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Abstract  

Spontaneous decay is a fundamental quantum property of emitters that can be controlled in a 

material environment via modification of the local density of optical states. Here we use 

transformation optics methods in order to design required density of states and thus spontaneous 

emission rate. Specifically, we show that the spontaneous emission rate can be either enhanced 

or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic 

material profile of the cloak enables the directional control of spontaneous emission. We also 

discuss how the practical issues, such as dispersion and losses affect the local density of optical 

states in complex materials. Tailoring spontaneous emission properties using transformation 
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optics approach provides an innovative way for designing emission properties in a complex 

material environment needed for the development of active nanophotonic devices. 
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Introduction 

In both quantum and conventional photonic technologies, the ability to control light emission is a 

cornerstone of many modern applications. Lasers and optical amplifiers, optical and plasmonic 

nanolasers and spasers, single and entangled photon sources required for telecommunications 

and quantum information processing rely on this ability. The properties of spontaneous emission 

(SE), which is a purely quantum mechanical process and which influences also stimulated 

emission, can be modified by engineering the photonic density of states at the emission 

wavelength [1]. Traditionally, the photonic density of states can be modified from its free space 

(uniform dielectric medium) value in structured environment using, e.g., micro- and nano-

cavities [2], optical antennas [3] or generally near the material boundaries [4, 5]. Both dielectric 

[6] and plasmonic micro- and nanostructures, such as photonic crystals [7, 8, 9], plasmonic 

waveguides [10], plasmonic nanoantennas [11, 12], microcavities [13], and metamaterials [14], 

have been employed for this purpose. In a weak coupling regime between an emitter and 

nanostructure [15], the lifetime and, thus, radiation rate of the emitter, is then determined by the 

so-called Purcell factor [16] related to the increased or decreased density of states at the position 

of the emitter in the structured environment. The simplest well-known example is the increased 

rate of the SE in the subwavelength proximity to metal surfaces where the density of states is 
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increased due to surface plasmon polariton modes [4]. Giant Purcell factors have been recently 

predicted in the so-called hyperbolic metamaterials of different realizations [14, 17-19]. Such 

metamaterials are also suitable for designing invisibility cloaks [20, 21]. 

In many cases the photonic environment is used to achieve the increased density of states 

and the increased SE rate [2, 13, 14]; sometimes this happens by the nature of the nanostructures 

and may not be desirable, e.g., in nanolasers or spasers where the increased rate of SE may 

compete with the stimulated emission, while in other cases it helps to depopulate long-lived 

excited states which are responsible for degradation of polymer materials [22] or increase two-

photon emission efficiency [23]. In many applications, the suppressed SE may be advantageous 

where long-lived excited states are required. This is needed for improving lasing or spasing 

conditions, design of deterministic single photon sources for quantum information processing 

and optical memory for telecom applications, to name a few.  

The recent developments in transformation optics have provided a powerful tool for 

designing controlled flow of electromagnetic waves with a varying refractive index profile [24-

33] and designing surface plasmon resonances of complex nanostructures [34-40]. 

Electromagnetic devices such as invisibility cloaks [24-28], lenses [29-31], field rotators [27], 

antennas [32, 33], and many others have been engineered. Such designs generally require 

materials with specific optical properties, but these can, in turn, be achieved using metamaterial 

approaches [41]. Significant progress has also been made in using transformation optics for 

rigorous studies of plasmonic nanostructures which are difficult to consider with traditional 

theoretical approaches [35-40]. While numerous applications have been discussed in the realm of 

classical optics, limited attention has been paid to the capabilities of transformation optics with 

respect to quantum optical processes. 
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In this paper, we study how to design the local density of optical states (LDOS) which 

determines SE properties, using a transformation optics approach, and discuss the impact of 

practical issues, such as dispersion and damping, on LDOS. Specifically, we investigate the 

control of SE with different devices designed with transformation optics. We show that the SE 

rate can be either enhanced or suppressed using invisibility cloaks [24-28] or gradient-index 

lenses [29-31]. Furthermore, the anisotropic material profile of the cloak can enable the 

directional control of the SE rate. The described effects open up new possibilities to implement 

nanophotonic components both for passive and active control of SE inside metamaterials, which 

have started to make their way in practical photonic devices. 

Transformation optics approach 

The rate of SE can be modified by placing the light source in a specially structured environment. 

