In-situ doped junctionless polysilicon nanowires field effect transistors for low-cost biosensors

Zulfiqar, Azeem; Patou, François; Pfreundt, Andrea; Papakonstantinopoulos, Charalampos; Svendsen, Winnie Edith; Dimaki, Maria

Published in:
Sensing and Bio-Sensing Research

Link to article, DOI:
10.1016/j.sbsr.2016.09.001

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In-situ doped junctionless polysilicon nanowires field effect transistors for low-cost biosensors

Azeem Zulfiqar, François Patou, Andrea Pfreundt, Charalampos Papakonstantinopoulos, Winnie E. Svendsen, Maria Dimaki *

Technical University of Denmark, Nanotechnology Department, Ørsteds Plads Building 345B, 2800 Kgs. Lyngby, Denmark

A R T I C L E I N F O

Article history:
Received 1 July 2016
Received in revised form 30 August 2016
Accepted 6 September 2016

Keywords:
In-situ doped
Polysilicon nanowire
Field effect transistor
Biosensor

A B S T R A C T

Silicon nanowire (SiNW) field effect transistor based biosensors have already been proven to be a promising tool to detect biomolecules. However, the most commonly used fabrication techniques involve expensive Silicon-On-Insulator (SOI) wafers, E-beam lithography and ion-implantation steps. In the work presented here, a top down approach to fabricate SiNW junctionless field effect biosensors using novel in-situ doped polysilicon is demonstrated. The p-type polysilicon is grown with an optimum boron concentration that gives a good metal-silicon electrical contact while maintaining the doping level at a low enough level to provide a good sensitivity for the biosensor. The silicon nanowires are patterned using standard photolithography and a wet etch method. The metal contacts are made from magnetron sputtered TiW and e-beam evaporation of gold. The passivation of electrodes has been done by sputtered Si3N4 which is patterned by a lift-off process. The characterization of the critical fabrication steps is done by Secondary Ion Mass Spectroscopy (SIMS) and by statistical analysis of the measurements made on the width of the SiNWs. The electrical characterization of the SiNW in air is done by sweeping the back gate voltage while keeping the source-drain potential to a constant value and surface characterization is done by applying liquid gate in phosphate buffered saline (PBS) solution. The fabricated SiNW sensors functionalized with (3-aminopropyl)triethoxysilane (APTES) have demonstrated good sensitivity in detecting different pH buffer solutions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the first demonstration of silicon nanowires (SiNWs) as biological field effect transistors in 2001 [1], where the detection of small concentrations of biomolecules down to 10 pM was demonstrated, a lot of advancements have been made in utilizing them as label-free sensors to detect viruses, cancers, DNA etc. [2–5]. This has opened up the possibility to implement SiNW biosensors in Point-Of-Care (POC) devices, that can play a major role in patient level diagnostics, personalization of treatment, drug development, food safety and forensics [6–12] due to their compact size and small amount of required sample. In order to achieve this, a simple, low cost, highly reproducible and robust fabrication technique is needed that is also compatible with the existing commercial setups used for mass manufacturing of devices.

The bottom up fabrication technique that was originally used to produce SiNW biosensors [13] has various limitations that include poor reproducibility, several inspection steps and slow production speed. These limitations were greatly improved by the implementation of top down fabrication techniques that use Silicon-On-Insulator (SOI) wafers [14–23] to fabricate SiNWs biosensors. However, these techniques involved expensive wafers i.e. SOI wafers with a thin device layer of single crystal silicon and expensive fabrication techniques like electron-beam and deep ultraviolet lithography. Some research groups have replaced the single crystal silicon device layer with polysilicon and have used photolithography instead of e-beam [24–27] to reduce the cost of substrate and the use of expensive equipment. However, no efforts have been made to further simplify the fabrication steps, e.g. the doping techniques of the silicon nanowire, which can also be rather time consuming and expensive. Steps like these are necessary in order to develop disposable POC devices.

Indeed, most fabrication techniques use differential doping in the SiNWs, where the source and drain are highly doped to get an ohmic contact between silicon (Si) and metal. This requires the use of the ion-implantation method, in which the dopants are implanted in the required regions and then driven in the silicon by high temperature annealing. The method is expensive, as not everyone has access to the required tool, and is also rather difficult to optimize.

