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a b s t  r  a c t  

In the  present  paper, for  the  “rst  time  in  literature  an exact analytical  solution  to  

Lemaitre•s isotropic  damage model  is developed  for  the  special case of uniaxial  tensile  

testing.  This is achieved by taking  advantage of a convenient  formulation  of the  isotropic  

hardening  function,  which  allows  obtaining  an integral  relationship  between  total  strain  

and effective  stress. By means of the  generalized  binomial  theorem,  an expression  in  terms  

of in“nite  series is subsequently  derived.  The solution  is found  to  simplify  considerably  ex-  

isting  techniques  for  material  parameters  identi“cation  based on optimization,  as all  issues 

associated with  classical numerical  solution  procedures  of the  constitutive  equations  are 

eliminated.  In addition,  an implicit  implementation  of the  plane stress projected  version  

of Lemaitre•s model  is discussed, showing  that  the  resulting  algebraic  system can be re-  

duced to  a single  non-linear  equation.  The accuracy of the  proposed  integration  scheme is 

then  veri“ed  by means of the  presented  1D analytical  solution.  Finally,  a closed-form  ex-  

pression  for  the  consistent  tangent  modulus  taking  damage evolution  into  account  is given, 
and its  impact  on the  convergence rate is analyzed. 

© 2016  Elsevier Inc. All  rights  reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction  

Lemaitre•s model  [1]  is today  one of the  most  widely  used techniques  for  modeling  damage evolution  in  ductile  mate-
rials.  Despite several improvements  have been proposed  in  order  to  account  for  additional  effects like  micro-cracks  closure
under  compressive  stresses [2]  and anisotropy  [3,4]  , the  original  isotropic  formulation  limited  to  isotropic  hardening  is still
often  employed  due to  its  simplicity  and the  relatively  low  number  of material  parameters  involved.  The latter  can be easily
determined  from  knowledge  of the  damage evolution  history  in  loaded specimens, obtainable  by means of well-established
experimental  methods  [5]  . Nevertheless, it  might  be that  such information  is either  not  available  or too  expensive  to  obtain
for  the  speci“c  material  at hand. Under  these circumstances,  it  is common  practice  to  identify  the  material  constants  on
the  basis of an optimization  analysis aiming  at minimizing  the  error  between  the  predicted  numerical  results  and a ref-
erence uniaxial  tensile  curve  [6]  . More  recently,  methodologies  which  offer  improved  accuracy by combining  the  classical
experimental  stress…strain relationship  with  other  observables have also been proposed  [7,8]  . However,  the  use of all  such
procedures  in  combination  with  a numerical  resolution  of the  mathematical  model  exhibits  three  main  disadvantages. First
� Corresponding  author.  Tel.: +45 45 25 47 22. 
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Nomenclature  

s ij  Deviatoric  part  of the  stress tensor  

� ij  Kronecker  delta  

�  tot  
i j  , �  e 

i j  , �  
p 
i j  Total/elastic/plastic  strain  tensor  

� ij  Stress tensor  

�  � i j  Effective  stress tensor  

� e Equivalent  Von Mises stress 

� y , � 0 
y Actual/initial  yield  stress 

E Young•s modulus  

D Damage variable  

R v Triaxiality  function  

S, s Lemaitre•s damage evolution  parameters  

Y Energy release rate  

� Yield  function  

k , n Isotropic  hardening  parameters  

p Equivalent  Von Mises plastic  strain  

p crit  Critical  effective  plastic  strain  for  damage evolution  

r Hardening  variable  

� Plastic multiplier  

� Poisson•s ratio  

( · ) Increment  operator  

� () Finite  variation  operator  

of all, it  requires  the  use of an optimization  algorithm  coupled  with  a numerical  tool  for  solving  the  underlying  system
of differential  equations.  Secondly, the  numerical  solution  procedure  in  itself  is complicated  by the  •softeningŽ behavior  of
the  damaged material  at su�ciently  large strains.  Thirdly,  the  produced  values for  the  material  parameters  are affected, in
addition  to  the  experimental  & optimization  uncertainty,  by the  error  associated with  the  numerical  discretization  adopted.
With  the  aim  of overcoming  all  the  above-mentioned  aspects, an analytical  solution  to  the  isotropic  Lemaitre•s model  for
the  speci“c  case of uniaxial  tensile  testing  is developed  in  the  present  paper. Quite  surprisingly,  no previous  works  on the
subject  appear to  have been published  in  literature,  despite  the  intrinsic  value that  analytical  solutions  possess, especially
in  relation  to  numerical  implementations  assessment. 

Lemaitre•s model  has also proved  effective  in  predicting  damage evolution  in  situations  of plane stress, as recently  con-
“rmed  by geometric  transferability  investigations  carried  out  on ”at  specimens of Ti-6Al-4  V alloy  [9]  . These characteristic
loading  conditions  are frequently  encountered  in  industrial  processes where  material  degradation  becomes a critical  factor,
as discussed in  [10]  for  the  case of sheet metal  forming.  If  a traditional  displacement-based  implicit  “nite  element  code with
global  full  Newton…Raphson iterations  is used for  the  related  numerical  analysis, a natural  complication  arises in  ensuring
the  out-of-plane  components  of the  stress tensor  to  be zero at the  end of each load increment.  This issue is thoroughly
discussed in  the  context  of general  elasto-plasticity  in  [11]  , where  three  different  techniques  are suggested to  cope with  the
problem:  (A) direct  inclusion  of the  plane stress constraint  at the  Gauss point  level,  (B) addition  of a plane stress constraint
at the  global  structural  level,  (C) use of plane stress projected  constitutive  equations  at the  Gauss point  level.  The “rst  two
solutions  are usually  easier to  implement,  but  at the  price  of higher  computational  time;  an example  of implicit  constitutive
discretization  of Lemaitre•s model  with  kinematic  hardening  using approach  (A) is given  in  [12]  . As a consequence, approach
(C) is to  be preferred  whenever  possible, as it  leads to  more  e�cient  computational  procedures  due to  the  fact  that  only  the
relevant  in-plane  stress and strain  components  are considered  [13]  . This is also the  approach  adopted  in  the  second part  of
the  present  paper, where  it  is shown  that  implicit  integration  of the  plane stress projected  Lemaitre•s model  with  isotropic
hardening  using the  elastic  predictor-return  mapping  scheme can be reduced  to  a single  non-linear  equation.  Furthermore,
a closed-form  expression  for  the  related  consistent  tangent  modulus  is proposed, which  is found  to  improve  signi“cantly
the  convergence rate. 