In the simplest case, the radiation enhancement factor (the Purcell factor) is a property of a 

cavity and, in the case of a weak coupling regime, can be defined as the ratio of the spontaneous 

emission rate inside the cavity   to that in the free space 0  [42]: 

3

2

0

3

4
p

Q
F

V n





  
   
  

, where 

Q and V are the quality factor and mode volume of the cavity, respectively,   is the wavelength 

of the emitted light in vacuum, and n is the  refractive index of material. Fermi's golden rule 

dictates that the transition rate for the atom-vacuum (or atom-cavity) system is proportional to 

the density of final states. In a cavity at resonance, the density of final states is increased (though 

the number of final states may not be). The Purcell factor is then related to the ratio of the cavity 

and free space density of states.  
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In a homogeneous medium, LDOS describes the number of allowed states at a certain 

frequency within the volume [ k , k  ] in the wavevector k space:  

 

3

1 k
d

d




 


 ,                                      (1) 

where is the LDOS,   is the angular frequency of the electromagnetic wave, and  k 
  

represents the reciprocal volume contained within the isofrequency contour k .  

 The LDOS can be modified by changing the environment where the emitter is placed. Let 

us consider a transformation which maps the space  , ,x y z  to the space  , ,x y z   : dr A dr  , 

where    , , / , ,A x y z x y z      is the Jacobian matrix of the transformation function. Because 

the transformation does not introduce extra reflections, the total number of states is preserved, 

whereas the space is compressed (or expanded). Thus, the LDOS in the transformed coordinate is 

given by (see Appendix for derivations) 

                                                                1det A   .                                                 (2) 

As seen from Eq. (2), the LDOS associated with the transformed medium is proportional to

 1det A
, indicating that the LDOS can be engineered directly by a distortion of space. Fig. 1 

illustrates modification of the LDOS in the medium under coordinate transformation. Assuming 

the medium in the initial space to be isotropic, the LDOS corresponds to the number of states 

that are contained in the brown annulus region of the left panel in Fig. 1. After the transformation, 

the iso-frequency contour in k -space changes as shown in the right panel. If the space is 
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compressed, the LDOS is enhanced by the compression factor. On the other hand, the LDOS is 

decreased if the space is expanded.  

In the general case of an arbitrary inhomogeneous medium, the LDOS can be deduced 

from the imaginary part of the Green’s function [1, 43]:  

                                                             
0

0

2
lim Im Tr ,
r r

g

k
G r r

v


 

   
                                           (3) 

where  0,G r r  stands for the Green’s function and vg is the group velocity.  The Green’s 

function associated with the transformed space is deduced as (see Appendix for derivations) 

                                             
1

T 1

0 0, , ,G r r A G r r A


                                                   (4) 

Thus, the decay rate of the emitter as well as related broadening and shift of the 

resonance which all are related to the Green’s function can be designed by prescribed coordinate 

transformation, in the same way as refractive index variations are designed. The modification of 

the SE rate under the space transformation in the lossless case can then be expressed as 

                                                                  

2
1

2
=

A p

p



                                                            (5), 

where p is the dipole moment of the emitter (see Appendix for derivations).  

To provide an intuitive understanding of Eqs. (2) and (5), we consider a simple distortion 

of free space ,  ,  x x y y z z       , where   is the compression/expansion factor of the 

space. According to the transformation optics theory, the material in the new space has a 

homogeneous isotropic permittivity and permeability with 
1

 


   . The LDOS is 3     
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and the spontaneous emission is modified as 2     in the transformed space given by Eq. (5). 

(This result also agrees with the previous studies in Ref [44, 45].) This indicates that we can 

enhance/suppress the SE rate by properly compressing/expanding the surrounding space. In a 

more complicated case, a co-ordinate transformation may lead to an anisotropy if only one axis is 

compressed/expanded: ,  ,  x x y y z z     , leading to the anisotropic material profile in the 

new space: x x     , 1

y y z z            . The LDOS is then modified as 1     in 

the transformed space (Eq. (2)). If 1  , corresponding to an expansion of space, the LDOS will 

be suppressed by the factor of  and thus will be smaller than that in free space, as depicted by 

the blue solid curve in Fig. 2 (a). Note that the increase of  results in the decrease of 

transformed refractive index, and, therefore, the LDOS in transformed space. 