In this paper in-situ boron doped polysilicon has been used for the fabrication of SiNWs biosensors in a junctionless transistor configuration [28]. The material is rather novel, as very few examples of sensing have been reported using it, and only on gas sensors [29]. As the

http://dx.doi.org/10.1016/j.sbsr.2016.09.001
2214-1804/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
depletion length of the silicon nanowire is inversely proportional to its doping concentration, a relatively low doping is needed to make sure that a 15–20 nm wire can be fully depleted. At the same time though, a very low doping concentration will give rise to barriers at the contact between metal and silicon, which is not wanted. Therefore, when using in-situ doped polysilicon, the doping concentration has to consider both limitations. A study on this has been done in this paper. In addition, the photolithography and wet etch patterning of SiNWs used in this paper make it possible to produce wafers with nanometer sized SiNWs in both height and width in a batch process. A detailed characterization of the fabrication process, which includes dopant concentration, wet etching and contact annealing, is done to ensure high yield and reproducibility of the SiNWs biosensors. The electrical characterization and liquid gate measurements show the transistor characteristics of these devices. Finally, the SiNWs have successfully been functionalized with (3-aminopropyl)triethoxysilane (APTES) and have demonstrated good sensitivity for pH sensing.

2. Materials and methods

The substrate wafer used for fabrication of silicon nanowires was 4 in., p-type, double sided polished wafer with crystal orientation (100), sheet resistance of 1–20 Ω-cm and thickness of around 350 μm supplied by OKMETIC (Finland). To functionalize the SiNWs (3-aminopropyl)triethoxysilane (APTES) and N,N-Diisopropylethylamine (DIPE) were purchased from SIGMA ALDRICH. The pH buffer solutions for sensing experiments were prepared in the lab and the pH values were measured using a pH meter.

2.1. Fabrication of sensor

Step 1: The buried dielectric was formed on the substrate by growing a 30 nm thick layer of silicon dioxide (SiO₂) at 1100 °C followed by the deposition of 50 nm thick layer of stoichiometric silicon nitride (Si₃N₄) at around 800 °C by using two separate Tempress horizontal furnaces.

Step 2: The SiNW material was deposited on top of the Si₃N₄ by growing a 30 nm thick layer of in-situ doped p-type polysilicon with boron concentration of around 3–5 × 10¹⁸ atoms/cm³ by using another Tempress horizontal furnace. The thickness of the polysilicon was then reduced to around 20 nm by 1 min dry oxidation followed by 20 min annealing at 1100 °C. The resulting thin SiO₂ layer was then removed by wet etching in Buffered Hydrofluoric Acid (BHF).

Step 3: The SiNWs were patterned through a wet etch process. 220 nm of silicon rich Plasma Enhanced Chemical Vapor Deposition (PECVD) Si₃N₄ were first deposited on the wafer and patterned by photolithography followed by a 1 min dryetch in the Induced Coupled Plasma (ICP) etch machine supplied by STS and a 5 min wet etch in BHF. This patterned Si₃N₄ with dimensions of length × width = 70 μm × 2 μm, length × width = 120 μm × 2 μm, length × width = 120 μm × 5 μm and length × width = 120 μm × 5 μm was used as an etch mask for etching polysilicon in potassium hydroxide (KOH) solution heated at 20–25 °C. The SiNWs were then annealed underetching the polysilicon with the Si₃N₄ mask for 15–20 min to achieve a width of around 150–300 nm for the 2 μm wide mask and 2–3 μm for the 5 μm mask. The mask was then removed by etching it in BHF solution for 8 min.

Step 4: An oxide was deposited and patterned on top of the SiNWs to enable liquid gate measurements and avoid current leakages from SiNW. For this purpose, a 5 nm thick layer of aluminum oxide (Al₂O₃) was deposited by the Atomic Layer Deposition (ALD) technique and was patterned by using photoresist as mask with the same pattern as for the PECVD Si₃N₄. The patterning was done by wet etching in BHF for 15 s.