2. Lemaitre•s  isotropic  damage  model  with  isotropic  hardening  

The fundamental  equations  characterizing  Lemaitre•s isotropic  damage model  with  isotropic  hardening  are reported  here
in  Cartesian components  [6]  : 

(a) additive  strain  decomposition:  

�  tot  
i j  =  �  e 

i j  +  �  
p 
i j  , (1)  
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(b)  elastic  constitutive  law:  

� i j  

1 Š D 
=  

E 

1 +  �

�  

�  e 
i j  +  

�
1 Š 2 �

� i j  �  e 
kk 

�  

, (2)

(c) ”ow  rule:  

� �  
p 
i j  =  

3 s i j  

2 � e 

� �
1 Š D 

, (3)

(d)  yield  function:  

� =  
� e 

1 Š D 
Š � y ( r ) � 0 , � e =  

�
3 

2 s i j  s i j  

� 1 
2 

, (4)

(e) isotropic  hardening  rule:  

� y =  f ( r ) , (5)

(f)  hardening  parameter  increment:  

� r =  ( 1 Š D ) � p , � p =  

� 2 

3 
� �  
p 
i j  � �  

p 
i j  

� 1 
2 
, (6)

(g) damage evolution  law:  

� D =  

� Y 

S 

� s 

� p , i f  p >  p crit  , (7)

(h)  energy release rate:  

Y =  
� 2 

e R v 

2 E ( 1 Š D ) 
2 , R v =  

2 

3 
( 1 +  � ) +  3 ( 1 Š 2 � ) 

� � kk 

3 � e 

� 2 
, (8)

(i)  consistency  condition:  

� � 0 , � � � 0 , � � � =  0 . (9)

It  may be easily demonstrated  that  the  ”ow  rule  (3)  together  with  (6)  imply  the  equality  � r =  � � . The derivation  is reported
in  [14]  . 

With  regards to  the  isotropic  hardening  function  appearing  in  Eq. (5)  , it  is often  assumed to  have the  exponential  form:

� y =  � 0 
y +  R �  ( 1 Š exp ( Šbr ) ) , (10)

where  b is a material  parameter  and R �  represents  a saturation  value corresponding  to  r �  +  �  . In the  context  of the
present  work,  the  following  power-law  hardening  rule  is chosen instead:  

� y =  k ( r +  r 0 ) 
n , r 0 =  

�
� 0 

y 

k 

� 1 / n 

, (11)

in  which  k denotes the  hardening  factor,  n the  hardening  exponent  and r 0 is simply  a constant  whose  value is adjusted  to
ensure � y =  � 0 

y for  r =  0 : from  a physical  point  of view,  it  could  be thought  of as a parameter  associated with  the  hardening
induced  by the  initial  amount  of dislocations  present  in  the  virgin  material.  The reason for  adopting  formulation  (11)  over
(10)  is the  lower  degree of complexity  it  entails  in  developing  an analytical  solution,  as explained  in  the  next  section. 

3. Analytical  solution  for  uniaxial  tensile  test  

The tensor  equations  presented  above may be recast in  the  corresponding  1D form  as follows:  

�  tot  =  �  e +  �  p , (12)

� =  ( 1 Š D ) E �  e , (13)

� r =  ( 1 Š D ) � �  p , (14)

� =  
�

1 Š D 
Š � y ( r ) � 0 , (15)

� y =  k ( r +  r 0 ) 
n , (16)

� D =  

� Y 

S 

� s 

� �  p i f  �  p >  p crit  , (17)
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Y =  
� 2 

2 E ( 1 Š D ) 
2 , (18)  

� � 0 , � r � 0 , � � r =  0 , (19)  

where  use has been made of the  standard  equalities  � e =  � 11 =  � and p =  �  
p 
11 =  �  p , which  are valid  in  the  uniaxial  case. 

In the  next  paragraphs, an integral  solution  in  the  form  � =  f ( �  tot  ) to  the  set of Eqs. (12)  …(19)  is sought,  assuming
monotonic  growth  of the  applied  total  strain,  which  is taken  to  be the  independent  variable  for  the  problem  at hand. The
two  differential  relations  (14)  and (17)  are assumed to  be complemented  by the  initial  conditions  r =  D =  0 for  �  tot  =  0 . The
analysis is split  into  two  parts:  the  “rst  one corresponds  to  the  pure  elasto-plastic  regime  ( �  p � p crit  �  D � 0), whereas  the
second one considers damage evolution  in  addition  to  plastic  ”ow  ( �  p >  p crit  �  D >  0). 

3.1. Elasto-plastic regime 

For values of the  externally  imposed  total  strain  which  are su�ciently  small,  the  stress state remains  inside  the  yield
surface and the  material  behaves elastically.  This means that  � <  0 �  � r =  0 �  � �  p =  0 �  �  tot  =  �  e and the  entire  system of
Eqs. (12)  …(19)  reduces to  the  simple  Hooke•s law:  

� =  E �  tot  . (20)  

When  the  applied  strain  exceeds the  critical  threshold  �  tot  =  � 0 
y / E, plastic  ”ow  takes place, implying  � r >  0 �  � =  0 .

However,  as long  as �  p � p crit  , no damage occurs in  the  material,  therefore  Eq. (14)  dictates � �  p =  � r and consequently �  p =  r
as both  variables  are assumed to  have the  same initial  value at the  beginning  of the  test. Using the  last expression  in  Eq. (16)
gives � y =  k ( �  p +  r 0 ) n ; then,  by combining  this  result  with  Eqs. (12)  , (13)  , (15)  one obtains  the  implicit  expression  relating
stress and total  strain  as: 

� =  k 

�
�  tot  Š

�
E 

+  r 0 

� n 
. (21)  

The critical  stress value �̄ at which  damage evolution  starts  during  uniaxial  straining  can be easily found  by setting
�  tot  =  �  e +  �  p =  �̄ / E +  p crit  in  the  last equation,  obtaining:  

�̄ =  k ( p crit  +  r 0 ) 
n (22)  

and the  corresponding  critical  total  strain  is found  as: 

�̄  tot  =  p crit  +  
�̄
E 

. (23)  

3.2. Damage regime 

Once the  externally  applied  strain  grows  beyond  the  critical  value �̄  tot  calculated  according  to  Eq. (23)  , damage evolution
occurs in  addition  to  plastic  ”ow.  In order  to  simplify  the  calculations,  it  is convenient  to  introduce  the  effective  stress �  � as
[14]  : 

�  � =  
�

1 Š D 
. (24)  

By using the  above de“nition  together  with  the  consistency  condition  � =  0 , the  number  of equations  appearing  in  the
system (12)…(19) can be reduced  by 3, and the  following  5 relations  are obtained:  

�  tot  =  �  e +  �  p , (25)  

�  � =  E �  e , (26)  

� r =  ( 1 Š D ) � �  p (27)  

�  � =  k ( r +  r 0 ) 
n (28)  

� D =  

�
�  � 2 

2 ES 

� s 

� �  p , (29)  

which  need to  be further  combined  together  and then  integrated  to  “nd  a suitable  solution  in  the  form  �  � =  f ( �  tot  ) . 
The starting  point  is to  invert  and subsequently  differentiate  Eq. (28)  to  get:  

r =  

�
�  �
k 

� 1 / n 

Š r 0 �  � r =  
�  � 1 

n Š1 

n k 1 / n 
� �  � . (30)  
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It  is worth  noticing  in  the  last expression  that  as � r is required  to  be positive,  the  effective  stress variable  �  � grows
monotonically  during  the  test. Combination  of Eq. (30)  with  Eq. (27)  yields:  