The anisotropic material profile in the transformed space can be realized with 

metamaterials which are usually dispersive and lossy. Therefore, we need to account for the 

impact of dispersion and damping on the change of the LDOS [46]. The LDOS can then be 

expressed via the frequency dependent refractive index n  as  

3 22

2 32 2
1

p g

n dn

c n dv v

 



 


 

 
   

 
.                                              (6) 

Here 
pv and 

gv  are the phase and group velocities of the electromagnetic wave in the medium, 

respectively. In the lossless case but taking into account dispersion of material parameters, the 

transformation of LDOS for the respective material parameters transformation is expressed by                 

                                
2

1

2 3
, ,

1 1 1
det 1

6
j j

j z j j

d d
A

c d d 


  

    





 
     

 
 .           (7) 
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We assume that the permittivity of the material can be described by a Drude model 

   
2

1 /j pjr    [47], and the permeability obeys a Lorentz model  2 2 2

01 /j jA     
 

[48]. To ensure that the permeability is feasible with metamaterials, here we choose the 

parameter 0.25A  , which corresponds to the filling ratio of the area of the metamaterial 

structure to that of the unit cell. Using Eq. (7), we can calculate the transformed LDOS as shown 

in Fig. 2 (a). (Note that since we assume that the permeability of the materials is given by the 

Lorentz model, values of   between 1-A and 1 are not possible in the lossless case. This sets a 

lower limit to   (i.e.,  1/ 1 A   ), so that in Fig. 2 (a) only 2   is considered.) In contrast 

to the nondispersive case, the LDOS increases with  , and for large expansion factors ( 4   in 

this case), the LDOS is larger than that in free space. As indicated by Eq. (6), the LDOS 

increases with the group index of the dispersive material. Large  corresponds to very small 

(smaller than one) refractive index of the transformed material, which has to be realized with 

strongly dispersive metamaterial and with high group index.  

If we further consider the material loss, Eq. (7) should be amended as  

                       
2

1

c2 3
, ,

1 1 1 2
det 1 1 arc tan

6
j j

j z j j

d d
A

c d d 


   

     





 
      

 
 ,          (8) 

where the    c Im / Ren n  .  Fig. 2 (b) compares the LDOS in the dispersive anisotropic 

material with different losses, showing that the inclusion of damping results in the decrease of 

the LDOS. It should be underlined that an emitter cannot have a direct contact with a lossy 

media. Mathematically it will result in a diverging energy due to the dissipation or, in other 

words, diverging imaginary part of electromagnetic Green’s function at the emitter’s point. In 

order to prevent this unphysical result, depolarization volumes of lossless materials around 
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emitters are imposed. 

 

Engineering the SE rate with optical devices 

The considerations above indicate that we can take advantage of the flexibility offered by 

transformation optics to design devices that can control the SE rate as desired by engineering the 

distortion of space, i.e., its refractive index profile. We will consider the impact of two 

transformation optics devices, gradient-index lens and invisibility cloak, on the spontaneous 

emission rate. 

Spontaneous emission in gradient-refractive-index lens 

An all-dielectric gradient-refractive-index lens can magnify subwavelength details of the object 

and deliver this information to the far-field [29-31]. The gradient-index lens is composed of an 

isotropic core ( c c     for 1r R ) and a matching layer ( 1 2R r R  ) with anisotropic 

gradient index materials. It can be designed by applying the transformation function 

 
 

1

2 1
1 1 1 2

2 1

,                                  when 

=
,    when 

r r R

f r R R
r R R R r R

R R










    

                           (9), 

where the constant   stands for the magnification/shrink factor of the lens. This design gives 

 t t f r    , 
 

 

2

0 2r r

f r

r f r
   


.  

According to Eq. (5), the SE rate here is directly related to the compression/expansion of 

space and enhanced/suppressed by a factor of 2  in the absence of absorption. We consider the 
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case of a source emitter such as a quantum dot or dye molecule with a dipole transition, placed 

within the core of the lens where 2 1=3R R . Fig. 3 (a) shows the Purcell factor for this lens, where 

we can observe a monotonic increase of the SE rate with the increase of   (note that the 

horizontal and vertical axes are given in log scales). In particular, when the refractive index of 

the inner core is smaller than 1 ( 1c c cn       ), the lens generates a shrunken image and 

the SE rate is suppressed. Figures 3 (b) and (c) show the LDOS in the lenses with different 

magnification/shrink factors normalized by the LDOS in free space. In the case =2.5 , 

corresponding to =2.5cn  in the core, the LDOS decreases at the outer boundary of the lens while 

gradually increasing to a very large value at the core: the space is compressed in the core 

whereas expanded at the shell. In contrast, for = 0.05cn  , the LDOS increases at the outer 

boundary of the device (where the space is compressed most) with a gradual decrease towards 

inner boundary, where the LDOS reaches the minimum value close to zero. Figures 3 (d-f) show 

the snapshot of the magnetic field distribution in different cases. Compared to a dipole emitter in 

free space [Fig. 3 (d)], the SE is enhanced when the dipole is embedded in the core of the lens 

with refractive index 2.5cn   (Fig. 3e), enabling the subwavelength information to be delivered 

to the far-field. For a lens with 0.05cn  , the emission in the far-field is dramatically suppressed 

