Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup; Arnsdorf, Johnny; Hefzi, Hooman; Lund, Anne Mathilde; Kwang Ha, Tae; Wulff, Tune; Kildegaard, Helene Fastrup; Andersen, Mikael Rørdam

Publication date:
2017

Citation (APA):
Reprogramming Amino Acid Catabolism in CHO Cells with CRISPR-Cas9 Genome Editing Improves Cell Growth and Reduces By-Product Secretion

Daniel Ley1,2, Sara Pereira3, Lasse Ebdrup Pedersen4, Johnny Arnsdorfi, Hooman Hefzi1,4, Anne Mathilde Lundi, Tae Kwang Hae2, Tune Wulfii, Helene Faustrup Kildegaard3, Mikael Rørdam Andersen1.

1. Network Engineering of Eukaryotic Cell Factories, Department of Bioengineering and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark; (2) Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; (3) Department of Bioengineering, University of California, San Diego, United States; (4) Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, United States.

Correspondence: D Ley@biosustain.dtu.dk / M Rørdam Andersen1.

Key message
CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 different catabolic pathways, to increase synthesis of biomass and recombinant protein, while reducing production of growth-inhibiting metabolic by-products from amino acid catabolism.

Background
Amino acid catabolism produces a wide range of growth inhibiting compounds, amongst these ammonium and lactate. Ammonium is produced by transamination and deamination reactions, whereas lactate is produced by amino acid catabolic pathways fueling glycolysis or by NAD+ producing catabolic pathways, which forces the cell to re-energize NAD+ through lactate synthesis. Disruption of amino acid catabolic pathways may reduce production of growth-inhibiting metabolic by-products.

Physiology of single gene disrupted CHO cells
To study the physiological impact of disrupting single amino acid catabolic pathways, we characterized single gene disrupted clones in triplicate shake flask cultures in batch mode. We monitored physiological changes in terms of maximum specific growth rate (μ_{max}), integral of viable cell density (IVCD) and secretion of lactate and ammonium.

Single gene disrupted clones generally showed an increased growth phenotype with 8 of 9 clones displaying increased μ_{max} up to 115% of WT, while 6 of 9 clones had increased IVCD (up to 136% of WT). Specific secretion of lactate was reduced in 4 of 9 clones (down to 81% of WT), while specific secretion of ammonium was reduced in 5 of 9 clones (down to 91% of WT). Monoclonal antibody titers increased proportionally to IVCD (data not shown).

Validation of functional gene knock-out
Functional gene disruptions were validated using deep sequencing of the targeted genomic loci, gene expression analysis, western blots and proteomics. All genes displayed out-of-frame mutations (A) and generally reduced transcription (B). Western blots indicated potential wild type proteins in some clones (C), to proteinase analysis and miRNA sequencing was applied to verify functional knock-out of target genes (ongoing work).

Physiology of multiple gene disrupted CHO cells
To explore potential synergistic effects of disrupting multiple pathways, we targeted gene 1-4 for knock-out, but did not achieve full knock-out of all genes. Still, we isolated two clones with interesting genotypes. Clones were characterized in duplicated biosensor cultures and showed further reduced lactate and ammonium secretion, but no growth benefit.

References
4. Ley & Kazemi et al. (2015), Biotechnology and Bioengineering, 112(11), pp. 2373-2387.

Acknowledgements
We acknowledge the Phenix team and Ziyu Saban for technical assistance with generation of genome edited cell lines. Moreover, we thank San Gijsen Petersen for cloning plasmid and Thomas Houtken Kalleghs for sharing his experience in design of quantative qPCR experiments and Lene Holberg Blicher for assisting in the proteomics experiment. The Novo Nordisk Foundation provided funding for this work.