are removed. The rst column (Time)
reports the running time of the MIP solver to nd the optimal solution. The second column
(Obj) reports the objective value of the optimal solution for the model, which is a lower bound
for CTT. The last column (Gap) is the gap between the objective value and the best-known
upper bound for CTT. The last six columns report the statistics of the fractionality of the LP
relaxation of the models. We de ne the fractionality as the number of integer variables that
are fractional in the optimal solution to the LP relaxation. In the rst three columns (All
variables) we report the number for all the variables in the models. Since the Isolated Lectures
(IL) is speci c for the time schedule, we also consider the fractionality of the time schedule.
For each course and each period, we add all the variables together that schedules the course in
that period. If a course in a speci c period is scheduled in one room by 0.3 and some other
room in the same period by 0.4, then we sum this together, so the course is scheduled in the
period by 0.7 in total, and we consider this as a single variable. In the last three columns (Time
variables) we report the fractionality of all these aggregated variables. For both (All variables)
and (Time variables) we report the fractionality whenlIL is not included in the model (w/o
IL) and whenIL is included in the model (w/IL). In the column (Incr.) we report by how
much the inclusion of thelL constraints increases the number of fractional variables.

In Table 1.1 we see that the model can be solved within minutes whén is not included.

A reason for this can be because of the fractionality of the models since the Branch & Bound
algorithm must branch whenever the integer variables are fractional. We see that includitig
increases the number of all fractional variables more than four times on average, and for the
(Time variables) the increase is more than eight times. The gap between the objective values of
the model without IL and the best-known upper bounds for CTT also illustrate by how much
the IL constraints impact the objective value.

The problem as it has been presented here is the problem we are considering throughout the
entire thesis. However, we brie y present some extensions described byMcCollum et al. (2010)
and Bonutti et al. (2012) that could be included to cover a broader variety of universities.
These could be either soft or hard and include:

Student Lunch Break: The students should not have a lecture scheduled in at least one time
slot around lunch time.

Windows: If two lectures from the same curriculum are scheduled on the same day, and no
lectures are scheduled in the time slots between them, then this is referred to as a window.
The penalty for these could depend on the lengths of the windows.

Student Min/Max Load: A minimum (or maximum) number of lectures that the students
should be scheduled on any day could be specied. If at least one lecture is scheduled
on a day and the total number of lectures is below the minimum (above the maximum),
then this could be penalized.



Table 1.1: The impact oflL for the ITC2007 data set.

LP Fractionality

B&B All variables Time variables
Instance UB| Time Obj Gap|w/o IL w/ IL Incr. |w/o IL w/ IL Incr.
compO01 5 1.8 5 0.0% 192 647 34 57 245 43
comp02 24 24.6 0 100.0% 404 2005 5.0 64 659 103
comp03 64 13.0 0 100.0% 671 1653 25 158 547 35
comp04 35 14.8 0 100.0% 244 1500 6:1 12 450 375
comp05 284 1.4 15 94.7% 583 1221 21 189 481 25
comp06 27/ 170.7 0 100.0% 898 2436 27 201 761 38
compO07 6| 312.8 0 100.0% 1038 3165 3.0 186 965 52
comp08 37| 22.3 0 100.0% 229 1809 79 0 549 -
comp09 96/ 20.6 0 100.0% 298 1536 52 29 483 167
compl0 4, 51.7 0 100.0% 699 2713 39 104 843 81
compll 0 04 0 0.0% 148 634 43 48 255 53
compl2 294 1.5 0 100.0% 374 1967 53 75 685 91
compl3 59 15.7 0 100.0% 214 1544 T2 0 471 -
compl4 51 19.3 0 100.0% 444 1988 45 74 643 87
compl5 62 13.1 0 100.0% 671 1653 25 158 547 35
complé 18 64.9 0 100.0% 426 2454 58 48 748 156
compl7 56/ 484 0 100.0% 762 2301 30 155 716 46
compl8 61 0.5 0 100.0% 250 961 38 53 347 65
compl9 57| 23.7 0 100.0% 839 1641 20 217 512 24
comp20 4/ 278.3 0 100.0% 764 2813 3.7 139 901 65
comp2l 74 47.2 0 100.0% 1002 2316 23 232 720 31
Avg. 90.2% 4:1 8:3

Travel Distance: If the students need to change building between two lectures that are in
adjacent periods, then this could be penalized.

Room Suitability:  Some rooms may be unsuitable for some courses, e.g., a lecturer may need
chemistry equipment for the lectures, and so the room must contain such equipment. A
room could also be de ned as unsuitable if the room is too big for the course.

Room Availability: Sometimes rooms are occupied by other activities, e.g., seminars and
conferences. Lectures cannot be scheduled in the rooms in the periods where the rooms
are unavailable.

Double Lectures: Some courses may require that lectures scheduled on the same day must
be in adjacent periods, and also in the same room.

Another extension that McCollum et al. (2010) discuss is the weights of the soft constraints.
In CTT used for ITC2007, the weights for each soft constraint is set to a constant value.
It could be considered to let the weight depend on the number of students attending the
courses or curricula. TheTravel Distance de ned in McCollum et al. (2010) penalizes when
students change building. However, some universities may have a large campus, and the walking
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distances between the rooms must be taken into account, which is the case at the Technical
University of Denmark (Baerentsen, 2012).

1.1.1 Previous Work

In this section, we describe approaches from the literature that has considered CTT. The
research on university timetabling problems has, in general, focused on heuristics (Phillips et
al., 2015). This focus is also apparent in the overview provided by Bettinelli et al. (2015) and
the survey by Pillay (2016).

As MIP solvers are increasing in performance, so is the interest in applying MIP based
methods for university timetabling problems (Phillips et al., 2015). As we consider exact and
lower bounding methods we provide a brief overview of articles in the literature that consider
either exact or lower bounding methods.

Burke et al. (2010a) introduces an exact MIP model of CTT. They formulate théL by
using a variable for each curriculum and each period. Burke et al. (2008) remove those variables
and instead they have just one variable for each curriculum and each day. The value of this
variable is then calculated by adding exponentially many constraints. In Burke et al. (2012)
they add a subset of the beforementioned constraints and then add the remaining dynamically
whenever they are violated. Burke et al. (2010b) takes the model from Burke et al. (2010a) and
split it into two stages. The rst stage is to schedule the courses into the periods, i.e., ignore the
room assignments. However, it is ensured that the time schedule is feasible by not scheduling
more lectures in any period than the number of rooms available. In the second stage, they take
the period schedule and x the model either completely or partially to the selected periods and
then solve the full model. This approach is executed iteratively.

Splitting the problem into two stages is also considered by Lach and Lubbecke (2008) and
Lach and Lubbecke (2012), where the problem is also split into two stages; the rst stage creates
the time schedule and the second stage makes the room assignment given the time schedule.
Lach and Libbecke (2012) also show how tHeC constraints can be added to the rst stage
problem by grouping the rooms together according to their capacities. Then the rst stage
problem schedules the courses into periods and capacities.

Hao and Benlic (2011) considers the rst stage problem of Lach and Lubbecke (2012). They
make a decomposition by relaxing some of the constraints such that the problem can be divided
into subproblems. They then compute a lower bound for each subproblem and sum them up
to get a lower bound for the overall problem.

Cacchiani et al. (2013) also compute lower bounds. They do this by splitting the problem
into two parts where one part considers the constrainttWD and IL and the other part
considers the constraintRC and RStab . A lower bound is then calculated by summing up
lower bounds for the two parts. The part which considers the constrainteiWwD and IL can
be time-consuming to solve. So they apply a Dantzig-Wolfe decomposition of their model such
that the pricing problem is decomposable by days and solve the model by column generation.

Asin Ascha and Nieuwenhuis (2014) proposes multiple satis ability encodings. They start o
by treating the soft constraints as hard constraints and solve the problem as a pure satis ability
problem. Then they relax the constraints one by one and move towards a weighted partial
maximum satis ability encoding.



In the paper in chapter 4 we provide more details on some of the methods from the literature.
For an even more comprehensive overview of the literature regarding CTT, we refer to Bettinelli
et al. (2015).

1.2 Thesis Outline

This thesis is divided into three main parts; Part | Introduction, Part Il Exact Methods and
Part 1ll Lower Bounding Methods. Part | is the introduction to the thesis and covers the
description of the problem, the scienti ¢ contributions and the conclusions of the work. In
chapter 1 we provide the description of the problem that has been considered throughout the
work for this thesis, and related work that has been applied. In chapter 2 we summarize the
scienti ¢ contributions and the conclusion of the work for this thesis. Furthermore, we provide
suggestions for future research. The last chapter 3 of part | is a summary of all 15 di erent
approaches that we have implemented and tested during the work for this thesis. The chapter
IS not necessary to read but is included for the readers that are interested in the details of all
the approaches that we have implemented. Part Il and part 11l constitute the majority of the
thesis, and both consist of two articles. The articles in part Il focuses on exact methods, and
the articles in part 11l focuses on lower bounding methods.