[Fig. 3 (f)]. 

The impact of invisibility cloak on spontaneous emission rate. 

We now consider an extreme case of Eq. (9) when 0  . The resulting device is known 

as the invisibility cloak [24-27]. We study the spontaneous emission of the dipole placed inside 

the invisibility cloak [45]. For nondispersive and lossless case, the LDOS can be written as 
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                 
2

2
1 2 1

2 3

2 1

det
R r R

A
c R R r


 



   
    

 
                                          (10) 

The LDOS around and inside the cloaked region is shown in Fig. 4 (a), where the LDOS of a 

cloak shell is shown normalized to its value in free space. In these calculations, the inner radius 

of the cloak R1 is chosen to be equal to the working wavelength of the cloak and the outer radius 

R2=2R1. It should be noted that the radius of the cloak is not directly related to the working 

frequency of the cloak, due to properties of the coordinate transformation, and in principle can be 

as large as needed. The spontaneous emission rate of the dipole inside the medium forming the 

cloak moderately increases at the outer boundary of the cloak (where the space is compressed 

most) with a gradual decrease towards inner boundary, where the LDOS reaches zero. Inside the 

cloaked region, the LDOS is zero since in a perfect cloak, the inner cloak boundary is 

transformed from a line by expanding the space, so that spontaneous emission is completely 

suppressed.  

In realistic realisations, however, the cloak design requires dispersive metamaterials so 

that every given design works in a relatively narrowband regime. Assuming the same model for 

material permittivity and permeability as above, a Drude model a Lorentz model, respectively, 

and neglecting losses (Eq. 8), the LDOS in the cloak shell is slightly higher compared to the 

nondispersive case (Fig. 4 (a)). However, it still decreases along the radial direction from the 

outer to the inner boundary. We note that the LDOS in the dispersive case is no longer zero 

inside the clock. This is because the extreme value (zero in radial direction, and infinity in 

angular direction) of the permittivity and permeability reached at the boundary requires strong 

material dispersion to achieve. However, we find that the damping of the material suppresses the 
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LDOS, especially at the inner boundary of the cloak where the LDOS can reach very small 

values (Fig. 4 (b)). 

The influence of the material loss on the LDOS and Purcell factor is accounted for using 

full-vectoril numerical simulations (COMSOL Multiphysics), and the SE rate is considered by 

analyzing the far-field integral of the radiated power. Figure 5 (a) shows the dependence of the 

Purcell factor on the damping in the cloak shell, where we find that increasing the loss leads to 

an increase of the Purcell factor. This is because the absorption gives rise to the redistribution of 

states in the system while the number of total photon states is conserved. The extreme case is the 

lossless ideal cloak in which the spontaneous emission of a dipole is completely suppressed, as 

discussed above. For very small losses (  Im 0.02r  ), the SE rate increases rapidly with the 

material loss, but for  Im 0.02r  , it is less sensitive to it. Figure 5 (c) shows the snapshot of 

the electric field distribution for the emitter located inside the cloak, where the emission is 

completely inhibited and no radiation can be observed in the far field. This is due to the high 

electric and magnetic surface voltages achieved due to the required material properties at the 

inner boundary of a spherical cloak, which prevent electromagnetic waves from going out [50]. 

When some loss is present in the cloak layer, the emission outside the cloak is clearly observed 

but still suppressed compared to the free space (Fig.5 (b)).  