Step 5: Wiring and metal contacts for the SiNWs were formed. To achieve this, 150 nm magnetron sputtered Titanium-Tungsten (TiW) and 150 nm e-beam evaporated Gold (Au) were deposited sequentially and patterned by a lift-off process. To improve the polysilicon contact with the metal an annealing step was done in nitrogen (N₂) flow at 350 °C for 1 h.

Step 6: Finally, the passivation of the electrodes was done by sputtering 200 nm of Si₃N₄ and patterning it by a lift-process. The passivation properties of the Si₃N₄ were improved by annealing the wafer at 450 °C for 30 min.

The schematic diagram of all the fabrication steps is shown in Fig. 1.

2.2. Secondary ions mass spectroscopy (SIMS)

To estimate the concentration of boron dopants in the deposited polysilicon secondary ion mass spectroscopy (SIMS) was done on a test wafer with a 50 nm thick polysilicon layer soon after deposition.

2.3. Underetching

After the underetching of polysilicon for the patterning of the SiNWs and the removal of the Si₃N₄ mask the width of the resulting SiNWs was measured in order to evaluate the uniformity of the wet etching process. The measurements were made by using a scanning electron microscope (SEM) Supra VP 40 supplied by Zeiss.

2.4. Contact annealing

To improve the contact of polysilicon with the metal electrodes and the stability of the resistance of the SiNWs an annealing step was carried out at 350 °C for 1 h. Two probe measurements were done on all the chips in order to measure the resistance through the SiNWs before and after the annealing step and quantify the improvement of the contact properties. The resistance was measured between the bonding pads connecting the nanowires to the outside world. Fig. 2 shows the image of one of the sensor devices, indicating the positions of the probes for one of the nanowires on the device.

2.5. Electrical characterization

To study the field effect behavior of the SiNW sensor, electrical characterization measurements in air were performed. The measurement setup consisted of two Keithley 2400 source meters that were connected to a PC through a National Instruments GPIP cable and were controlled by a LabVIEW program. In one characterization step the source-drain voltage (VDS) was kept constant at 300 mV while the back gate voltage (VGS) was swept from –8 V to +8 V. As a second characterization step the ohmic behavior of the SiNW was also tested.

Fig. 1. Schematic images of the fabrication steps for the SiNW biosensor.
by measuring the source-drain current (I_{DS}) vs (V_{DS}) at different back gate voltages. The schematic diagram of the electrical characterization setup is shown in Fig. 3.

The mobility constant and active dopant concentration were extracted using these electrical measurements.

2.6. Liquid gate characterization

To evaluate the performance of the SiNWs in liquids, which is necessary in order to use them as biosensors, liquid gate characterization was done by inserting the chip in a PMMA holder with a PDMS gasket which had an opening for insertion of liquid and a liquid gate electrode (a platinum wire). The platinum wire was fastened on top of the holder and 200 μl of phosphate buffer saline (PBS) solution was added on top of the chip until the holder was filled. The same measurement setup described in section 3.5 was also used for liquid gate characterization by switching the back gate with the liquid gate. Fig. 4 shows the schematic diagram of the setup.

2.7. pH sensing

The change of the SiNW resistance due to changes in the pH of the solution was monitored, in order to establish the sensing potential of the SiNWs. The Al$_2$O$_3$ on top of the nanowires was first functionalized using APTES. This was carried out by first washing the chips in absolute ethanol and drying them in a N$_2$ flow followed by oxygen plasma exposure for 2 min to activate the surface of the oxide with -OH terminated groups. The chips were then placed in a desiccator with N$_2$ flow, which was then placed on a hotplate at 60 °C. Two containers with 200 μl of APTES and 50 μl of DIPA were placed next to the chips in the desiccator. After 1 h of incubation the temperature of the hotplate was increased to 110 °C for 5 min. Fig. 5 shows the schematic diagram of the functionalization steps.

