Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup; Arnsdorf, Johnny; Hefzi, Hooman; Lund, Anne Mathilde; Kwang Ha, Tae; Wulff, Tune; Kildegaard, Helene Fastrup; Andersen, Mikael Rørdam

Publication date:
2017

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Reprogramming Amino Acid Catabolism in CHO Cells with CRISPR-Cas9 Genome Editing Improves Cell Growth and Reduces By-Product Secretion

Daniel Ley1,2, Sara Pereira3, Lasse Ebdrup Pedersen2, Johnny Arnsdorff2, Hooman Hefzi3,4, Anne Mathilde Lund1, Tae Kwang Ha2, Tune Wulff2, Helene Faustrup Kildegaard2, Mikael Rørdam Andersen1.

Key message
CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 different catabolic pathways, to increase synthesis of biomass and recombinant protein, while reducing production of growth-inhibiting metabolic by-products from amino acid catabolism.

Background
Amino acid catabolism produces a wide range of growth inhibiting compounds, amongst these ammonium and lactate. Ammonium is produced by transamination and deamination reactions, whereas lactate is produced by either amino acid catabolic pathways fueling glycolysis or by NADH producing catabolic pathways, which forces the cell to regenerate NAD+ through lactate synthesis. Disruption of amino acid catabolic pathways may reduce production of growth-inhibiting metabolic by-products.

Physiology of single gene disrupted CHO cells
To study the physiological impact of disrupting single amino acid catabolic pathways, we characterized single gene disrupted clones in triplicate shake flask cultures in batch mode. We monitored physiological changes in terms of maximum specific growth rate (μ_{max}), integral of viable cell density (IVCD) and secretion of lactate and ammonium.

Single gene disrupted clones generally showed an increased growth phenotype with 8 of 9 clones displaying increased μ_{max} (up to 115% of WT), while 6 of 9 clones had increased IVCD (up to 136% of WT). Specific secretion of lactate was reduced in 4 of 9 clones (down to 81% of WT), while specific secretion of ammonium was reduced in 5 of 9 clones (down to 91% of WT). Monoclonal antibody titers increased proportionally to IVCD (data not shown).

Validation of functional gene knock-out
Functional gene disruptions were validated using deep sequencing of the targeted genomic loci, gene expression analysis, western blots and proteomics. All genes displayed out-of-frame mutations (A) and generally reduced transcription (B). Western blots indicated potential wild type proteins in some clones (C), so proteomic analysis and miRNA sequencing was applied to verify functional knock-out of target genes (ongoing work).

Physiology of multiple gene disrupted CHO cells
To explore potential synergistic effects of disrupting multiple pathways, we targeted gene 1-4 for knock-out, but did not achieve full knock-out of all genes. Still, we isolated two clones with interesting genotypes. Clones were characterized in duplicated bioreactor cultures and showed further reduced lactate and ammonium secretion, but no growth benefit.

References
4. Ley & Kazemi et al. (2015), Biotechnology and Bioengineering, 112(11), pp. 2373-2387.

Acknowledgements
We acknowledge Grégoire Marteaux and Zephyr Sahwe for technical assistance with generation of genome edited cell lines. Moreover, we thank Sanne Øjenskov for cloning plasmids and Thomas Brøndum Kildegaard for sharing his experience in design of quantitative PCR experiments and Line Holberg Wüller for assisting in the proteomics experiment. The Novo Nordisk Foundation provided funding for this work.