Microfabrication of gratings for X-ray Imaging

Silvestre, Chantal; Christiansen, Erik D.; Zeng, Yi; Kehres, Jan; Jansen, Henri; Hansen, Ole

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Microfabrication of gratings for X-ray Imaging

Chantal Silvestre1,2, Erik D. Christiansen2, Yi Zeng3, Jan Kehres3, Henri Jansen2, Ole Hansen1

1 DTU Nanotech, 2 DTU Danchip, 3 DTU Physics, Technical University of Denmark, Denmark

Introduction

Conventional X-ray radiography relies on the differences in absorption of the constituent of a sample. For biological tissues, polymers or other organic materials, the absorption is so weak that high contrast imaging is very difficult to achieve.

Using the phase shift of X-rays passing through a sample, the image contrast can be significantly enhanced as shown by C. David et al.[1]

The experimental setup being build at our partner institute (Teknologisk Institut) consists in 3 gratings (g\textsubscript{0}, g\textsubscript{1} and g\textsubscript{2}) as shown below. The analyzer grating g\textsubscript{2} as well as the grating g\textsubscript{0} raise the most severe fabrication challenges. As opposed to g\textsubscript{1} which is made of silicon, g\textsubscript{2} and g\textsubscript{0} require heavy absorbing material. Often they are fabricated using electrodeposition of gold in a pre-fabricated silicon mould. Although expensive, gold is an ideal absorber for X-rays and can easily be electroplated. However, to achieve an absorber grating with this conventional method, several fabrication steps must be achieved, hence, increasing the complexity of the overall fabrication process[1][2]

Objectives

A compact and affordable tool to perform non destructive X-ray analysis will be beneficial in a near future. Our objectives is to obtain a good quality grating while focusing on the following points:

- **Reproducibility** of the fabrication process for industrial large scale fabrication
- **Reducing the fabrication complexity** by decreasing the number of process steps
- **Evaluating the possibilities to pattern cheaper absorbing materials**

Grating fabrication using Si mould and Au electroplating

- Si 1-20 µm cm
- 1. Photograph on Si
- 2. DRIE of Si using optimized Bosch Process
- 3. Gold evaporation on gold seed layer
- 4. Removal of FC layer and resist using Lift-off + Oxygen plasma
- 5. Gold evaporation back side contact
- 6. Electroplating

شعاع الإشعاع: 25 keV

X-ray image of a fish (C. David et al.) (a) in conventional absorption (b) in phase contrast using photon energy 7.5 keV [1]

Wavelength

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>FWHM</th>
<th>Fluence [J/cm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1064 nm</td>
<td>50.4 µm</td>
<td>from 0.25 to 9.1</td>
</tr>
<tr>
<td>355 nm</td>
<td>10.1 µm</td>
<td>from 0.12 to 27</td>
</tr>
</tbody>
</table>

Fluence

<table>
<thead>
<tr>
<th>Spot Area [cm2]</th>
<th>Pulse Energy [J]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.5 J</td>
</tr>
<tr>
<td>1</td>
<td>2 J</td>
</tr>
<tr>
<td>0.25</td>
<td>10 J</td>
</tr>
<tr>
<td>0.12</td>
<td>50 J</td>
</tr>
</tbody>
</table>

First test of X-ray phase contrast imaging at DTU Physics

- (A) Fishing line used as sample in the DTU Physics setup. (B) Horizontal and (C) vertical X-ray phase contrast images obtained using the 27 µm W grating at a source voltage of 75 kVp.

Next steps toward Laser Ablation of Tungsten for X-ray gratings

- SEM Image of metal deposition on the WC layer. Bottom right image shows the limit (see arrow) of the metal deposition at the bottom of the trench.

- SEM cross-section of partially electroplated grating with 6µm pitch

References