Five pH buffer solutions were prepared with values of 2.98, 4, 7.4, 9.21 and 10 as measured by a pH meter. After adding the buffer solutions to the functionalized chips the measurements were made by keeping the liquid gate at a potential of 0 V and the source-drain voltage (V_{DS}) at 300 mV while recording the source-drain current. The current was measured continuously over a period of 2 s (14 measurement points). The chip was washed with MilliQ water for 3 times with a pipette after a measurement with each buffer solution. In a second experiment, shorter (15 μm) and slightly narrower nanowires were tested with three pH solutions (4, 7 and 10). Here 1070 measurement points were obtained for 150 s before switching the pH solution. The gate voltage was set to 0 V.

3. Results & discussion

3.1. Secondary ions mass spectroscopy (SIMS)

One of the SIMS measurements made on the test wafer is shown in Fig. 6. The boron dopant concentration is found to be around 5×10^{18} atoms/cm3. The increase in the dopant concentration at the bottom of the polysilicon layer is due to the fact that in the recipe of the furnace diborane (B$_2$H$_6$) gas, which is responsible for the induction of boron dopants in the polysilicon, is released first and the silane (SiH$_4$) gas which is decomposed in the furnace to deposit polysilicon on the substrate is released later. This results in the high dopant concentration of boron in the beginning which gets stabilized to the value of 5×10^{18} atoms/cm3 as we move closer to the surface. This level of dopant concentration in polysilicon can provide better ohmic contact with metal [28,30]. The other spike which is close to the surface of the polysilicon is an artifact caused by the equipment, as it takes some time for it to give stable measurements.

To further confirm the suitability of this doping concentration we measured the current through the nanowire using an alternating...
voltage source, and noted the phase shift between voltage and current. This was done for three different gas flows during deposition of the boron doped polysilicon. We confirmed that the flow used to provide the measured doping concentration resulted in no phase change, which indicates an ohmic contact. Smaller gas flows resulted in large phase change or no current flow at all.

3.2. Underetching

Fig. 7 shows SEM images of one of the SiNWs after removing the Si$_3$N$_4$ mask. Images like this were used for the width measurements. They also show that the nanowires do not have a homogeneous width along their length.

The width of all SiNWs on one wafer was measured to establish the reproducibility and uniformity of the KOH etch process forming the nanowires. The histogram of Fig. 8 shows the width distribution for the nanowires formed using the 2 μm wide mask for two different batches fabricated with a year in between by two different users.

It is clear from Fig. 8 that there are great differences in the obtained widths of the nanowires, not only between different wafer batches, but also within the wafer itself. The latter is rather unexpected, as wet etch processes tend to be rather homogeneous. However, it was observed that the SiNWs in the center of the wafer were etched slower compared to the ones in the edges. This can relate the observed non-uniformity of the SiNW widths to the dimensions of the Si$_3$N$_4$ mask used to create them. As the Si$_3$N$_4$ mask is made by dry etching, which is known to be non-uniform by as much as 20%, it is very likely that it is the differences in the dimensions of the mask that are largely responsible for the observed spreading in the SiNW widths. Regarding the batch to batch differences, the inhomogeneity there can be explained by considering the form of the KOH bath, which is warmed by a heating element at the edges of the bath and stirred with flow from the bottom of the tank. This can lead to concentration and temperature gradients that can explain some of the non-uniformity. Moreover, the bath is changed once every three months, and the etch rate is dependent on bath age and usage.

As the above parameters are not easily controlled, the wires are etched for a standard 12 min and checked in an optical microscope. After this step subsequent etches are done for 2 min at a time until the required width is reached. This can of course further lead to reproducibility issues, as it is up to the user to decide whether or not to stop the etching or continue it. Other underetching options that are less user-dependent exist, for example using dry etching techniques.

3.3. Contact annealing

The results of the two probe resistance measurements made before and after annealing on all the SiNWs are shown in Fig. 9.

From the measurements it is clear that the contact between polysilicon and gold electrodes has been greatly improved after annealing. It was also observed during the measurements that the resistance values were not stable before annealing due to loose contact between polysilicon and gold, but this improved after the annealing of the contacts. A possible explanation is that at higher temperatures the TiW forms ternary silicide by reacting with Si which improves the contact resistance and stabilizes the electrical connection [31]. At the same time
TiW also acts as a barrier between Au and Si. When TiW is not present, precipitation of Si[32,33] occurs which causes disconnection between source and drain.