2 Scienti ¢ Contributions

The scienti ¢ contributions are here summed up for the four papers. All four papers are
submitted to international peer-reviewed journals. The rst two papers focus on exact methods.
A common approach to solving the problem is to divide it into two parts; aime Scheduling
problem and aRoom Allocation problem. Then the Time Scheduling problem is solved, and
the solution is provided for the Room Allocation problem to generate a complete solution.
This approach can be iterated. The drawback of this approach is that we lose the guarantee
of optimality. So the focus in this thesis has been on exact methods in the rst two papers
and then lower bounding methods in the last two papers. In the following we describe the
four papers. Section 2.1 contains our conclusions of the work conducted for this thesis and in
section 2.2 we provide suggestions for future research.

Chapter 4: Flow Formulations for Curriculum-based Course Timetabling This pa-
per combines the two components, th8ime Scheduling problem and the Room Allocation
problem, into two exact formulations, which are solved by a generic MIP solver. The rst for-
mulation is based on an underlyingninimum cost ow (MIN) problem. The second formulation
is based on amulti-commodity ow (MULT) problem. The MIN problem is known to contain
the integrality property, and hence being solvable in polynomial time, but the MULT problem
is NP -hard in general. However, we proved that it su ces to include the LP-relaxation of
MULT in the model. For both of these formulations, the result is that the number of integer
variables is signi cantly lower than other exact formulations in the literature at the cost of
many continuous variables.

Compared to other approaches in the literature that provide both lower and upper bounds
the MIN formulation provides the best performance on the data instances from ITC2007. We
also compared the ow formulations with the basic MIP model which we present in section 3 on
a total of 32 instances. The results showed that the reformulations outperform the basic model
both on the lower and upper bounds. Here the MIN formulation obtained a lower bound which
is at least as good as MULT and the basic model on 28 of the instances, and for 11 of these
instances, MIN obtained a strictly better bound than the other two. On 24 of the instances
the MIN formulation obtained an upper which is at least as good as the other two, and for 12
of these the upper bound is strictly less than for the other two formulations. Out of the 32
instances, six of them are still open. The MIN formulation improved the lower bound of one
of them from 101 to 142. We believe that other approaches from the literature based on the
basic model can bene t from these reformulations.

The MULT formulation was submitted as an extended abstract to the peer-reviewed MISTA
conference in 2015 (Bagger et al., 2015). The full paper with both methods is submitted to
Annals of Operations Researctand contributes with:

11



~ Two new formulations that outperform the basic formulation.

" An improvement of the lower bound for one out of the six instances that are still open by
more than 40%.

Chapter 5: Benders' Decomposition for Curriculum-based Course Timetabling In

the previous paperFlow Formulations for Curriculum-based Course Timetablingwo formula-
tions were provided for CTT such that a large part of the variables could be relaxed to contin-
uous variables. The papeBenders' Decomposition for Curriculum-based Course Timetabling
expands on one of the formulations by projecting out all these continuous variables. Then a
Benders' Decomposition algorithm is implemented, which is the rst time to our knowledge that

a full Benders' Decomposition algorithm is implemented for CTT, i.e., where Benders' cuts are
generated dynamically as they are violated. We also implemented a heuristic to generate upper
bounds based on solving a series bfinimum Cost Maximum Flow problems as the solutions
produced inside the decomposition were usually infeasible. The main focus of the heuristic was
to gain feasibility, so we believe that there is a potential here to improve the implementation
further.

We compared the decomposition with other approaches on a total of 38 real-life instances.
Out of these 38 instances, 12 of them are still open, and our implementation improved the
lower bound on eight of these instances. Six of the open instances are signi cantly larger and
more di cult to solve than the other 32. For these six instances our decomposition is the
rst MIP-based approach that has been applied, and the rst time lower bounds have been
calculated.

We compared Benders' Decomposition on the large instances with MULT since no other
MIP-based methods have been applied. These tests illustrated that the bene ts of Benders'
Decomposition are more apparent for large data instances. Solving the root node LP with
MULT had a running time of more than half an hour for three of the instances, and for the three
other instances, the running time was more than one and a half hour. For our decomposition,
the longest running time is less than four minutes. On average the speed-up was more than 30
times, and the improvements of the lower bounds were 14%. For the upper bounds, MULT were
only able to obtain a feasible solution for four of the instances, which Benders' Decomposition
improved by 35% on average. Furthermore, the decomposition was able to obtain solutions for
all instances.

The paper is submitted toComputers & Operations Researcland contributes with:

" The rst Benders' Decomposition algorithm for CTT.
" First time that the lower bounds are calculated for six large instances.

" Improvement of the lower bounds for eight out of 12 of the real-life instances that are still
open.

Chapter 6: Daily Course Pattern Formulation and Valid Inequalities for the

Curriculum-based Course Timetabling Problem The previous two papers focused on
the improvement of exact methods and provided methods to combine the Time Scheduling
problem and the Room Allocation problem. Empirical studies have shown that the Time
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Scheduling problem is the most time-consuming problem of the two components. So in this
paper, we focus on the Time Scheduling problem as any improvements on this component can
be applied to the two previous approaches. In the papdbaily Course Pattern Formulation and
Valid Inequalities for the Curriculum-based Course Timetabling Probleia pattern formulation

Is provided. For each course and each day we enumerate all the patterns that are possible for
the course to be assigned on that day. In our model, there is a binary variable for each of these
patterns for each course and each day.

The benet of the pattern formulation is that we can preprocess the model to remove
variables. We implement multiple preprocessing techniques where one is based on solving
auxiliary maximum ow problems. We also generate valid inequalities, which are di cult to
derive for the basic formulation. Some of these inequalities come from generating a con ict
graph for the variables, and we show how this graph can be constructed by extending the
preprocessing techniques. We discuss in the paper that one of the bene ts of the pattern
formulation is that it is more exible regarding adding additional constraints or penalties than
the basic model.

We compared the formulation to other lower bounding approaches from the literature on
21 real-life instances from ITC2007, and show that the pattern formulation has a better per-
formance. Four of the instances are still open, and our formulation improves the lower bound
of three of them. The paper is submitted taJournal of Schedulingand contributes with:

" A new lower bounding formulation of CTT that outperforms other approaches from the
literature.

~ Implementation of novel preprocessing and clique graph generation techniques.

" Improvements of the best-known lower bound for three out of the four real-life instances
that are still open.

Chapter 7: Dantzig-Wolfe Decomposition of the Daily Pattern Formulation for
Curriculum-based Course Timetabling Dantzig-Wolfe Decomposition has been applied
to CTT before. However, they are all based on the basic formulation. As a stronger formulation
is provided in the previous papeiDaily Course Pattern Formulation and Valid Inequalities for
the Curriculum-based Course Timetabling Problenthen we use this formulation for the decom-
position. We apply the decomposition such that there is a pricing problem for each day and
we solve the LP-relaxation of the master problem by Column Generation. The decomposition
puts the formulation of the isolated lectures into the pricing problems, which is an advantage
as it was shown in section 1.1 that these soft constraints are the ones that are most di cult.

We provide a preprocessing technique that can be applied in an iteration of the Column
Generation algorithm and also show how the technique can be extended to generate inequalities.
The empirical study shows that our preprocessing implementation can remove almost half of
the variables from the model on average. Applying this technique to other scheduling problems
could be interesting.

We implement a Local Branching algorithm to solve the pricing problems by using previously
generated columns. To the best of our knowledge, this is the rst time Local Branching is
implemented in a pricing problem in Column Generation, though the nature of the Column
Generation algorithm ts perfectly with Local Branching. As Local Branching is a general
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framework and easy to implement it can be considered for other problems solved by Column
Generation as well. We show that more than 90% of the time of the Column Generation

algorithm is spent in the pricing problems. So we suggest any future research, to focus on
Improving the running time of the pricing problems.

We compared the decomposition to other approaches from the literature. The lower bounds
obtained are higher than for most other approaches except for the pattern formulation in the
previous paper. However, for the four instances from ITC2007 that are still open we obtain a
higher lower bound for all of them, which decreases the average gap to the best-known upper
bounds from 24% to 11%. The paper is submitted tBuropean Journal of Operational Research
with the following contributions:

~

A new Dantzig-Wolfe Decomposition and Column Generation algorithm for CTT.
Novel preprocessing and inequality generation for the pricing problem.