� �  p ( 1 Š D ) =  
�  � 1 

n Š1 

n k 1 / n 
� �  � . (31)

Finally,  the  plastic  strain  increment  � �  p appearing  in  the  last relation  can be expressed in  terms  of �  � and � D by use of the
damage evolution  law  (29)  , leading  to:  

�
�  � 2 

2 ES 

� Šs 

( 1 Š D ) � D =  
�  � 1 

n Š1 

n k 1 / n 
� �  � . (32)

Simple  algebraic  manipulation  allows  the  equivalent  form:  

( 1 Š D ) � D =  A �  � 	 � �  � , (33)

where  the  following  constants  have been de“ned:  

A =  

�
n k 

1 
n ( 2 ES ) 

s 
� Š1 

, 	 =  2 s +  
1 

n 
Š 1 . (34)

The differential  Eq. (33)  is in  separable form  and can be integrated  from  the  state ( 0 , �̄ ) to  ( D, �  � ) , providing  the  follow-
ing  direct  relation  between  the  effective  stress and the  damage variable:  

D Š
D 2 

2 
=  

A 

	 +  1 

�
�  � 	 + 1 Š �̄ 	 + 1 

	
. (35)

It  is important  to  point  out  that  the  last integral  expression  has been obtained  in  closed-form  taking  advantage of very
basic functions  of D and �  � that  appear at both  sides of (33)  . In particular,  the  simple  power-law  dependence on �  � is a direct
consequence of the  speci“c  hardening  rule  adopted.  It  may be demonstrated  that  if  the  exponential  expression  (10)  were
chosen instead  of (11)  , a relation  of the  type  �  � 2 s /  ( R �  +  � 0 

y Š �  � ) would  appear at the  right-hand  side of Eq. (33)  , which
could  not  be integrated  analytically  using conventional  techniques.  

For a given  value of �  � , expression  (35)  represents  a 2nd order  polynomial  in  D . Remembering  that  the  damage variable
must  be con“ned  to  the  interval  [0, 1], only  one root  can be accepted (the  other  being greater  than  one);  its  value may be
calculated  using a standard  algebraic  formula  as: 

D ( �  � ) =  1 Š


  

1 Š
2 A 

	 +  1 

�
�  � 	 + 1 Š �̄ 	 + 1 

	
. (36)

It  is important  to  observe that  the  latter  relation  poses a limitation  on the  maximum  accepted value of �  � , as the  ar-
gument  of the  square root  must  remain  positive.  From a physical  point  of view,  such limit  value �  � lim  corresponds  to  the
point  at which  damage equals one, meaning  that  the  material  stops having  any load carrying  capacity.  In light  of these
considerations,  the  following  inequality  holds:  

�  � � �  � lim  =  

� 	 +  1 

2 A 
+  �̄ 	 + 1 

� 1 
	 + 1 

. (37)

Having  clari“ed  the  range of validity  of expression  (36)  , Eqs. (25)  and (26)  may be differentiated  and combined  together
to  express the  plastic  strain  increment  in  terms  of total  strain  increment  and effective  stress increment  as: 

� �  p =  � �  tot  Š � �  � / E. (38)

Then, (38)  can be inserted  into  Eq. (31)  to  obtain,  after  simple  manipulations,  the  following  expression:  

� �  tot  =  

�
1 

E 
+  

�  � 1 
n Š1 

( 1 Š D ) n k 1 / n 

�
� �  � . (39)

Relation  (39)  represents  again a differential  equation  in  separable form,  where  the  function  D ( �  � ) is de“ned  according  to
Eq. (36)  . Integration  from  the  state ( �̄  tot  , �̄ ) to  ( �  tot  , �  � ) yields:  

�  tot  ( �  � ) =  �̄  tot  +  
�  � Š �̄

E 
+  I ( �  � ) . (40)

The function  I( �  � ) appearing  in  the  last expression  corresponds  to:  

I ( �  � ) =  z 

�  �  �

�̄

�  � 	 Š2 s 
�  

�  � 	 + 1 
lim  Š �  � 	 + 1 

d �  � , (41)

where  �  � lim  is de“ned  according  to  (37)  and the  constant  z denotes the  following  combination  of material  parameters:  

z =  
1 

n k 
1 
n 


  

	 +  1 

2 A 
(42)
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It  is worth  noticing  that  as the  hardening  exponent  n is usually  smaller  than  unity,  the  de“nition  (34)  implies  that  the
following  inequality  is satis“ed:  

1 

n 
Š 1 =  	 Š 2 s >  0 . (43)  

As s is a positive  parameter,  it  follows  that  	 is greater  than  zero as well.  Consequently,  both  z and �  � lim  turn  out  to  be
strictly  positive,  as inspection  of Eqs. (37)  and (42)  reveals. 

Unluckily,  the  integral  in  Eq. (41)  cannot  be computed  in  a straightforward  manner;  however,  an exact solution  in  terms
of in“nite  series is presented  in  the  next  section. 

3.3. Exact integral  solution in terms of in“nite  series 

The “rst  step to  arrive  to  an analytical  expression  for  the  integral  (41)  is to  make the  following  variable  change: 

�  � 	 + 1 
lim  Š �  � 	 + 1 

�  � 	 + 1 
lim  

=  x 	  �  � =  �  � lim  ( 1 Š x ) 
1 

	 + 1 , (44)  

in  order  to  obtain:  

I ( x ) =  B 
x 

  
x̄ 

( 1 Š x ) 



�  
x 

dx, (45)  

where  the  following  constants  have been introduced:  

B =  Š
z 

	 +  1 
( �  � lim  ) 

	 Š4 s + 1 
2 , 
 =  

Š2 s 

	 +  1 
. (46)  

Expression (37)  states that  �  � can never  grow  beyond  the  value �  � lim  at which  damage equals unity.  Consequently,  the  def-
inition  (44)  implies  x to  be positive  and less than  one. Under  these conditions,  the  numerator  of the  integrand  in  expression
(45)  can be represented  in  terms  of an in“nite  series by means of the  binomial  theorem  generalized  to  real powers  [15]  : 

( 1 +  x ) 

 =  

+  �    

m = 0 

�


m 

�
x m , 

�


m 

�
=  


 ( 
 Š 1 ) ( 
 Š 2 ) . . . ( 
 Š m +  1 ) 

m !  
, (47)  

where  convergence is guaranteed  for  | x | <  1. By using the  latter  result  in  Eq. (45)  one obtains:  

I ( x ) =  B 
x 

  
x̄ 

�  
+  �    

m = 0 

( Š1 ) 
m 

�


m 

�
x m Š1 /  2 

�  

dx, (48)  

and straightforward  integration  provides:  

I ( x ) =  2 B 

+  �    

m = 0 

( Š1 ) 
m 

2 m +  1 

�


m 

�
�
x m + 1 /  2 Š x̄ m + 1 /  2 

�
. (49)  

The last expression  represents  a closed-form  solution  to  the  integral  reported  in  Eq. (41)  ; therefore,  it  allows  relation
(40)  between  the  effective  stress and the  total  strain  to  be de“ned  in  the  following  exact analytical  form:  

�  tot  ( �  � ) =  �̄  tot  +  
�  � Š �̄

E 
+  2 B 

+  �    

m = 0 

( Š1 ) 
m 

2 m +  1 

�


m 

� �  �
1 Š

�  � 	 + 1 

�  � 	 + 1 
lim  

� m + 1 /  2 

Š

�
1 Š

�̄ 	 + 1 

�  � 	 + 1 
lim  

� m + 1 /  2 
�  

. (50)  

An appealing  feature  of the  above solution  is that  the  “rst  10 terms  of the  expansion  are already  su�cient  to  achieve an
accuracy of approximately  0.3 % on the  calculated  total  strain,  as Fig. 1 shows . 