In fact, Eq. (2) indicates that the SE rate depends not only on the distortion of space, but 

also on the orientation of an emitting dipole in an anisotropic environment. Thus, if we 

implement a device by compressing the space in one direction while expanding it in the other, 

we may achieve directional control of SE within this single device. The spherical cloak resulting 

from compressing a spherical region into an annulus one, involves a compression in the radial 
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direction and expansion in the angular direction, and thus provides a good candidate for this 

purpose. Figure 6 depicts the dependence of the SE rate enhancement on the orientation of the 

dipole emitter located at the inner boundary of the cloak. We find that the emission of a dipole 

oriented parallel to the inner surface of the cloak can be completely suppressed, and the SE rate 

is gradually increased as the orientation of the dipole rotates towards the normal of the inner 

surface. This phenomenon can be understood with Eq. (3): since the inner boundary of the cloak 

is transformed from a point [25], the angular direction is infinitely expanded ( 0  ), 

corresponding to a complete suppression of spontaneous emission.     

Figure 7 shows the magnetic field distributions for emitters located at the inner boundary 

of the cloak with two different orientations, i.e., parallel and perpendicular to the surface, along 

which the minimum and maximum emission rates are attained. When the dipole is oriented 

parallel to the surface, the presence of the loss results in a minor change of the SE rate and leads 

to the radiation to the far field. Similarly, the emission of the dipole normal to the inner surface 

can be further enhanced in the presence of damping in the cloak layer. Note that the cloak has the 

same effect on the directional control of the emission rate of a magnetic-dipole emitters. Control 

over the orientation of the transition dipole moment allows novel applications where the 

emission can be switched from enhanced to inhibited by tuning the orientation of an emitter [51]. 

Conclusion 

We have shown that transformation optics offers immense opportunities for designing emission 

properties in material environment. By appropriately choosing the transformation, both the 

emission rate and directionality control can be achieved. The application of the approach is not 

restricted to the discussed examples of gradient-index lens and cylindrical cloak which are 
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transformed from free space. More complicated cases can be considered starting from an 

inhomogeneous surroundings before transformation. This opens up a possibility to control the 

spontaneous emission inside the transformation optics devices, including invisibility cloaks, 

using metamaterials. These opportunities can further be extended to active control of the 

spontaneous emission if externally tuneable metamaterials are applied. The presented results may 

also find applications in various fields including solar energy, illumination, displays, and 

quantum-information processing. 

 

Appendix 

1. Derivation of the LDOS in the transformed space. 

LDOS describes the number of allowed states at a certain frequency within the volume [ k , 

k  ] in the k space:  

 

3

1 k
d

d




 


 ,    (A1) 

where   is the angular frequency of the electromagnetic wave and 
 k 

  represents the volume 

that are contained within the equal-frequency contour k .  

We shall study how the LDOS is modified under a transformation that maps the space 

 , ,x y z  to the space  , ,x y z   . If    , , / , ,A x y z x y z      is the Jacobian matrix of the 

transformation function, then dr A dr  . The quantity k r  must remain unchanged under the 

transformation. Therefore, the wave vector in the transformed frame can be calculated as 

 
1

Tk A k


  , so that      / det
k k

A
 
  . Therefore, in the transformed space, the LDOS is 

given by 
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                                                                1det A   .                                (A2) 

The compression of the space leads to the increase of LDOS while the expansion of space 

corresponds to the decrease of LDOS.  

2. Derivation of the SE rate in the transformed space. 

To calculate the change of spontaneous emission rate, we first study how the local density of 

states (LDOS) is modified under a transformation that maps the space  , ,x y z  to the space

 , ,x y z   .    , , / , ,A x y z x y z      is the Jacobian matrix of the transformation function. 

The electric (magnetic) field can be calculated from the electric (magnetic) current 

density using the Green’s function [1]: 

       3

0 0 0 0,EE r i G r r j r d r    (A3) 

       3

0 0 0,HH r G r r m r d r   (A4) 

Transformation rules for the fields E and H , and j , m  and 0r  are [52] 

  
1

TE A E


  ,   
1

TH A H


   (A5) 

  
1

detj A A j


     ,   
1

detm A A m


      (A6) 

  3 3

0 0detd r A d r   (A7) 

Substituting Eqs (A5-A7) in Eqs. (A3) and (A4), one finds 

      T 1 3

0 0 0 0,EA E r i G r r A j r d r         (A8) 

      T 1 3

0 0 0,HA H r G r r A m r d r       (A9) 

Comparing Eqs. (A3,A4) with (A8,A9), we obtain 
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      
1

T 1

0 0, ,E EG r r A G r r A


    , (A10) 

      
1

T 1

0 0, ,H HG r r A G r r A


    , (A11) 

together with the permittivity and permeability tensors 

  
1 Tdet A A A 


     ,  
1 Tdet A A A 


     . (A12) 