The rst time Local Branching is applied in a pricing problem inside a Column Generation
algorithm.

Improvements of the best-known lower bounds for all four real-life instances from ITC2007
that are still open.

2.1 Conclusion

Due to the second international timetabling competition in 2007 (ITC2007), the Curriculum-
based Course Timetabling (CTT) problem has received a lot of attention. The CTT problem
consists of assigning courses into periods and rooms. For University Timetabling problems,
in general, most literature has focused on heuristic applications which are also apparent in
the di erent surveys. The heuristics are attractive in real-world settings as they are usually
fast. The drawback of the heuristics is that they are problem-specic and do not provide
information on how far they are from optimality. For the competition 21 data instances were
provided where four of them are stillopen meaning that for these four instances, the best-
known lower bounds do not equal the best-known upper bounds. The objective of this thesis
has been to minimize the gap between the best-known upper bounds and the best-known lower
bounds for CTT by using Mixed Integer Programming (MIP). A total of 15 di erent MIP based
formulation and methodologies have been implemented and tested during this work. Four of
these implementations led to article submissions for peer-reviewed international journals.

Most of the MIP-based approaches in the literature split the problem into two components;
a Time Scheduling problem and a Room Allocation problem. The Time Scheduling problem
consists of scheduling the course into periods, and the Room Allocation problem assigns courses
to rooms. The Time Scheduling problem is commonly solved rst, and the solution is then pro-
vided to the Room Allocation problem. The rst article we submitted focused on combining
the two components into one model. Two formulations were provided that improved the perfor-
mance of a generic MIP solver, both regarding the lower and upper bounds. The second article
expanded on the results from the rst article by applying a Benders' Decomposition on one of
the provided formulations. The results showed improvements on the lower bounds compared to
literature. The method was also tested on six large data instances where MIP based approaches
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have not been applied before. On these instances, the decomposition improved the performance
of the MIP solver signi cantly on both the lower and upper bounds.

The last two articles focused on improving the lower bounds by considering the Time
Scheduling problem as empirical studies in literature have shown that this is the most time-
consuming part. In the rst of the two articles, a pattern formulation is implemented by
enumerating all possible patterns for each course and each day. The pattern formulation pro-
vided stronger lower bounds compared to the literature. In the last article, we expanded on
the pattern formulation by applying a Dantzig-Wolfe Decomposition of the model and solved
it by Column Generation. The bene t of the decomposition was that the formulation of some
of the hardest soft constraints was put into the pricing problems, which are smaller and easier
to solve. The decomposition further improved the bounds for the four instances from ITC2007
that are still open.

The articles in this thesis have brought us closer to the goal of closing the gap between
the best-known upper and lower bounds for CTT. Though CTT was the problem in focus, the
methods implemented here are general enough to be applied for other scheduling problems.

2.2 Future Research

We have implemented and tested di erent MIP based approaches on CTT, leading to four
submitted articles. In chapter 3 we describe additional implementations that we have tested,
which were not all successful for CTT. In total, we report 15 di erent formulations, methods
and implementations. This vast amount of implementations shows how di cult this problem

is, and that further research is needed. The theory and notes on the implementations are
provided, and it could be interesting to see if other scheduling problems can bene t from these
approaches, or which changes to the methods that are needed for them to be successful for
CTT.

Other suggestions for future research is to improve the approaches from our submitted
articles. In the second article, we consider a Benders' Decomposition. We implemented a
heuristic to obtain feasible solutions but saw that our implementation did not improve the
upper bounds. The focus of the heuristic was to obtain a feasible solution by assigning rooms
provided that the time schedule was feasible. Therefore, we suggest considering implementing
a heuristic which also considers improving the solutions, for instance by also making changes
to the time schedule. In the last article, we applied a Dantzig-Wolfe Decomposition. For some
of the instances that we tested the implementation of the Column Generation algorithm was
too time-consuming to be embedded in a full Branch & Price algorithm. As more than 90% of
the running time was spent in the pricing problems we suggest that solution methods for these
problems are researched further.

Some methods that we have brie y tested for the pricing problems include Dynamic Pro-
gramming, Constraint Programming, Lagrangian Relaxation and Benders' Decomposition.
However, we have not studied these implementations enough for us to draw conclusions, which
is why we have not included them in the description of the implemented approaches. Another
interesting study could be to consider why some of the instances are signi cantly more time
consuming than others, for instance by examining the feature space suggested by Smith-Miles
et al. (2014). This information could be useful in the development of solution approaches.
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When the pricing problems can be solved in a reasonable amount of time, we would like
to see the Benders' Decomposition algorithm included in the Dantzig-Wolfe Decomposition.
One way to include Benders' Decomposition could be to solve the room allocation problem
in another pricing problem and then add the Benders' feasibility cuts in the master problem
to connect the pricing problems. Another possibility is to use the current implementation as
the lower bounding problem in a Branch & Price algorithm and apply branching rules on the
time schedule. Then switch to the Benders' Decomposition algorithm for nodes that are deep
enough in the search tree.
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3 Implemented Approaches

In this chapter we provide an overview of all the methods that has been tested during this work
for the CTT problem. Not all methods have been equally successful. However, the knowledge is
useful for the timetabling community to get an overview of methods that are either successful,
should be avoided or needs further research. Furthermore, even though some of the approaches
have not been successful for CTT, it could be interesting to see if other scheduling or timetabling
problems can bene t from these methods. Before describing all the approaches that have been
tested, we rst provide a basic (MIP) model of the problem. All the tested methods refer to
this model as the basis.

The set of courses is denote@€. For each coursec 2 C, the number of lectures to be
scheduled is denoted ak.. For the periods we have the set of dayd), and the set of time
slots, T. For each course 2 C, dayd2 D and time slott 2 T we let the parameterF.q. take
value one if the course is available in the speci c period, and zero otherwise. The set of rooms
is denotedR . We let X4 be a binary variable taking value one if course 2 C is scheduled on
dayd2D intimeslott 2T inroomr 2 R, and zero otherwise. To ensure that the constraint
L is not violated we sum over all the binary variables associated with one course and add a
constraint that the sum must equalL:

X
Xc;d;t;r = Lc, 802 C (3.1)

d2D ;t2T ;r2R

This constraint only ensures that all lectures are scheduled, but not that they are scheduled
in di erent time slots. We ensure this by the following constraints, where we also include the
A constraint:

X
Xedtr Foars 8€2C;d2D;t2T (3.2)

r2R

To ful |l the constraint C we rst construct a graph where every node in the graph cor-
responds to a course. If two courses are taught by the same lecturer or belong to the same
curriculum, then the corresponding nodes are connected by an edge. An example of the graph
is illustrated in Figure 3.1.

We then enumerate a set ofourse cliques where a course clique 2 is a set of courses
C C such that each pair of courses i€ is conicting. To generate the cliques we use the
algorithm described by Bron and Kerbosch (1973) that enumerates all maximal cliques in a
graph. For every edge in the graph the two courses corresponding to the nodes of the edge are
both contained in at least one clique together. The for each clique we add the constraint that
at most one of the courses in the clique can be scheduled in any period:
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Figure 3.1: Con ict graph where a curriculum consists of courses, ¢, and ¢; while c; and ¢,
are taught by the same lecturer. The gure is taken from the paper in chapter 6

X
Xeatr 1, 8 2 ;d2D;t2T (3.3)

c2C ;r2R

We de ne the set . as the set of cliques that contain course 2 C. The last of the
hard constraints to ful Il is the RO constraint:

X

c2C

Any integer solution of the x variables ful lling constraints (3.1) (3.4) corresponds to a
feasible timetable. Next, we formulate the soft constraints. We I3, be the number of students
attending coursec 2 C and C, be the capacity of roomr 2 R. Then the violation of the RC
constraint can be calculated as:

X
(Sc Cr)+ Xeditr (3.5)

€2C;d2D ;t2T ;r2R
where(x)" for any real numberx is de ned as(x)” := max f 0; xg. For the RStab constraint
we introduce a binary variablez... for each course& 2 C and roomr 2 R which takes value one
if cis assigned tar at least once:

X
Xeatr LeZer; 8c2C;r 2R (3.6)

d2D ;t2T
Then we can calculate the violation of theRStab constraint as follows:
!
X X
Zgy 1 (3.7)
c2C r2R

For the MWD constraint we let the binary variablet..4 take value one if course 2 C has
at least one lecture scheduled on day2 D, and zero otherwise:

X
t2T r2R
For each course 2 C, we let the variablew, calculate the violation of theMWD constraint:
X .
WC+ tC,d Dg]m; 8C2 C (3.9)
d2D
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The set of curricula is denoted), and for each curriculumg 2 Q the set of courses belonging
to qis denotedG, C . Similarly, we let the set of curricula that coursec 2 C belongs to be
denoted asQ.. For each curriculumg2 Q, dayd 2 D and time slott 2 T we let the binary
variable sq.4: take value one ifq has an isolated lecture at dayd in time slot t, and zero
otherwise. Fort 2 T we denote the time slot that is right before ag 1 and we denote the
time slot right after t ast + 1. For ease of notation, we de nexq.q; for each curriculumqg2 Q,
dayd2 D andtime slott 2 T as follows:

X
Xqudit = Xeatr; 802Q;d2D;t2T (3.10)
c2C;r2R

If t is the rst time slot then we de ne Xq.4: 1 to be zero and ift is the last time slot then
we de ne Xq.q:+1 t0 be zero. Then we can calculate the isolated lectures as follows:

Sq;d;t Xgidit  Xgudit 1 Xqidit+1 8q 2 Q ; d2D 2T (3-11)

Let WRC  WRStab \WMWD  and W't be the non-negative weights for the constraint®C ,
RStab , MWD and IL respectively. Then, we express the objective function as a weighted
sum of the soft constraints to be minimized:

X
RC +
w (Sx Cr) Xc;d;t;r
c2C;d2D ;t2T ;r2R I
X X '
+ WRStab Zc;r 1
C r2R
+ WMWD W
C
+ wh Sq;dit (3.12)
02Q ;d2D ;t2T

We have tested a total of 15 di erent method for CTT during this thesis. Figure 3.2
illustrates all the 15 methods which have been divided into ve frameworks; Mixed Integer
Programming, Lagrangian Relaxation, Benders' Decomposition, Cutting Planes and Dantzig-
Wolfe Decomposition.

In section 3.1 we provide an overview of the framewordixed Integer Programming Here
we tested four MIP models as alternatives to the basic MIP model which has resulted in two
papers. In section 3.2 theLagrangian Relaxationframework is described. We tested three
di erent approaches none of which resulted in papers. The framewoBenders' Decomposition
is described in section 3.3. Three methods were tested within this framework which resulted
in one paper. In section 3.4 and overview of three methods tested within the framework
Cutting Planesis provided where none resulted in papers. The last framewobBantzig-Wolfe
Decomposition is described in section 3.5. Three di erent methods were tested within this
framework which resulted in one paper.
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Figure 3.2: Overview of the tested approaches. The di erent approaches has been divided into ve frameworks; Mixed Integer
Programming, Lagrangian Relaxation, Benders' Decomposition, Cutting Planes and Dantzig-Wolfe Decomposition



3.1 Mixed Integer Programming

In this section we describe some alternatives to the basic model. We have tested four alternative
formulations to the basic model; two formulations based on underlying ow networks, a pattern
based formulation where each pattern corresponds to an entire time schedule for one course
on one day and the last formulation is based on reformulating the modelling of the isolated
lectures. An overview of the ow formulations and the pattern formulation are provided in
section 2. A detailed description for the ow formulations is provided in the paper in chapter 4
and the details of the pattern formulation is provided in the paper in chapter 6. In the following
section 3.1.1 we describe how the isolated lectures can be reformulated in a disjunctive model.

3.1.1 Disjunctive Formulation

The idea of the disjunctive formulation is to reconsider the formulation of the isolated lectures
(3.11). We examine the solution space of the Linear Programming (LP) relaxation of the
problem. Consider the constraint (3.11) for a curriculumg 2 Q, day d 2 D and time slot

t 2T as well as the non-negativity constraintg,q; 0. Consider a(x;y; z)-coordinate system.
The x coordinate corresponds to the value of theqq: variable. They coordinate is equal
t0 Xqat 1+ Xqat+1 and the z coordinate corresponds to the value of theyq; variable. In
Figure 3.3 the constraint (3.11) together with the non-negativity constraint are illustrated in
the unit cube where the hyperplanes of the constraints are marked in grey.

(1,0,1)

(0,1,0)

(1,1,0)

Figure 3.3: lllustration of the isolated lecture constraints in the unit cube

Note that four points are emphasized in Figure 3.3; the origi(0; 0; 0) and (0; 1;0), (1;1;0)
and (1;0;1). These are the important points as they represent the integer solutions, and in the
rst three points there is no isolated lecture, and in the last point, there is an isolated lecture.
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As the z coordinate corresponds to the,q; variable which is minimised then the value of the
Sq;ax Variable in the optimal solution to the LP relaxation will be on one of the hyperplanes.
This means that for any solution where théx;y) coordinates are a convex combination ¢0; 0),
(0;1) and (1; 1) the z coordinate will be set to zero. It is only necessary for the coordinate
to be zero in the integer(x;y)-points (0;0), (0;1) and (1; 1), but not in any fractional point
which is a convex combination of the three points. In Figure 3.4 an alternative formulation
is illustrated where the z coordinate can only be zero in the unit cube in the integer points
(x;y)-points (0;0), (0; 1) and (1;1) and in the convex combination of(0; 0) and (0; 1) and the
convex combination of(0; 1) and (1;1). Everywhere else inside the unit cube the coordinate
must be strictly positive.

(1,0,1)

(0,1,0)

(1,1,0)

Figure 3.4: lllustration of the disjunctive formulation of the isolated lectures in the unit cube

In Figure 3.4 the solution space of the LP relaxation in the unit cube is the convex combina-
tion of the points (0; 0; 0), (1; 0; 1) and (0; 1; 0) or the convex combination of the pointg0; 1; 0),
(2;0;1) and (1; 1; 0). The obstacle with the formulation in Figure 3.4 is that it is non-convex, so
we cannot make an LP formulation of this. The line which is a convex combination @; 1;0)
and (1;0; 1) is the intersection of the two convex combinations. The line projected down to the
(x;y)-space is the hyperplanex + y = 1. So if we consider some solution, we need to know on
which side of this hyperplane in thgx; y)-space the solution is. We introduce a binary variable
Yq.a:;x Which takes value one if the solution is on th& + y < 1 side of the hyperplane and zero
if it is on the x + y > 1 side. As we cannot formulate< or > constraint in LP models we
calculate the value ofy,.q as follows:

Xgidit ¥ Xqidit 1+ Xqidit+1 3 ZyQ:d:t (3'13)
Xgat ¥ Xqait 1+ Xgaer 1 Yo (3.14)
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If the point is on the x + y < 1 side of the hyperplane in the(x;y)-space then we use the
hyperplane spanned by the three point§0; 0; 0), (1;0;1) and (0; 1;0); x z =0. If the point is
on thex + y > 1 side of the hyperplane in thgx; y)-space then we use the hyperplane spanned
by the three points (0;1;0), (1;0;1) and (1;1;0); y+ z = 1. In an LP model this can be
formulation as follows:

Sq;d;t Xq;d;t + yq;d;t 1 (3-15)
Sadt 1 Ygar  Xgar 1 Xgdiea (3.16)
Sqat O (3.17)

If yq.ax = 1 then constraint (3.15) is activated and (3.16) becomesnactive and opposite
for yq.4x = 0. Note that for any point that is on the hyperplanex + y = 1 then y4.q4: can be
either zero or one. However, as we know that the variables g, Xqa: 1 and Xq.qt+1 then we
can formulate the following disjunction of the model:

( ) ( )
Xgdt ¥ Xqat 1+ Xqaer 1 — Xgat + Xgat 1+ Xqer 2 (3.18)
Sqidit  Xqidit

The disjunction (3.18) corresponds to replacing the right-hand side of (3.14) & 2yq.q:.
Introducing this disjunction makes constraint (3.16) redundant as there can only be an isolated
lecture in the left branch, i.e., whenyqq: = 1. The disjunction (3.18) also means that we
implicitly minimize the value of y,.q: Which makes the constraint (3.13) redundant, thus the
disjunctive formulation is as follows:

Xgiit + Xt 1+ Xqiter + 2 Ygait 2 (3.19)
Xq:d:t t Ygdt Sqadxr 1 (3.20)
Sqat O (3.21)

The downside about the formulation (3.19) (3.21) is that it requiresO (jQjjDjjT j ) extra
binary variables. Another downside is that the LP relaxation is weaker compared to the LP
relaxtion of the basic model. [fXqqat + Xqat 1 + Xqat+1 IS at least two then both of the
formulations does not provide a higher lower bound fog,.q: than zero. We assume that the
sum is less than two and isolatgg.q.: in (3.19):