4. Application  to  damage  parameters  identi“cation  

The analytical  solution  developed  in  the  previous  sections can be effectively  used in  all  material  parameters  identi“cation
procedures  which  involve  “tting  of one or more  experimentally  measured uniaxial  stress…strain curves. As data are usually
provided  as a set of ( �  tot  

i , � exp 
i ) values, a natural  measure of the  deviation  of the  model  predictions  from  measurements  is:

L  ( A  ) =  
1 

n e 

n e   

n = 1 

�
�

�
�  tot  

i , A  
	

Š � exp 
i 

� 2 
, (51)  

where  n e indicates  the  total  number  of experimental  points  and A  denotes a certain  set of material  parameters:  

A  =  
�
E, � 0 

y , k, n, p crit  , S, s 
�

(52)  
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Fig. 1. Relative accuracy of the  computed  solution  as a function  of the  number  of terms  included  in  the series expansion  of Eq. (50)  . Values are obtained  
using an effective  stress of 600 MPa, corresponding  to a total  strain  of approximately  0.3, and the material  parameters  of Table 1 . The accuracy is related  
to a reference solution  with  10,0 0 0 terms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The best set of parameters  can be determined  by minimizing  expression  (51)  with  respect to  A  . A discussion  on the
numerical  procedures  currently  available  for  such optimization  problem  may be found,  for  instance, in  [6]  or [16]  , where
the  speci“c  issue of damage parameter  identi“cation  is addressed. Usually,  values for  E and � 0 

y can be directly  read off the
uniaxial  tensile  curve, so that  the  number  of unknown  parameters  in  (51)  reduces to  “ve.  Moreover,  if  the  critical  strain  �̄  tot  

at which  damage evolution  begins can be experimentally  determined  (normally,  it  can be roughly  identi“ed  with  the  peak
point  of the  curve  [6]  , i.e. the  ultimate  stress), the  optimization  can be performed  into  two  distinct  stages. In the  “rst  one,
all  experimental  points  with  �  tot  

i >  �̄  tot  are neglected, and the  two  plastic  ”ow  parameters  k and n are calculated;  then,  a
new  minimization  analysis including  the  entire  data set is run  for  determining  the  remaining  damage parameters  S and s . It
has to  be emphasized  that  with  this  kind  of approach, the  “nal  damage threshold  D c at which  crack initiation  occurs turns
out  to  be implicitly  de“ned  by the  point  of maximum  total  strain.  An additional  algebraic  constraint  could  be used during
optimization  to  set D c to  a speci“c  level  or to  keep it  within  a prescribed  range. 

4.1. Obtaining the solution for a “xed  total  strain  value 

In Eq. (51)  , for  a given  A  and a given  total  strain  �  tot  
i , the  corresponding  stress value � ( �  tot  

i , A  ) predicted  by the  isotropic
Lemaitre•s damage model  can be calculated  as follows:  

€ the  constants  A, 	 , �  � lim  , z, B, 
 are determined  according  to  (34)  , (37)  , (42)  , (46)  ; 

€ the  critical  total  strain  �̄  tot  and stress �̄ for  damage initiation  are computed  using (22)  and (23)  ; 

€ the  total  strain  value is checked:  

€ �  tot  
i � � 0 

y / E: stress is calculated  using (20)  ; 

€ � 0 
y / E <  �  tot  

i � �̄  tot  :  stress is calculated  using (21)  ; 

€ �  tot  
i >  �̄  tot  :  the  effective  stress is calculated  “rst  by solving  the  algebraic  Eq. (50)  . 

Then, the  corresponding  damage value is obtained  from  (36)  and “nally  the  stress is determined  via (24)  . 

It  is worth  noticing  that  Eq. (50)  still  requires  a numerical  algorithm  to  be solved for  a prescribed  value of the  total
strain.  However,  the  advantage is that  it  is not  the  common  stress which  appears in  the  expression,  but  the  effective  stress.
This quantity  grows  monotonically  during  tensile  testing,  as explained  in  Section 3.2 . Therefore, its  dependence on the  total
strain  turns  out  to  be monotonic  as well,  as con“rmed  by Eq. (39)  , which  may be rewritten  for  convenience  in  the  following
form:  

d �  tot  

d �  �
=  

1 

E 
+  

�  � 1 
n Š1 

( 1 Š D ) n k 1 / n . (53)

Further  differentiation  provides:  

d 2 �  tot  

d �  � 2 =  
( 1 Š n ) �  � 1 

n Š2 

( 1 Š D ) n 2 k 1 / n +  
�  � 1 

n Š1 

( 1 Š D ) 
2 n k 1 / n 

dD 

d �  �
. (54)
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Fig. 2. Qualitative  representation  of the  function  �  tot  ( �  � ) de“ned  by Eq. (50)  and in”uence  of the starting  point  on the subsequent  Newton…Raphson 
iterations.  

Fig. 3. Number  of Newton…Raphson iterations  required  to achieve machine  precision  while  solving  Eq. (50)  for  the effective  stress. Curves are parametric  
in  the choice of the  initial  starting  point.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As damage can never  decrease, d D/ d �  � is always  positive  in  the  latter  expression.  As a consequence, both  the  “rst  and
the  second derivative  of the  function  �  tot  ( �  � ) are always  greater  than  zero. This means that  ideal  conditions  for  application
of the  Newton…Raphson algorithm  exist,  as the  function  is smooth,  monotonic  and with  constant  convexity.  This is of course
in  sharp contrast  with  the  behavior  of the  stress-total  strain  relationship,  which  inevitably  exhibits  softening  at a certain
stage, compromising  the  stability  of “nite  element  codes based on the  Newton…Raphson method.  

Within  the  present  context,  the  choice of the  starting  point  for  the  numerical  iterations  deserves a special comment.
With  reference  to  Fig. 2 , for  a given  total  strain  �  tot  it  is important  to  choose an initial  value �  � start  which  is larger  than
the  effective  stress �  � which  represents  the  “nal  solution.  This ensures a fast convergence of the  Newton…Raphson method.
Conversely, if  a smaller  value is adopted,  the  updated  value for  the  effective  stress might  be larger  than  the  limit  value �  � lim  
de“ned  in  expression  (37)  . In such a case, it  is necessary to  set as the  new  value a point  between  �  � start  and �  � lim  , whose
choice is somehow  arbitrary.  

