Microfabrication of gratings for X-ray Imaging

Silvestre, Chantal; Christiansen, Erik D.; Zeng, Yi; Kehres, Jan; Jansen, Henri; Hansen, Ole

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Microfabrication of gratings for X-ray Imaging

Chantal Silvestre\(^1\), Erik D. Christiansen\(^2\), Yi Zeng\(^3\), Jan Kehres\(^3\), Henri Jansen\(^2\), Ole Hansen\(^1\)

\(^1\) DTU Nanotech, \(^2\) DTU Danchip, \(^3\) DTU Physics, Technical University of Denmark, Denmark

Introduction

Conventional X-ray radiography relies on the differences in absorption of the constituent of a sample. For biological tissues, polymers or other organic materials, the absorption is so weak that high contrast imaging is very difficult to achieve.

Using the phase shift of X-rays passing through a sample, the image contrast can be significantly enhanced as shown by C. David et al. [1]. The experimental setup being build at our partner institute (Teknologisk Institut) consists in 3 gratings (g0, g1 and g2) as shown below. The analyzer grating g2 as well as the grating g0, raise the most severe fabrication challenges. As opposed to g1 which is made of silicon, g2 and g0 require heavy absorbing material. Often they are fabricated using electrodeposition of gold in a pre-fabricated silicon mould. Although expensive, gold is an ideal absorber for X-rays and can easily be electroplated. However, to achieve an absorber grating with this conventional method, several fabrication steps must be achieved, hence, increasing the complexity of the overall fabrication process [1][2].

Objectives

A compact and affordable tool to perform non destructive X-ray analysis will be beneficial in a near future. Our objectives is to obtain a good quality grating while focusing on the following points:

- **Reproducibility** of the fabrication process for industrial large scale fabrication
- **Reducing the fabrication complexity** by decreasing the number of process steps
- **Evaluating the possibilities to pattern cheaper absorbing materials**

Grating fabrication using Si mould and Au electroplating

1. Photomicrography on Si
2. DRIE of Si using optimized Bosch Process
3. Gold evaporation of gold seed layer
4. Removal of FC layer and resist using Lift-off + Oxygen plasma
5. Gold evaporation back side contact
6. Electroplating

- SEM image of metal deposition on the FC layer: Bottom right image shows the limit (see arrow) of the metal deposition at the bottom of the trench.
- SEM cross-section of partially electroplated grating with 6µm pitch

X-ray image of a fish (C. David et al.) (a) in conventional absorption (b) in phase contrast using photon energy 7.5 keV [1]

Tungsten alternative using laser material ablation

Tungsten (W), also known as Wolfram, has the atomic number 74. When compared to gold, W exhibits similar X-ray energy absorption and is significantly cheaper than gold. Thus, W is an inexpensive alternative grating material. Using laser ablation in air, we have patterned a 7x7mm grating with a 27 ± 1µm line width in a 50µm thick W foil. The grating was characterized using X-ray tomography.

First test of X-ray phase contrast imaging at DTU Physics

\(\Rightarrow\) Sketch of the single grating phase contrast setup under development at DTU Physics. The line array grating creates a pattern on the detector. The phase contrast images of a sample can be found from measuring the horizontal (\(\Delta x\)) or vertical (\(\Delta y\)) shift of the projected X-ray pattern when inserting a sample.

UV wavelength: 355nm
Tungsten thickness: 50µm

- SEM
 - Beam passes: 220
 - Mark speed: 200 mm/s
 - Fluence: 1.2 J/cm²
 - Line width: 3.1 ± 0.5µm

- Micrograph
 - Number of pulses: 15000
 - Fluence: 25 J/cm²
 - Hole Ø: 11.0 ± 1.5 µm

References