1
Yoar 1 5 (Xgiat  Xqdt 1 Xgit1) (3.22)
As we minimizeyq.q;: then it will be equal to the right-hand side of (3.22) and we insert this
in (3.20):
1
Sq;d;t é (Xq;d;t Xq;d;t 1 Xq;d;t+1) (323)

Here we see that in the LP relaxation, the isolated lectures are only penalised in the disjunc-
tive formulation by half of what they are penalised by the original formulation. The disjunctive
formulation also resulted in a poorer performance than the original formulation when we tested
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it in the commercial MIP solvers such as Gurobi by Gurobi Optimization Inc. (2015) and
CPLEX by International Business Machines Corp. (2017). CPLEX provides the user with the
capability of implementing custom branching decisions. So to get around the issues of the dis-
junctive formulation, we implemented a custom branching decision in CPLEX inspired by the
disjunctive formulation. The idea is to provide CPLEX with the original formulation, i.e., with

the formulation of the isolated lectures in (3.11). A common branching decision is to choose an
integer variablex with a fractional value X in the LP relaxation and then apply the branching:

X bxc _ x dxe (3.24)

Instead of choosing one variable for the branching decision, we consider a sk +
Xqat 1+ Xqare1. We then compute the penalty of the isolated lecture using the disjunctive
formulation. If the value of the disjunctive formulation is greater thansg.q.: then the sum is
a candidate for the branching decision, other we let CPLEX decide on the branching. If this
sum is between one and two, then we apply the branching from the disjunction in (3.18). If
the sum is between zero and one, then we apply the branching in (3.25). If the sum is equal to
one, then we pick one of the two branching decisions randomly.

Xgat ¥ Xgat 1+ Xqar 0 — Xgar * Xqar 1+ Xger 1 (3.25)
Sqt 1 Xqdit 1 Xqdit+1

The guestion left to answer is which sum to choose. When branching on a single variables,
then a common approach is to pick the variable which is most fractional, i.e.,like is the value
X rounded to the nearest integer then we pick the variable which maximizggs b Xej. This
branching rule means that we branch on the variable that violates the integrality requirement
the most. We do something similar for the calculation of the isolated lectures. Consider
curriculum g 2 Q, dayd 2 D and time slott 2 T. Let 3('5;%1 be the value of the variable
Sq.a:t Calculated in the optimal solution of the LP relaxation using the constraints (3.11) and
Sq.ax 0. We calculate the sumXq.q¢ + Xqat 1+ Xqae1- If the sum is less than or equal to

one, then the disjunctive valuesg’;ij‘;t“”Ct of the variable s4.4. is set toXqq+. If the sum is greater

than one and less than two, then we sag.'f,!t“”“ =1 Xqat 1 Xgaw1. In all other cases

we setspgi"® = 0. Note that sp"™  sth,. We then pick the curriculum g 2 Q, day
d2 D and time slott 2 T which maximizess® := sggi™  stb . If s > 0 we apply the
branching (3.18) or (3.25) depending on the sum as mentioned earlier, otherwise we let CPLEX
decide. The issue we encountered is that when implementing custom branching decisions in
CPLEX a lot of the internal features is turned o . So the lower bounds were not as strong as
without the custom branching, and the heuristics also did not produce solutions which are as
good as the solutions obtained without the custom branching. Therefore, we suggest that any
researchers that want to study this method further to consider using another framework such
as SCIP (Gamrath et al., 2016) where the user is given more control of the Branch & Bound

algorithm.
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3.2 Lagrangian Relaxation

In this section we describe di erent methods that we have tested based on Lagrangian Re-
laxation. Before the description of the methods we provide an introduction to Lagrangian
Relaxation in section 3.2.1. The idea of all the methods tested within this framework is to
consider the formulation of the isolated lectures. In section 3.2.2 we apply the relaxation to the
direct formulation of the isolated lectures. In section 3.2.3 we replace the formulation of the
isolated lectures and describe how we apply Lagrangian Relaxation to this reformulation which
results in a subproblem that is decomposable by the periods. In section 3.2.4 we reformulation
the entire model such that the subproblem is decomposable by the curricula.

3.2.1 Introduction to Lagrangian Relaxation

In this section we provide a brief description of Lagrangian Relaxation similar to the descrip-
tion by Martin (1999, chapter 12), which we refer to for a detailed description of Lagrangian
Relaxation. Consider a MIP problem in the following form:

min C X
s.t. AX b
MIP
Bx d ( )
X2 X

The idea of Lagrangian Relaxation is to take a set of the constraints anglax them by
multiplying them with a non-negative vector u, referred to as theLagrangian multipliers and
inserting them in the objective function:

L(uy=min (¢ B u)’x+ d’ujAx b;x2 X (3.26)

We refer to the problem (3.26) as thd.agrangian Subproblem For a xed value of u the
optimal solution of the subproblem provides a lower bound for (MIP). The goal is to maximize
this lower bound by solving the following model:

maxfL(u)ju Og (LR)

We let zyp and z.p be the objective values of the optimal solution of (MIP) and the LP
relaxation of the model respectively. Furthermore, we lez g be the objective value of the
optimal solution to (LR), and we have the following relation

Zip 2R Zmip (3.27)

If the model (3.26) contains theintegrality property, i.e., that the extreme points of the
LP-relaxation are all integral, thenzp = zr. So the set of constraints to relax should be
selected such that the subproblem does not contain thategrality property. However, the
constraints should also be selected such that the resulting subproblem is easier to solve than
the original problem. Dierent methods can be applied to solve the problem (LR). One
method is Subgradient SearchThis algorithm is an iterative procedure which starts by setting
the Lagrangian multipliers to some initial value, e.g., zero. Then the optimal solution of the
subproblem (3.26) is found for these values of Let u' be the value in thej%h iteration of
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the subgradient search and le! be the optimal solution to the subproblem foru. Then
d Bx! is asubgradientvector of the subproblem foru' and for a scalar ; > 0 we calculate
the multipliers for the next iteration as follows:

Ut =max Ou+ ; d Bx (3.28)

We let L be an upper bound on the value of the optimal solution to the Lagrangian Relax-
ation. This upper bound can for instance by the objective value of some feasible solution to
the original model MIP. For a positive scalar ; between zero and two, the choice of; can be
determined by:

. j L L (Uj)
’ kd BxIk?
The value of ; can for instance be set to two in the rst iteration and then halved whenever

the lower bound has not improved for some number of iterations. We refer to Martin (1999,
section 12.5) for descriptions of other methods to solve the Lagrangian Relaxation.

(3.29)

3.2.2 Isolated Lectures

The idea in this section is to relax the constraints (3.11) using as it was shown in section 1.1
that the problem is much easier to solve without these constraints. For each curriculug®? Q,
day d 2 D and time slott 2 T we let uqq: be the non-negative Lagrangian multiplier of
the associated constraint (3.11). The objective function of the Lagrangian Relaxation then
becomes:

X X
RC +
W™ (S Cp) + (Ugidt  Ugat 1 Ugidit+1)  Xeditr
€2C;d2D ;t2T ;r2R | 02Q ¢
Stab X |
+ WR ta 2 1
C r2R
+ WMwD W
X c2C
IL
+ W Ugidit Sasdit (3.30)
02Q;d2D ;t2T

As the s variables do not contribute to any constraints in the Lagrangian Relaxation, then
we can calculate the values of each of the variables snindependently. Consider a curriculum
q2Q,dayd2 D and time slott 2 T. If uggr < W' then the coe cient of the sqqy is
strictly positive and since we minimize this variable then the optimal values,.q.; is zero. If
Ugat > W't then the coe cient is strictly negative and the optimal value Sq.4. is one. |If
Ugat = W' then we can setsqq; to be either zero or one, and we set the valug,.q; to one
if X0t  Xqar 1 Xgar+1 = 1 and zero otherwise. The reason for these latter choicesSgf;
whenugq: = W' is that the subgradientXq.qx  Xqat 1 Xqet+1  Sqat then evaluates to zero.
A summary of the values ofsyq; are provided in (3.31).
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] (3.31)
0 otherwise

Sq;dit =

We then calculate the step size for some positive scalar between zero and two as follows:

- X L LW . (3.32)

(Xqt  Xqt 1 Xqt+1  Sqidit)

02Q ;d2D ;t2T

Since the solution to the subproblem is feasible for the original model we can calculate
the real objective value of the solutions and use them for the upper bourd Then for each
curricuum q2 Q, dayd 2 D and time slott 2 T we add (Xq4t Xqat 1 Xqeit#1  Sqidit)
to Uq.at. AS Uga: IS @ Non-negative multiplier we set it to zero if it is negative after we updated
it. Furthermore, we setuqq: to W't if the value is greater thanW't after the update. To
see the reason that we can set this upper bound on the multiplier, we reconsider the choice of
the step size . Another choice for is a constant value . Assume that we choose to be
in nitesimally small. Consider some iteration in the subgradient search and let there be one
Lagrangian multiplier which is in nitesimally close to W'* and where the gradient is positive.
This means that when we update the multiplier it will be set tow's and for this value the
gradient can never by positive, which means that the multiplier will never be greater thaw'- .