In situations  of practical  interest,  a good strategy  is to  select as starting  point  an effective  stress value which  corresponds
to  a very  high  damage level,  according  to  Eq. (35)  . The reason is that  in  common  materials  damage values close to  unity
are usually  never  achieved, as cracks nucleate  when  the  critical  damage threshold  D c <  1 is exceeded. Fig. 3 shows the
number  of Newton…Raphson iterations  required  to  solve Eq. (50)  for  a range of total  strains  corresponding  to  damage levels
between  0.1 and 50%, using the  parameters  of Table 1 . As one would  expect, the  closer the  initial  and “nal  states, the  lower
the  number  of iterations  required  to  achieve machine  precision.  However,  by choosing  as starting  point  a damage level  of
60 %, only  2…3 iterations  are saved compared  to  selecting  a starting  point  with  99.9 % damage. Therefore, effective  stresses
corresponding  to  damage values close to  unity  should  be preferred  when  it  comes to  select a suitable  starting  point,  as they
allow  solving  the  function  �  tot  ( �  � ) over  almost  the  entire  admissible  range of total  strain,  at the  same time  maintaining  the
computational  cost reasonable. 
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Table 1 
Admissible  range used in  the constrained  optimization  analysis and computed  value for  each material  
parameter  of the  ferritic  matrix  of GJS 400-18  ductile  iron.  

k (MPa) n p crit  (%) S (MPa) s 

Admissible  range 500 ÷ 1000 0.100 ÷ 0.300 0 ÷ 10.0 0 0 0.100 ÷ 10.0 0 0 0.100 ÷ 5.000 
Calculated value 818 0.245 0.533 0.357 0.167 

Fig. 4. Lemaitre•s damage parameters  identi“cation  for  the ferritic  matrix  of GJS 400-18  ductile  cast iron.  The experimental  uniaxial  tensile  curve is taken  
from  [17]  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Damage parameters for the GJS 400-18 ductile iron  matrix  

In order  to  give an example  of the  applicability  of the  proposed  analytical  solution  in  the  context  of the  simple  identi“ca-
tion  procedure  described  above, material  parameters  have been determined  on the  basis of the  uniaxial  tensile  curve  for  the
ferritic  matrix  of GJS 400-18  (according  to  EN1563) ductile  cast iron  reported  in  [17]  . Such material  is known  to  be very  duc-
tile  and characterized  by values of Young•s modulus  and initial  yield  strength  of E =  210 GPa and � 0 

y =  295 MPa respectively.
As the  curve  was provided  as true  stress vs true  strain,  conversion  to  •engineeringŽ quantities  has been necessary. 

Minimization  of Eq. (51)  has been carried  out  using the  standard  genetic  algorithm  available  in  the  Matlab  Global Opti-
mization  Toolbox. In a “rst  step, an admissible  range for  the  hardening  quantities  k and n have been determined  by taking
into  account  only  the  increasing  part  of the  uniaxial  curve. Then, in  a second stage, the  damage parameters  have also been
included  in  the  analysis, this  time  considering  the  entire  dataset. The optimization  algorithm  has been run  setting  maximum
and minimum  constraints  on S and s according  to  realistic  values for  metals  and alloys  on the  basis of the  data reported  in
[6]  . Moreover,  admissible  values for  the  critical  plastic  strain  have been limited  to  10%, which  is approximately  the  deforma-
tion  corresponding  to  the  point  of initial  softening  in  the  uniaxial  tensile  curve. An additional  non-linear  constraint  which
ensures that  �  tot  ( �  � lim  ) be greater  than  the  maximum  total  strain  experimentally  recorded  has also been enforced.  

A summary  of the  imposed  limit  constraints  together  with  the  calculated  values of all  material  parameters  is reported  in
Table 1 . It  is worth  saying that  the  computed  values are of the  same order  of magnitude  of those tabulated  in  [6]  , except  for
the  damage exponent  s , which  is usually  greater  than  or equal to  one. A qualitative  comparison  between  the  experimental
data and the  stress…strain curve  predicted  using the  calculated  parameters  is given  in  Fig. 4 . 

5. Implicit  algorithm  for  the  plane  stress case 

In this  section, a plane-stress  projected  version  of Lemaitre•s isotropic  model  is “rst  derived  and then  discretized  using
the  implicit  (backward-Euler)  method.  Furthermore,  it  is shown  that  the  resulting  algebraic  system can be reduced  to  a
single  non-linear  equation,  similar  to  what  done in  [18]  for  the  general  3D case. The notation  adopted  closely  follows  that
employed  in  [11]  for  deriving  the  implicit  plane stress projected  version  of the  classical von-Mises  plasticity  model;  in
particular,  boldface  capital  letters  are used for  matrices,  and boldface  lowercase  letters  for  vectors. 

To simplify  the  derivation,  it  is convenient  to  replace the  yield  function  (4)  with  the  equivalent  form:  

� =  
� 2 

e 

( 1 Š D ) 
2 Š � 2 

y ( r ) � 0 , � e =  

�  � 3 

2 

�
s i j  s i j  

�  1 
2 
. (55)
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As a consequence, the  ”ow  rule  (3)  becomes: 

� �  
p 
i j  =  

3 s i j  

( 1 Š D ) 
2 

� � (56)  

Furthermore,  it  could  be shown  that  (6)  combined  with  (56)  leads to  the  following  relation:  

� r =  ( 1 Š D ) � p =  � �
�

6 s i j  s i j  

( 1 Š D ) 
2 

� 1 /  2 

. (57)  

By using the  last 3 formulas  and the  de“nition  of the  effective  stress (24)  , the  2D plane-stress  projected  Lemaitre•s model
can now  be written  in  terms  of the  in-plane  stress and strain  components  only  as follows:  

�  tot  =  �  e +  �  p ,  (58)  

�  � =  D �  e , (59)  

� =  
3 

2 
�  � T P �  � Š � 2 

y ( r ) � 0 , (60)  

� �  p =  
3 � �

1 Š D 
P �  � , (61)  

� r =  ( 1 Š D ) � p =  � �
�  

6 �  � T P �  � , (62)  

� D =  

� Y 

S 

� s 

� p i f  p >  p crit  , (63)  

Y =  
1 

2 
�  � T D Š1 �  � , (64)  

� � 0 , � � � 0 , � � � =  0 , (65)  

where:  

€ the  effective  stress vector  �  � and the  generic  strain  vector  �  are de“ned  as: 

�  � =  
1 

1 Š D 

�
� 11 � 22 � 12 

� T 
, �  =  

�
�  11 �  22 2 �  12 

� T 
(66)  

€ the  plane stress isotropic  elasticity  matrix  D and the  •deviatoricŽ matrix  P are given  by:  

D =  
E 

1 Š � 2 

�  
1 � 0 

� 1 0 

0 0 1 Š�
2 

�  

, P =  
1 

3 

�  
2 Š1 0 

Š1 2 0 

0 0 6 

�  

. (67)  

It  is worth  observing  that  expression  (64)  for  the  energy release rate  has been obtained  on the  basis of its  formal  de“-
nition,  reported  in  [6]  . Moreover,  for  deriving  Eqs. (60)  and (62)  the  well-known  identity  s i j  s i j  =  � i j  s i j  has been used. 