To further verify the validity of Eqs. (A10) and (A11) in a general case, we demonstrate 

that the transformed Green’s function is the solution of Maxwell’s equations in anisotropic and 

inhomogeneous media [53] 

 0

0

E i H

H i E J

 

 

      

         
. (A13) 

Eliminating the magnetic field H  , we obtain the following equation for E : 

 1 2

0 0E k E i J               . (A14) 

Hence, the differential equation for dyadic Green’s function G  can be written as 

 1 2

0G k G I               , (A15) 

where I  denotes the unit matrix. To simplify the discussion, we assume the original space is 

vacuum ( 1   and 1   ). From Eqs. (A10) to (A12), we find 

 
 

 

1

1
1

det T

T

A A A

G A G A

  




   

   

, (A16) 

Hence, we only need to demonstrate that G  is the Green’s function in vacuum. Using Eq. (A16), 

we obtain 
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    

 

 

1 1
1 1 1

1
1

1 1

det

                       

                       det

T T

T

G A A A A G A

A G A

A A G A


 

  




 

                 
  

    

  

. (A17) 

 

   

   

 

1
1 1

1
1 1

1 1

det

            det

            det

T T

T T

G A A A A G A

A A A A G A

A A G A




 


 

 

       
  

    

  

, (A18) 

Substituting Eqs. (A17) and (A18) into Eq. (A15) yields: 

 

   

   

   

1 1 2 1 1

0

1 2 1

0

2 1

0

det det

det

det

A A G A k A A G A I

A A G k G A I

G k G A I A A I





 

   

 



     

     

       
  

, (A19) 

where  det A   . In this way, we have recovered the differential equation of the Green’s 

function in free space. This indicates that the Green’s function given by Eq. (A16) is a solution 

of the wave equation given by Eq. (A15), in agreement with our previous derivation. It can 

analogously be shown explicitly that the transformed magnetic Green function indeed has the 

form of Eq. (A11) 

In the transformed space  , ,x y z   , the operational definition of the SE rate of an 

emitting dipole p with a dipole moment p’ in the transformed space can be calculated as  

                    
T

T 1 1

0 0Im , Im ,p G r r p A p G r r A p         .              (A20) 

This equation indicates that the emitting dipole located in the transformed medium has exactly 

the same radiation properties as a dipole in the original space whose dipole moment is given by 

1p A p  . In particular, if the original space is free space, by substituting the free space 

Green’s function in Eq. (A13), the transformed SE rate can be obtained as 
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2 2
3 1 1

23

0 0

=
3

A p A p

c p





  
  


 (A21) 

where   is the SE rate of the emitter in free space. 
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Figure1. LDOS (denoted by shaded area) in the original space and after the transformation. 
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Figure 2 LDOS dependence on the expansion factor α in the linear transformed space. (a) The 

comparison of LDOS in nondispersive and dispersive cases without dissipation. (b) The 

comparison of LDOS in dispersive media with different damping frequencies. 
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Figure 3 (a) Purcell factor dependence on magnification/shrink factor  for the gradient index 

lens. (b, c) The LDOS in the gradient index lenses with different magnification/shrink factors: 

2.5  (b) and 0.05  (c), normalized to its value in the free space. (d-f) The magnetic field 

distribution for a dipolar emitter in the free space (d) and in the gradient index lenses with 

different magnification/shrink factors: 2.5  (e) and 0.05  (f).  
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Figure 4 LDOS in and around the cloaked space. (a) The comparison of dispersive and 

nondispersive cases without dissipation, where the inserts show the LDOS distribution in the 

cloak shell, and the blue dashed lines indicate the contours of the cloak. (b) LDOS in dispersive 

media with different damping frequencies. 
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Figure 5 (a) The dependence of the Purcell factor on material loss for the spherical cloak. The 

emitter is placed inside the cloak. (b-d) The magnetic field distribution for a dipole radiating in 

free space (a) and inside a spherical cloak in the lossless (c) case and in the presence of the 

material loss  Im 0.1r   (d). 
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Figure 6 Dependence of the Purcell factor on the angle between the emitting dipole and the 

normal of the inner surface of the cloak. 
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Figure 7 Magnetic field distributions generated by the emitted placed in a cloaked region at the 

inner boundary of the cloak (a,b) parallel and perpendicular (c,d) to the surface for lossless (a,c) 

and (b,d) lossy (  Im 0.1r  ) material. 