So we can use this value as an upper bound for the multipliers.

The issues encountered with our implementation of the Lagrangian Relaxation is that,
though the subproblem is much easier to solve than the original model, the number of iterations
required to nd the optimal value of is large. Furthermore, the bounds obtained in the end of
the subgradient search were not higher than what the solver Gurobi can obtain in the cutting
plane phase of the root node in the original formulation.

3.2.3 Period Decomposition

The idea in this section is to two new binary variables for each curriculum 2 Q, dayd 2 D
and time slott 2 T ; x,.4, Which is one ifq has a lecture scheduled in the time slot beforteon
day d and x;dt which is one ifg has a lecture scheduled in the time slot aftetr on day d. For
ease of notation we de nex,, as zero ift is the rst time slot and xg,, if t is the last time
slot. We can then reformulate (3.11) into the following:

X
Sq:d:t Xedtr  Xqar Xqao 802Q;d2D;t2T (3.33)
c2Cqir 2R

We need to link the variablesx and x* together with the x variables:

X
Xedityr = Xq;d;t+1 ; 8q 2 Q , d2D t2T (3'34)
czgz;rZR
Xedtr = Xgge 17 802Q;d2D;t2T (3.35)
c2Cqir 2R
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If we make a Lagrangian Relaxation where we multiply every constraint other than (3.3),
(3.4) and (3.33) then the result is a subproblem which is decomposable on the periods. For
each curriculumq2 Q, dayd 2 D, time slott 2 T we let ., and . be the Lagrangian
multipliers of (3.34) and (3.35) respectively. For each course2 C, dayd2 D, timeslott 2T
and roomr 2 R let (g4t be the sum of all the Lagrangian multipliers with respect to the
contribution of X4, to each of the relaxed constraints. o is the sum of all the constants in
the relaxed constraints, multiplied by the respective Lagrangian multipliers. The result is the

following model for each dayd 2 D and time slott 2 T :

X
min W' Sqdit + (Sc C)'+ cowr Xedtr
XqZQ 02C5'<2R . .
+ adtXqu aditXqdt T 0 (3.36)
)%ZQ a2Q
S.t. Xed:tr 1; 8 2 (3.37)
c2C r2R
X
Xedityr 1 8r2R (338)
02(;‘(
Xeditr — Xgudit Xa;d;t Sqat; 8042 Q (3.39)
c2Cq;r 2R
Xqat 2 Bi Xgax 2 B; Sqiar 2 B; 892Q (3.41)

The model (3.36) (3.41) is much easier to solve than the original formulation. The issue is
that the majority of the constraints are relaxed and the bounds we obtained in the Subgradient
Search were not better then the bounds that Gurobi obtained in a shorter amount of time in the
root node of the Branch & Bound tree. The model (3.36) (3.41) can also be used irCalumn
Generation scheme. Cacchiani et al. (2013) provide an overview of di erent formulations to be
incorporated in a column generation algorithm where one of them is similar to the one described
here. They report results on four data instances and show that the bounds obtained by this
formulation are lower and the running times are higher than for other formulations.

3.2.4 Curriculum Decomposition

In this section we describe a formulation based on making copies of some of the variables for each
curriculum. Then we apply the Lagrangian Relaxation such that the model is decomposable
into jQj + 1 subproblems. For each curriculung 2 Q we introduce the binary variablexg;d;t
which is one if coursec 2 C, has a lecture scheduled at dag 2 D in time slott 2 T, and zero
otherwise. We then introduce the following constraints to link the variables together:

X

r2rR

The next step we perform is to take the variablé..q for each coursec 2 C and dayd 2 D,

and make a copy of it for each curriculung 2 Q.. For each course 2 C we also make a copy of
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the variable w, for each curriculumqg 2 Q.. The constraints (3.8) and (3.9) are then replaced
by constraints that use these new variables:

X
tog Xgqr O 802Q;c2Cy;d2D (3.43)

X |
wi+ oty DIM™; 892Q;c2C, (3.44)
d2D

In the objective function (3.12) we apply the following substitution for each course?2 C:

wd (3.45)

We make a Lagrangian Relaxation by relaxing the linking constraints (3.42) for each cur-
riculum q2 Q, coursec 2 Cy, dayd 2 D and time slott 2 T and we letul,., be the Lagrangian
multiplier. This makes the model decomposable such that for each curriculug2 Q we have
a subproblemLR containing all the variables associated witlg, and we have a subproblem
LR for the remaining variables. The subprobleni.R is the same as the basic MIP formulation
where the constraints (3.8), (3.9) and (3.11) are removed and objective function is replaced as
follows:

0 1 I
RC X @, . X a A RStab X X
W (SC Cr) Ucldyt Xc;d;t;r + W Zc;r 1 (3.46)

€2C;d2D ;t2T ;r2R 02Q q c2C r2R

For each curriculumq 2 Q the subproblemLR is as follows:

. 1 X
min - W' Sqidit * we -Q_-Wg + ug;d;txg;d;t (3.47)
d2D ;tT c2Cq <l c2Cq;d2D ;t2T
s.t. Xg a1 =L, 8c2C, (3.48)
d2D ;t2T
)§§?d?t Fear 8c2Cy;d2D;t2T (3.49)
X 1 8d2D;t2T (3.50)
c2Cq
tog Xogi 0 8c2Cy;d2D (3.51)
N
wi+ o tdy DM 8c2C, (3.52)
X d2b
Xogt Xogt 1 Xegtsr  Sqax 8d2D;t2T (3.53)
c2Cq
Xoqi 2 B 8c2Cy;d2D;t2T (3.54)
Sqat 2 B 8d2D;t2T (3.55)
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Note that in the subproblemLR, we added the extra constraints (3.48), (3.49) and (3.50).
The constraints (3.48) and (3.49) are copies of the constraints (3.1) and (3.2) and the con-
straints (3.50) comes from (3.3) by noting that the course§; constitute a course clique. The
issue with this formulation is that the subgradient search requires many iterations to converge
and for most of the data instances the bound obtained is not much higher than the bound
calculated for the initial value (zero) of the Lagrangian multipliers. However, for the value
of zero the lower bound obtained was at least as good as the bound by the LP-relaxation of
the basic model (sometimes higher) and faster to compute. So we tested a Branch & Bound
implementation where we used the Lagrangian Relaxation as the bounding problem instead of
the LP-relaxation.

The issue arising here is how to apply the branching. As the LP-relaxation is a relaxation
of the integrality requirements then it follows naturally to branch on fractional variables. In
our Lagrangian Relaxation we relaxed the linking constraints (3.42) so we use them to apply
the branching decision. If one of the constraints (3.42) is violated for some curriculug®? Q,
coursec2 Cy, day d 2 D and time slott 2 T then we apply the following branching:

8 9 8 9
< Xgg =002 Qe= < Xige =1,02Qc=

Xeditr = 0 ; : Xeditr = 1 (356)

r2rR r2rR

The bene t of the branching (3.56) is that we do not need to resolve all the subproblems.
For instance let coursec 2 Cy, dayd2 D andt 2 T be the selected branching. Lex( ., be the
value of the variablex ., that we branched on for each curriculung 2 Q.. For each curriculum
g2 Q we do not need to resolvé R in the left branch if X, = 0 and we do not need to
resolveLR q in the right branch if X2, = 1.

Another benet of this approach is that the subproblemLR creates a solution which is
feasible so we can calculate the value of the objective function for the basic model as an upper
bound. However, this bound turned out to have a very high penalty of the constraintgl WD
and IL . To get around this issue we solved theR subproblem in two stages. First we solved
the model to obtain the optimal objective value of LR. We then resolved the model where
we added a constraint such that the objective value would not increase:

0 1 !
X X X X _
WRe @s, c)° Ud g A Xy + WRSED ze, 1 (3.57)
c2C;d2D ;t2T ;r2R 02Q q c2C r2R

For each curriculumq 2 Q, coursec 2 Cy, day d 2 D and time slott 2 T let X, be the
value of the variablex?.,, in the optimal solution of the subproblemLR,. We then de ned
the distance between the solution inLR to the solution in each subproblemLR for g2 Q as
follows:

0 1

X X X
@ Xedtr (1 Xeapr)A (3.58)

c2C;d2D ;t2T ;r2R quc;fg;d;t =0 q2Q C:Yg;d;t =1

The objective function was then replaced by minimizing the distance (3.58). The upper
bounds obtained by Gurobis heuristic on the basic model is much better than the solutions
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obtained in the subproblemLR . Furthermore, the lower bounds obtained by Gurobi are higher
compared to the bounds produces by our approach.