At this  point,  the  system of differential  Eqs. (58)  …(65)  is implicitly  discretized,  i.e. all  differentials  are replaced  by the
corresponding  “nite  variation  in  the  pseudo-time  step t n �  t  n + 1 and the  other  variables  are evaluated  at t n + 1 : 

�  tot  
n + 1 =  �  e 

n + 1 +  �  
p 
n + 1 , (68)  

�  � n + 1 =  D �  e 
n + 1 , (69)  

� n + 1 =  
3 

2 
�  � T 

n + 1 P �  � n + 1 Š � 2 
y ( r n + 1 ) � 0 , (70)  

� �  p =  
3� �

1 Š D n + 1 
P �  � n + 1 , (71)  

� r =  ( 1 Š D n + 1 ) � p =  � �
�  

6 �  � T 
n + 1 P �  � n + 1 , (72)  

� D =  

� Y n + 1 

S 

� s 

� p i f  p n + 1 >  p crit  , (73)  

Y n + 1 =  
1 

2 
�  � T 

n + 1 D Š1 �  � n + 1 , (74)  

� n + 1 � 0 , � � � 0 , � n + 1 � � =  0 . (75)  

The solution  of the  above system of non-linear  equations  is assumed to  be performed  according  to  an elastic  predictor
… return mapping scheme,  which  allows  an e�cient  handling  of the  discrete  condition  (75)  . In the  present  paper, only  the
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return  mapping  stage ( � � >  0) with p n + 1 >  p crit  is discussed; the  other two  cases, elastic predictor  ( � � =  0 ) and return
mapping  ( � � >  0) with  p n + 1 <  p crit  are basically  identical  to  those described  in  details  for  the  von-Mises  plasticity  model
in  [11]  . In order  to  be consistent  with  the  framework  adopted  by the  latter  authors,  the  total  strain  at the  new  time  level,
which  is the  main  independent  variable  of the  problem,  is substituted  by the  elastic  trial  strain:  

�  e 
trial  =  �  e 

n +  � �  tot  �  �  tot  
n + 1 =  �  e 

trial  Š �  e 
n +  �  tot  

n =  �  e 
trial  +  �  

p 
n . (76)

The last expression  allows  recasting  (68)  in  the  equivalent  form:  

�  e 
trial  =  �  e 

n + 1 +  � �  p . (77)

If  the  elastic  law  (69)  and the  ”ow  rule  (71)  are inserted  into  (77)  and the  expressions for  the  hardening  variable  varia-
tion  (72)  and energy release rate  (74)  are used in  (70)  and (73)  , the  discretized  system for  � � � 0 and p n + 1 >  p crit  reduces
to  the  following  three  algebraic  equations:  

D Š1 �  � trial  =  D Š1 �  � n + 1 +  
3� �

1 Š D n + 1 
P �  � n + 1 , (78)

� n + 1 =  
3 

2 
�  � T 

n + 1 P �  � n + 1 Š � 2 
y 

�
r n +  � �

�  

6 �  � T 
n + 1 P �  � n + 1 

�
=  0 , (79)

D n + 1 Š D n =  
� �

1 Š D n + 1 

�
�  � T 

n + 1 D Š1 �  � n + 1 

2 S 

� s �  

6 �  � T 
n + 1 P �  � n + 1 , (80)

in  the  three  unknowns  �  � n + 1 , � � and D n+ 1 . To simplify  things  even further,  similar  to  what  is done in  [13]  , the  following
orthogonal  transformation  Q is introduced:  

Q =  Q T =  Q Š1 =  

�  
1 /  

�  
2 1 /  

�  
2 0 

1 /  
�  

2 Š1 /  
�  

2 0 

0 0 1 

�  

, (81)

and the  matrix  D Š1 and P assume the  corresponding  diagonal  form:  

D Š1 
Q =  Q T D Š1 Q =  

�  

�  
�  
�  
�  

1 Š �
E 

0 0 

0 
1 

2 G 
0 

0 0 
1 

G 

�  

�  
�  
�  
�  

, P Q =  Q T PQ =  

�  
1 /  3 0 0 

0 1 0 

0 0 2 

�  

. (82)

Taking advantage of representation  (82)  which  enables easier matrix  multiplication  and inversion,  simple  algebraic  ma-
nipulations  allow  rewriting  (78)  in  the  new  reference  system as: 

�  � Q, n + 1 =  F Q �  � Q, trial  , (83)

where  matrix  F Q is given  by:  

F Q =  
�
I +  3 �  D Q P Q 

	 Š1 
=  

�  

�  
�  

1 Š �
� E +  1 Š �

0 0 

0 1 /  ( 6 � G +  1 ) 0 

0 0 1 /  ( 6 � G +  1 ) 

�  

�  
�  , (84)

and the  parameter  �  has been introduced  as: 

�  =  
� ��

1 Š D n + 1 
	 . (85)

By inserting  expression  (83)  into  the  scalar Eqs. (79)  and (80)  the  following  two  relations  are obtained:  

� n + 1 =  
3 

2 
� ( �  ) Š � 2 

y 

�
r n +  � �

�  
6 � ( �  ) 

�
=  0 , (86)

D n + 1 Š D n =  �  

�
  ( �  ) 

2 S 

� s �  
6 � ( �  ) , (87)

in  which  the  scalar functions  � and   are given  by:  

� ( �  ) =  �  � T 
Q, trial  F T 

Q P Q F Q �  � Q, trial  =  

=  
1 

3 

� 1 Š �
� E +  1 Š �

� 2 �
�  � 11 ,trial  

	 2 
+  

1 

( 6 � G +  1 ) 
2 

�
�  � 22 ,trial  

	 2 
+  

2 

( 6 � G +  1 ) 
2 

�
�  � 12 ,trial  

	 2 
, (88)
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  ( �  ) =  �  � T 
trial  F T 

Q D Š1 
Q F Q �  � trial  =  

=  
1 

E 

( 1 Š � ) 
3 

( � E +  1 Š � ) 
2 

�
�  � 11 ,trial  

	 2 
+  

1 

2 G 

1 

( 6 � G +  1 ) 
2 

�
�  � 22 ,trial  

	 2 
+  

1 

G 

1 

( 6 � G +  1 ) 
2 

�
�  � 12 ,trial  

	 2 
. (89)  

It  has to  be remarked  that  the  components  of the  trial  effective  stress entering  the  last two  formulas  are those of the
transformed  vector  �  � Q , trial  =  Q �  � trial  . 