3.4. Electrical characterization

Fig. 10 shows the source-drain current (I_{DS}) measured against backgate voltage sweep when the source-drain voltage (V_{DS}) was kept constant at 300 mV.

Fig. 11. The source-drain current (I_{DS}) as a function of source-drain voltage (V_{DS}) at different back gate potentials (V_{BG}).

Fig. 9. The resistance of the SiNWs before and after annealing. It is clear that the contact after annealing is significantly improved.

Fig. 10
The change in source-drain current (I_{DS}) in a SiNW with dimension length × width × thickness = 70 μm × 0.4 μm × 0.2 μm when sweeping the back gate voltage from −8 V to +8 V while keeping the source-drain voltage (V_{DS}) at 300 mV.

Fig. 11
The source-drain current (I_{DS}) as a function of source-drain voltage (V_{DS}) at different back gate potentials (V_{BG}).

Fig. 12
Source-drain current (I_{DS}) response of SiNW by sweeping liquid gate voltage (V_{LG}) in PBS solution.
at a constant value of 300 mV. This measurement was done in air with the purpose of showing that the devices have a transistor behavior, don’t exhibit leakage and are able to be fully depleted.

The full depletion in the SiNW is achieved at around 5 V, whereas the subthreshold regime is reached at around 3 V. Using the slope of the linear part of the curve in Fig. 10 the mobility constant was calculated by using the formula

$$\mu_p = \frac{L \times \alpha}{C V_{DS} W}$$

where \(\mu_p\) is the mobility constant, \(L\) is the length of SiNW, \(W\) is the width of SiNW, \(\alpha\) is the slope of the curve, and \(V_{DS}\) is the source-drain voltage. The mobility value was found to be 3.594 cm²/Vs and using this value in the equation below the active dopant concentration was found to be 7.55 \times 10^{17} \text{ atoms/cm}^3.

$$p_0 = \frac{K L}{W \mu_p q t V_{DS}}$$

where \(p_0\) is the dopant concentration, \(K\) is the source drain current at 0 V back gate voltage, \(V_{DS}\) is the source drain voltage, \(t\) is the thickness, \(q\) is the electric charge, \(L\) is the length and \(W\) is the width of the SiNW.

The calculated values for the doping concentration are a bit smaller than what was found by the SIMS measurements. However, one should consider that the nanowires used for the characterization are made after a 1 min oxidation at 1100 °C to reduce their height, which will inevitably also have an effect on the concentration of dopants. It is therefore expected that the calculated doping concentration is smaller than the one measured by SIMS.

![Fig. 13.](image)

(a) Change in source-drain current (IDS) at different pH buffer solutions for a 400 nm wide nanowire at three different gate voltages. As the gate voltage approaches the full depletion value, the current is around the noise level and the measurements are not reliable. (b) Change in source-drain current at different pH buffer solutions for a 300 nm wide nanowire with an 8 times shorter length than in (a). The current is one order of magnitude higher.
Furthermore the calculated mobility value is found to be quite close to the ones already reported for polycrystalline silicon with the above mentioned level of dopant concentration [34,35].

The voltage controlled resistance measurements are shown in Fig. 11. From the results it is observed that the external gate has a bigger influence on the resistance of the SiNW. The saturation is achieved in the negative source-drain voltage which is due to the fact that the surface potential at the source end is smaller than that at the drain end, whereas the gate potential is the same all over the SiNW. This potential difference between gate and source is greater than the difference between gate and drain and makes the electric field larger at the source end compared to the drain [36].

3.5. Liquid gate characterization

The purpose of the liquid gate characterization was to verify that the dielectric properties of Al2O3 are stable enough to avoid any current leakage from the SiNW into the liquid and to check if the SiNW can still be depleted by applying a liquid gate. Fig. 12 shows that the SiNW can be fully depleted at a liquid gate voltage of around 0.25 V. No current leakage was observed during the liquid gate sweep, which proves the stability of Al2O3 as a dielectric for this sensor. We note that if the SiNW is protected only by the native oxide growing on it, then there is leakage through the native oxide to the liquid even at very small liquid gate voltages.