3.3 Benders' Decomposition

In this section we describe di erent approaches based on Benders' Decomposition (Benders,
1962). We tested three applications of Benders' Decomposition. The rst one is based on
one of the ow formulations brie y mentioned in section 3.1 which are described in the paper
in chapter 4. In chapter 4 it is shown that the problem has an underlying ow network.
This network is projected out and replaced by constraints. We provide a brief description in
section 2 and the details can be found in the paper in chapter 5. The second approach we
tested is described in section 3.3.2, and is based on projecting out the formulations of all the
soft constraints. The last approach we tested is described in section 3.3.3, and is based on
a pattern formulation of the curricula. Before we present the applications we provide a brief
introduction to Benders' Decomposition in section 3.3.1. This introduction is taken directly
from the paper in chapter 5.

3.3.1 Introduction to Benders' Decomposition

Our introduction is a crude overview and we refer to (Benders, 1962) and Martin (1999, chapter
10) for a detailed description. We describe the method based on a model containing two types
of variables,x and y. The x variables are non-negative continuous variables, and we do not
have any assumptions on the variables, i.e.,x 0Oandy 2 Y whereY can be any domain,
e.g., the set of integers. Consider the MIP model (3.59).

min ¢ x+ f(y)
st. Ax+B(y) b
y2yY
x 0

In model (3.59)c 2 R" is the cost vector of thex variables,A 2 R" ™ is the constraint
matrix of the x variables andb2 R™ is the right-hand-side vector of the constraintsf : Y ! R
is some function to evaluate the cost of thg variables andB is a vector function that evaluates
the contribution of the y variables for the constraints. If we x they variables to some value in
the domainY then what remains is a linear programme (LP). This assumption can be extended
as described by Geo rion (1972), but we stick to the (LP) case in this context. Model (3.59)
can be rewritten to model (3.60).

(3.59)

min f(y)+ z

st. z min xjAx b B(y)
)0 (3.60)
y2yY

z2 R

In model (3.60) there is an inner optimization problem in the constraints. If the variables
are xed, then this is an LP and we can change it into its dual LP as in model (3.61).
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min f(y)+ z

st. z max (b B(y) jA” c
0 (3.61)
y2yY

z2R
One interesting aspect of the inner optimization problem in model (3.61) is that the corre-
sponding polytope is independent of the values of thevariables. So if the polytope AT C

Is non-empty then we can reformulate the problem using the extreme points? and extreme
rays " asin model (3.62).

min f(y)+ z

st. z (b B(y)™ 8P2 P
0 (b B(y)™ 872 T (3.62)
y2yY
z2 R

Model (3.62) is referred to as Benders' master problem. For a given solutigrmodel (3.63)
Is referred to as Benders' subproblem.

max (b B(Y))
st. A’ c (3.63)
0

As the number of extreme points and rays can be exponentially large, a way to solve the
model is to relax the master problem by removing some (or all) of the constraints originating
from the extreme points and rays and then iteratively add them as needed. This is done by
nding a solution y for the master problem (3.62) and inserting the solution into the subprob-
lem (3.63). The subproblem is then solved to obtain an extreme point’ or ray —" and the
corresponding cut is added to the master problem if it is violated. This is done iteratively as
illustrated in Figure 3.5.

Master problem

Extreme point P

— Solution y
or extreme ray

{ Subproblem

Figure 3.5: The iterative loop of Benders' algorithm.

A lower bound on the (relaxed) master problem is a lower bound on the original model, and
if the subproblem returns an extreme point, then this provides an upper bound. The iterative
process is run until some stopping criterion is met, e.g., a time limit is reached, or the lower
and upper bounds are su ciently close.
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3.3.2 Penalty Variables

In this section we consider a reformulation of the basic model such that all the variables asso-
ciated with the soft constraints can be relaxed to non-negative continuous variables. For each
coursec 2 C and day d 2 D the variable t.4 is implicitty maximized. So if we consider an
integer solutionx then the upper bound oft..4 in constraint (3.8) will be either zero or greater
than or equal to one. So if we add the upper bountl,y 1 then we can relax the variable
t..q to be a non-negative continuous variable. We can also relax the variablg for each course

c 2 C. For each curriculumg 2 Q, dayd 2 D and time slott 2 T the lower bound from
constraint (3.11) for the variables,.q. is either one or less than or equal to zero, and as we are
minimizing this variables then it can be relaxed to a non-negative continuous variable. We also
relax the variable z... to a non-negative continuous variables for each cours€2 C and room

r 2R . To be able to do this we replace the constraints (3.6) with the following constraints:

Xedtr Zer; 8€2C;d2D;t2T;r 2R (3.64)

Consider a solution whereX..q., is the value of the variablesx..q., for coursec 2 C, day
d2D,timeslott2T and roomr 2 R. To obtain the objective value of the solution we solve
the following LP model:

X X X X
min  WRS® Zey 1+ WM we+ W Sqt
c2C R c2C 02Q ;d2D ;t2T
+ WRC (Sx Cr)Jr Yc;d;t;r (365)
c2C;d2D ;t2T ;r2R
St Zgy X Xe:ditr 3 8c2C;d2D;t2T;r2R (3.66)
We+  teg DM 8c2C (3.67)
d2b X
teg Xeqr; 8€2C;d2D (3.68)
t2T ;r2R
teq §< 8c2C;d2D (3.69)
Sq;d;t (Xc;d;t;r Xc;d;t Lir Xc;d;t+1;r) ; 8q 2 Q ; d2D ;t 2T (3-70)
c2Cq;r 2R
Zer O 8c2C;r2R (3.71)
teg O 8c2C;d2D (3.72)
we O 8c2C (3.73)
Sqat 0 8902Q;d2D;t2T (3.74)

We assume that the model (3.65) (3.74) is feasible for any solution. We let g4, for
each coursec 2 C,dayd 2 D, time slott 2 T and roomr 2 R be the dual variable of the
corresponding constraint (3.66). For the constraints (3.67) we let, be the dual variable for
each course 2 C. For each course 2 C and dayd 2 D we let .4 and .4 be the dual variables
of the constraints (3.68) and (3.69) respectively. For each curriculum?2 Q, dayd 2 D and
time slott 2 T we let 44« be the dual variable of the constraint (3.70). We then formulate
the dual of (3.65) (3.74) as follows:
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X X X X X

max Yc;d;t;r c;d;t;r + D(r:nin c Yc;d;t;r cd c,d
c2C;d2D ;t2T ;rZRO c2C c2C;d2D t2'5_ r2R c2C;d2D
X X
+ @ (Yc;d;t;r Yc;d;t Lr Yc;d;t+1;r)A q;d;t
02Q ;d2D ;t2T X c2Qqir2R
+ WFe (S C)' Reger  WRS CJ (3.75)
X c2C;d2D ;t2T ;r2R
s.t. carr  WRSEP - 82 Cir 2R (3.76)
d2D ;t2T
¢ cd ca O 8c2C;d2D (3.77)
0 . w\wo . 8c2C (3.78)
0  qax W' 802Q;d2D;t2T (3.79)
cdtr 0 8c2C;d2D;t2T;r2R
(3.80)
ca O 8c2C;d2D (3.81)

We add the continuous variableu to the model. We let the variable be non-negative as a
trivial lower bound of CTT is zero. Then for a solution(X; U) we solve the dual LP model (3.75)
(3.81). If the objective value of the dual LP is greater tham then we add the following violated
cut to the model:

X RC + - X
u W (S C) + cditr cat qg;d;t q:dit 1 q;d;t+1 Xeiditr
czcjgzo 2T 1 2R X 02Q ¢
min — - RStab ;~;:
+ Dc c c.d W JCJ (382)
c2C c2C;d2D

The bene t of the approach described in this section that the model (3.75) (3.81) can be
solved analytically, thus we do not need to use an LP solver.