Finally,  by expressing  D n + 1 in  terms  of � � and �  from  Eq. (85)  and inserting  the  result  in  (87)  one gets after  simple
algebraic  manipulations:  

� � =  �  ( 1 Š D n ) Š �  2 

�
  ( �  ) 

2 S 

� s �  
6 � ( �  ) , (90)  

which  provides  the  plastic  multiplier  as a function  of the  parameter  �  only.  Then, substitution  of (90)  into  (86)  yields:  

� n + 1 =  
3 

2 
� ( �  ) Š � 2 

y 

�
r n +  �  ( 1 Š D n ) 

�  
6 � ( �  ) Š 6 �  2 

�
  ( �  ) 

2 S 

� s 

� ( �  ) 

�
=  0 . (91)  

The last expression  represents  ful“llment  of the  consistency  condition  at the  new  pseudo-time  step t n + 1 and contains  the
parameter  �  as only  unknown.  With  its  solution  at hand, obtained  for  instance  using a simple  Newton  formula,  the  other
variables  are trivially  updated  as follows:  

€ calculate  � � from  (90)  and update  damage as D n + 1 =  1 Š � � / � ; 

€ update  the  hardening  variable  using r n + 1 =  r n +  � �
�  

6 � (� ) ; 

€ calculate  the  new  effective  stress �  � Q, n + 1 in  the  diagonal  reference  system using (83)  ; 

€ update  the  new  elastic  strain  in  the  original  reference  system as �  e 
n + 1 =  QD Š1 

Q �  � Q, n + 1 . 

6. Closed-form  expression  for  the  consistent  tangent  modulus  

The consistent  tangent  modulus  represents  the  derivative  of the  stress � n + 1 delivered  by the  integration  algorithm  with
respect to  the  externally  imposed  total  strain  �  tot  

n + 1 and it  plays a crucial  role  for  attaining  quadratic  rate  of asymptotic
convergence in  “nite  element  implementations  based on the  full  Newton…Raphson scheme [19]  . In relation  to  the  plane-
stress projected  Lemaitre•s implicit  integration  procedure  presented  in  the  previous  section, it  is clear in  the  light  of relation
(76)  that  the  derivative  with  respect to  the  total  strain  is equivalent  to  the  derivative  with  respect to  the  trial  elastic  strain
�  e 

trial  , which  is in  turn  related  to  the  derivative  with  respect to  �  � trial  via the  elasticity  matrix  D. 
With  reference  to  the  diagonal  reference  system de“ned  by the  transformation  (81)  , the  differential  of the  relation  con-

necting  stress and effective  stress is given  by:  

d � Q, n + 1 =  ( 1 Š D n + 1 ) d �  � Q, n + 1 Š �  � Q, n + 1 d D n + 1 . (92)  

In what  follows,  suitable  formulas  for  both  differentials  appearing  on the  right-hand  side of the  latter  expression  in  terms
of d �  � trial  will  be developed.  

Starting  out  with  the  differential  of the  effective  stress, straightforward  differentiation  of (83)  reads: 

d �  � Q, n + 1 =  d F Q �  � Q, trial  +  F Q d �  � Q, trial  . (93)  

By exploiting  the  property  d F Q =  ŠF Q d F Š1 
Q F Q valid  for  invertible  matrices  together  with  Eq. (84)  the  following  relation  is

promptly  obtained:  

d F Q =  Š3 F Q D Q P Q F Q d� . (94)  

Then, by making  use of the  last relation  and (83)  , Eq. (93)  may be rewritten  as: 

d �  � Q, n + 1 =  F Q d �  � Q, trial  Š 3 F Q D Q P Q �  � Q, n + 1 d� . (95)  

The differential  of the  parameter  �  can be put  in  relation  with  d �  � trial  by differentiating  the  consistency  condition  (91)  .
Application  of the  chain  rule  provides:  

�  � n + 1 

� �  

�
�
�
�

�  � Q, trial  

d �  +  
�  � n + 1 

�  �  � Q, trial  

�
�
�
�
�  

d �  � Q, trial  =  0 

�  

�
�  � n + 1 

� �  
+  

�  � n + 1 

� �
� �
� �  

+  
�  � n + 1 

�   

�   

� �  

�
d �  +  

�
�  � n + 1 

� �
� �

�  �  � trial  
+  

�  � n + 1 

�   

�   

�  �  � trial  

�
d �  � Q, trial  =  0 . (96)  

Expressions for  the  partial  derivatives  appearing  in  (54)  can be easily computed  from  (88)  and (89)  ; they  are reported  in
the  appendix  at the  end of the  paper. 
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Then, by making  use of (96)  in  Eq. (95)  to  eliminate  d � , one gets: 

d �  � Q, n + 1 =  

�  

F Q +  3 

�
�  � n + 1 

� �  

� Š1 

F Q D Q P Q �  � Q, n + 1 �
�  � n + 1 

�  �  � Q, trial  

�  

d �  � Q, trial  . (97)

The focus is now  turned  to  the  differential  of the  damage variable.  By inverting  (85)  and taking  its  differential,  one
obtains:  

d D n + 1 =  
� �
�  2 d �  Š

d ( � � ) 

�  
. (98)

The differential  of the  plastic  multiplier  can be found  by differentiating  expression  (90)  by means of the  usual chain
rule:  

d ( � � ) =  
�  ( � � ) 

� �  

�
�
�
�

�  � Q, trial  

d �  +  
�  ( � � ) 

�  �  � Q, trial  

�
�
�
�
�  

d �  � Q, trial  =  

=  

�
�  ( � � ) 

� �  
+  

�  ( � � ) 

� �
� �
� �  

+  
�  ( � � ) 

�   

�   

� �  

�
d �  +  

�
�  ( � � ) 

� �
� �

�  �  � trial  
+  

�  ( � � ) 

�   

�   

�  �  � trial  

�
d �  � Q, trial  . (99)

As before, expressions for  the  partial  derivatives  are reported  in  the  appendix.  

By “rst  inserting  (99)  into  (98)  and then  making  use of (96)  to  express d �  in  terms  of d �  � Q, trial  one may “nd:  

d D n + 1 =  
1 

�  

�  �
�  � n + 1 

� �  

� Š1 �
�  ( � � ) 

� �  
Š

� �
�  

�
�  � n + 1 

�  �  � Q, trial  
Š

�  ( � � ) 

�  �  � Q, trial  

�  

d �  � Q, trial  . (100)

Now  that  the  closed-form  expressions (97)  and (100)  have been developed,  they  may be inserted  into  Eq. (92)  to  obtain  a
direct  relation  between  the  externally  imposed  variation  in  the  trial  effective  stress d �  � Q, trial  and the  corresponding  variation
of the  stress d � Q, n + 1 delivered  by the  integration  algorithm.  If  the  former  is then  written  using the  elastic  law  as d �  � Q, trial  =
D Q d�  e 

Q, trial  and the  inverse  of the  orthogonal  transformation  (81)  is applied,  the  following  relation  may be obtained:  

d � n + 1 =  D C d�  e 
trial  , (101)

where  the  consistent  tangent  modulus  D C turns  out  to  be de“ned  by:  

D C =  ( 1 Š D n + 1 ) Q 

�
F Q +  

�  � Q, n + 1 

�  ( 1 Š D n + 1 ) 
�

�  ( � � ) 

�  �  � Q, trial  

+  

�
�  � n + 1 

� �  

� Š1 �
3 F Q D Q P Q Š

��  ( � � ) / � �  Š � �
�  2 ( 1 Š D n + 1 ) 

I 

�
�  � Q, n + 1 �

�  � n + 1 

�  �  � Q, trial  

�  

D Q Q . (102)

It  is worth  mentioning  that  despite  the  length  of expression  (102)  , almost  all  matrix…matrix  products  appearing  have to
be performed  among matrices  which  are in  diagonal  form,  thus  maintaining  the  computational  time  at a reasonable level.  