The fact that the nanowire can be depleted at such a low voltage means that its use in a POC device is possible, as these are usually battery operated. We note, however, that the current through the nanowire is only a few nA, which means that good amplifiers are needed to get a good readout signal, although this current value can be increased by as much as a factor of 15 by reducing the nanowire length.

3.6. pH sensing

To prove that the in situ doped polysilicon SiNWs can be used as biosensors, a pH sensing experiment was conducted with APTES functionalized SiNW. Fig. 13(a) shows the current through a single SiNW at five pH buffer solutions. The response of the SiNW is in accordance to the expectations because at pH values less than 7, positive charges are the dominant charges in the solution and they influence the p-type SiNW by repelling the charge carriers in the SiNW, i.e. the SiNW resistance increases. The lower the pH value the higher the resistance and the smaller the current. Above pH 7 the negative charges are dominant and therefore the resistance decreases with a current increase as a result.

The response of the SiNWs is linear in the range of tested pH values which is also in accordance to the already reported works [1,16,37–39]. The SiNW in Fig. 13(a) shows a change of 0.049 nA/pH, which corresponds to 0.16 nS/pH. Previous works have shown a larger response, but on considerably shorter and narrower nanowires. The fact that the nanowires in this work are relatively wide and long is certainly not an advantage in terms of biosensing, but the results show that even such wires are able to perform satisfactorily. We note that when slightly changing the gate voltage the sensitivity increases slightly to 0.19 nS/pH. This is most likely due to the nanowire being closer to the subthreshold regime for this gate voltage, as established in [37]. In a recent preliminary experiment, eight times shorter but only slightly narrower nanowires were used to determine the sensitivity in pH (Fig. 13(b)). The results show indeed an eight times larger current passing through the nanowires and a much increased sensitivity to pH, which at 3.1 nS/pH is extremely close to the 5 nS/pH reported in e.g. [39] for an e-beam fabricated single crystalline silicon nanowire. However, more experiments are underway to confirm this result.

The experiment of Fig. 13(a) was repeated with a different nanowire from the same batch, immediately after APTES functionalization (measurement 1) and a week after (measurement 2), with the nanowire left in air at room temperature between measurements. As can be seen in Fig. 14, the pH response was linear immediately after functionalization (with a response of 0.12 nA/pH or 0.4 nS/pH), exactly like in Fig. 13, but became exponential after a week.

The nanowire response a week after functionalization resembles the response observed from a non-functionalized nanowire (as seen in [1]). Considering that APTES is not particularly stable in air, it is logical to assume that the functionalization was simply removed during measurement 2 and the response measured was that of a non-functionalized wire, as reported in [1]. This creates a few issues regarding the stability of the sensor under ambient conditions, and more investigations need to be done in order to ensure that the functionalization layer is not removed when the sensor is stored. However, APTES is known to be stable when the nanowire chips are stored either in a nitrogen atmosphere or simply immersed in ethanol. We are in the process of evaluating these methods.

4. Conclusion

A novel fabrication technique for low-cost and robust fabrication of SiNWs biosensors by using in-situ boron doped polysilicon in a junctionless setup has been developed which involves standard UV photolithography and wet KOH etch to pattern SiNWs. The characterization of the fabrication process has shown that the process has a high yield and reproducibility. The electrical characterization and liquid measurements have shown that the electrical properties of the SiNWs sensors are comparable to the already demonstrated sensors. The successful detection of different pH buffer solutions with APTES functionalized SiNWs shows that the sensor has a potential to be used in a POC setup for the detection of biomolecules, if the issues with the stability of the functionalization layer are resolved.

Acknowledgements

The authors would like to thank Professor Ole Hansen for his expert advices on fixing the problems during the fabrication process and Danchip cleanroom staff for providing all the support on different equipments. This project is a part of the EU Marie Curie Initial Training Networks (ITN) Biomedical engineering for cancer and brain disease diagnosis and therapy development: EngCaBra. Project no. PITN-GA-2010-264417.

References