Consider a curriculumg 2 Q, dayd 2 D and time slott 2 T. In model (3.75) (3.81)
the variable 4.4 is not included in any constraints other than its own lower and upper bounds
(3.80). So in the optimal solution we set the variable to its upper bound when the objective
coe cient is positive, otherwise we set it to its lower bound:

X
<w't ;o f (Kc;d;t;r Xedit Lr Yc;d;t+1;r) >0
Tt = . c2Cqir 2R (3.83)
"0 otherwise

Consider now cours& 2 C and roomr 2 R. We de ne X¢* as the maximum amount that
¢ has been assigned to in any period:
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721;?)( = d%a_{)z(T fXcar O (3.84)
In the constraint (3.76) the variables .4, for each dayd 2 D and time slott 2 T contribute
by the same amount and they do not contribute to any other constraints. So we can pick any
variable gy where Xcqy,, = Xg2* and set it to WRStab  and the others to zero. Another
approach is to distribute WRS®® across all the variables that have the largest coe cient. We
dene the setP™ D T  as the set of periods where has been assigned to by the
maximum amount:

We then calculate the value .4, according to whether or not(d;t) 2 P m&*:

8
RStab
< W i (dit) 2 P
cditr = . J J
"0 otherwise

(3.86)

The last variables we need to calculate are the ones associated with the calculation of the
MWD constraint. Note that the variables , and can be calculated separately for each
course. Consider course 2 C and assume that we know the optimal value . for the variable

c. Due to constraints (3.77) we have that for the values .4 and 4 for each dayd 2 D
the sum 4+ .4 is lower bounded by—. Since all the variables are non-negative and the
coe cients of the variables 4 and 4 for each dayd 2 D are non-positive then it is always
desirable to have the sum at its lower bound:

c~ c;d+ cd (387)

As the variables 4 and 4 do not contribute to other constraints then the values 4 and
_C;d can be set such that the variable with the largest (least negative) coe cient is set to,
and the other is set to zero:

8 X
o < g if Xeditr 1
cd = . t2T ;r2R (3.88)
- 0, otherwise
8 X
_ < g if Xeditr > 1
cd = . t2T ;r2R (3.89)

" 0; otherwise

If we insert (3.88) and (3.89) into the objective function then the objective coe cient of
becomes the following:

x U x )

d2b da2D ;t2T
So we calculate (3.90) and it is positive then we set to its upper bound WMYP  and then
we use (3.88) and (3.89) to calculate the values of theand variables.
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Every integer solutionX is a feasible solution and provides an upper bound. We imple-
mented the cuts in a callback function of Gurobi where we calculated the cuts analytically.
Unfortunately, all the lower bounds were higher and the upper bounds were lower when the
basic model is solved in Gurobi. Some of these issues might arise because Gurobi does not con-
tain any information about the objective function that can guide the heuristics and the cutting
planes. In the newest version of CPLEX an automatic Benders' Decomposition has been im-
plemented. Future research could see if this implementation helps on the issues addressed here.
Furthermore, it could also be interesting to include more soft constraints into the approach.

3.3.3 Curriculum Patterns

The idea in this section is to remove thes variables and then add a pattern variables instead.
For each curriculum and day we construct a set of patterns that the curriculum can be scheduled
to on that day. A pattern de nes in which time slots that lectures are scheduled. For instance
if jTj =4 then all the possible patterns that exists are illustrated in Table 3.1. Each column
in the table corresponds to a pattern and each row corresponds to a time slot. If a pattern
has a lecture scheduled in a speci c time slot then this is marked with. The second last line
(IL) count the number of isolated lectures that are created if a curriculum is assigned to the
corresponding pattern on any day.

Table 3.1: The patterns whenT j=4.

time slot pattern index k
t 01 2 3 45 6 7 8 9 10 11 12 13 14 15
1
2
3
4
IL 0111102 202 001 1 0O

For each curriculumqg2 Q and dayd 2 D we let Kq,4 be the set of feasible patterns thaty
can be assigned to on dayg. We de ne {;;d as a binary variables which takes value one if the
curriculum g 2 Q is assigned to the patternk 2 K 4.4 for day d 2 D. We link the x variables
from the basic formulation from section 3.1 with the variables as follows:

X X
a §a= Xedrr; 802Q;d2D;t2T (3.91)
k2K g.d c2Cqir 2R
X
va =1 8q2Q;d2D (3.92)
k2K g
G2 B 802 Q;d2D;k 2K g (3.93)

Constraints (3.91) ensure that if a curriculum is assigned some pattern on a day, then all
the courses in the curriculum must be assigned to the periods associated with the pattern.
Constraints (3.92) ensure that every curriculum selects exactly one pattern for each day. For
each curriculumq2 Q, dayd 2 D and pattern k 2 K 4.4 we let 'g“d be the total penalty of the
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pattern k, thus we add ('fl;d E;d to the objective function. Consider some solution where each
variable x..qr IS xed to some integer valueX..q.; for each course 2 C, day d 2 D, time slot

t 2T and roomr 2 R. Then the remaining problem to solve is the following:

X

min Kd b (3.94)
qz)? ;d2D k2K g.q X
s.t. a §a= Xeqrr; 802Q;d2D;t2T (3.95)
k%&( qid c2Cq;r2R
ha =1 892Q;d2D (3.96)
k2K g.q
ka2 B; 892Q;d2D;k 2 Kqgq (3.97)

Assume that model (3.94) (3.97) is feasible and bounded. Furthermore, assume that all the
extreme points of the polytope of the LP-relaxation of model (3.94) (3.97) are integer points,
meaning that we can replace the integrality requirements (3.97) by the following non-negativity
constraints:

ka2 0 892Q;d2D;k2Kgg (3.98)

Then we can introduce the continuous variable and reformulate model (3.94) (3.97) as
follows:

min z 3.99
X (3.99)

stz bier Xodr + by 8 2 (3.100)

c2C;d2D ;t2T ;r2R

J is the set of Benders' optimality cuts and for each cuyt 2 J the coe cient of the variable
Xca;r forcoursec2 C,dayd2 D, timeslott 2T androomr 2R is (.. and g is aconstant.
We add z to the objective function of the original formulation and all the variables from the
model. AsJ is exponentially large, we remove them all (except the triviaz  0) and add them
dynamically when they are violated. We de ne as the dual vector of the constraints (3.95)
and as the dual vector of (3.96). We formulate the dual of model (3.94) (3.97) as follows:

0 1
X X X
max @ X P g + qd (3.101)
02Q ;d2D ;t2T c2Cqir2R q2Q ;d2D
St qatt qd o 802Q;d2D;k2Kgyg (3.102)
qdt 2 R; 8902Q;d2D;t2T (3.103)
qd 2 R; 8902Q;d2D (3.104)

Given an integer solution(X; Z) we solve model (3.101) (3.104) and get the optimal solution
(7 7). If the objective value of (7 ™) is greater thanz then we have a violated optimality cut
which we add to the model:
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X X X
Z qidit Xc;d;t;r + q:d (3105)
c2C;d2D ;t2T ;r2R  g2Q¢ 02Q ;d2D

These cuts were based on the assumption that model (3.94) (3.97) has the integrality
property, i.e., that all the extreme points of the polytope of the LP-relaxation are integral.
nglsider a solutionx for the variablesx and the polytope of LP relaxation of (3.91) (3.93).

It ocyror Xearr = 0 for curriculum q2 Q, dayd 2 D and time slott 2 T then for each

pattern k 2 K qq Whereak = 1 the variable E;d must be zero in any solution so we remove
this variable. When we have removed all the variables that contribute to the constraint then
we remove the constraint as it is now redundant. What remains is a zero orset partitioning
problem Note that the model is decomposable for each curriculum and each day, i.e., for each

curriculum g2 Q and each dayd 2 D we consider the following problem:

X X
a §4=1; 82T : Xedrr = 1 (3.106)
k%&( qid c2Cq;r2R
ke =1 (3.107)
k2K g.d X
Ka O 8k 2 Kgq:af = Xedtr; 8t 2 T (3.108)
c2Cq;r2R

If model (3.106) (3.108) has the integrality property for each curriculum and each day then
model (3.94) (3.97) also has the integrality property. A zero one set-partitioning problem
is said to have the integrality property if and only if the corresponding constraint matrix is
perfect (Padberg, 1974; Ryan and Falkner, 1988). So we need to show that the constraint
matrix of model (3.106) (3.108) isperfect To show that the constraint matrix is perfect we
use de nition 3.1 and theorem 3.1.

De nition 3.1  (Padberg (1974) and Ryan and Falkner (1988))An m h zero one matrix
Ap with h  m is said to have the property ., if:

" Aj contains ah h non-singular submatrixB,, were all rows and columns sum to

" Every row in A, which is not in By, is either equal to a row inB;, or the sum of the row
is strictly less 