It  is also interesting  to  observe that  the  consistent  tangent  modulus  is not  symmetric,  as can be easily checked by substi-
tuting  expressions reported  in  appendix  for  � ( � � ) / �  �  � Q, trial  and �  � n + 1 / �  �  � Q, trial  into (102)  . Moreover,  tedious  but straight-
forward  algebraic  manipulations  may show  that  when  no damage evolution  takes place, relation  (102)  simply  reduces to
the  symmetric  expression  for  the  consistent  tangent  modulus  reported  in  [11]  for  the  implicit  integration  of the  plane stress
projected  von Mises plasticity  model.  

7. Algorithm  veri“cation  against  1D analytical  solution  

The plane stress projected  implicit  integration  algorithm  based on Eq. (91)  and the  corresponding  consistent  tangent
modulus  (102)  have been implemented  in  an •in-houseŽ developed  “nite  element  code based on a full  Newton…Raphson
scheme. A mesh composed by a single  2D isoparametric  4-node  square element  has been considered,  as shown  in  Fig. 5 ,
with  material  parameters  taken  from  the  GJS 400-18  ductile  cast iron  example  of Table 1 . Such element  has been subjected
to  a uniaxial  tensile  test  by imposing  a total  strain  of 0.3 and the  predicted  stress compared  with  the  1D analytical  solution
presented  in  Section 3 . 

In Fig. 6 the  relative  accuracy of the  numerical  solution  is plotted  as a function  of the  number  of increments  used for
achieving  the  “nal  strain  value, adopting  a tolerance  on the  increment  residual  of 1 × 10 Š5 . In Fig. 7 instead,  the  number
of increments  is kept  “xed  at 10 and the  number  of total  Newton…Raphson iterations  needed to  calculate  the  solution  is
reported  as a function  of the  increment  residual  tolerance.  It  is seen that  a great save in  terms  of iterations  is achieved
by using the  consistent  tangent  modulus  (102)  compared  to  the  corresponding  plane stress projected  implicit  expression
reported  in  [11]  , which  is valid  for  the  von-Mises  plasticity  model.  
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8. Conclusions  

By means of a smart  choice of the  isotropic  hardening  function,  an analytical  solution  to  Lemaitre•s isotropic  damage
model  in  the  form  of an in“nite  expansion  has been developed  under  the  special conditions  of uniaxial  tensile  testing.
For a given  value of the  effective  stress, the  “rst  10 terms  of the  series already  su�ce  to  guarantee  an accuracy of 0.3%
When  the  total  strain  is prescribed  instead,  the  smooth  and monotonic  behavior  of the  corresponding  implicit  function
guarantees that  a very  computationally  e�cient  solution  is obtainable  using the  Newton…Raphson method.  This makes the
analytical  solution  very  attractive  in  the  context  of all  material  parameter  identi“cation  procedures  involving  “tting  of one
or more  experimentally  measured uniaxial  stress…strain curves, as it  eliminates  the  need of using any numerical  solver  in
combination  with  the  optimization  algorithm  adopted.  

The derived  solution  has also been used to  verify  a proposed  implicit  integration  procedure  restricted  to  the  plane-stress
version  of Lemaitre•s model.  From a computational  standpoint,  the  suggested numerical  scheme is particularly  advantageous
as (a) only  the  relevant  in-plane  stress and strain  components  are considered  and (b)  the  discretized  system reduces to  a
single  non-linear  equation.  A closed-form  expression  for  the  related  consistent  tangent  modulus  has also been provided,
which  is extremely  valuable  for  increasing  the  convergence rate. This has been demonstrated  for  the  simple  1D test  case
where  a substantial  reduction  in  the  number  of required  iterations  is obtained  when  the  effect  of damage evolution  on
the  global  stiffness  is taken  into  consideration,  especially  if  high  accuracy is needed. In summary,  the  proposed  numerical
scheme allows  both  a reduction  in  the  computational  complexity  associated with  the  single  iterations,  as well  as a decrease
in  their  total  number.  As a “nal  remark,  it  is worth  mentioning  that  in  absence of damage propagation,  the  entire  numerical
framework  simply  reduces to  the  implicit  integration  procedure  for  the  plane-stress  projected  von Mises model  reported  in
literature.  

Appendix  

Closed-from  expressions for  the  partial  derivatives  appearing  in  Eqs. (96)  and (99)  : 

�  � n + 1 

� �  
=  Š2 � y H 

�
( 1 Š D n ) 

�  
6 � Š 12 ��

  s 

( 2 S ) 
s 

�
, (A.1)

�  � n + 1 

� �
=  

3 

2 
Š 2 � y H 

�  

3 �  
�  

6 �
( 1 Š D n ) Š 6 �  2   s 

( 2 S ) 
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�  

, (A.2)
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6 �  2 � s 

  s Š1 

( 2 S ) 
s 

�
, (A.3)

�  ( � � ) 

� �  
=  (1 Š D n ) Š 2 �  

�  
6 �

�
  

2 S 

� s 

, (A.4)

�  ( � � ) 

� �
=  Š

3 �  2 
�  

6 �

�
  

2 S 

� s 

, 
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( 2 S ) 
s , (A.5)

� �
� �  

=  Š3 �  � T 
Q, n + 1 P Q F Q D Q P Q �  � Q, n + 1 , 

�   

� �  
=  Š3 �  � T 

Q,n + 1 D Š1 
Q F Q D Q P Q �  � Q, n + 1 , (A.6)

� �
�  �  � trial  

=  �  � T 
Q, n + 1 P Q F Q , 

�   

�  �  � trial  
=  �  � T 

Q, n + 1 D Š1 
Q F Q . (A.7)
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a b s t  r  a c t  

A comprehensive  description  of the  mechanical  behavior  of nodules  in  ductile  iron  is still  

missing  in  the  published  literature.  Nevertheless, experimental  evidence exists for  the  im-  

portance  of such graphite  particles  during  macroscopic  material  deformation,  especially  

under  compressive  loading.  In the  present  paper, the  nodules• elastic  properties  are thor-  

oughly  investigated  by means of both  analytical  and numerical  techniques.  The analysis 

takes into  account  the  in”uence  of several non-linear  phenomena,  as local  residual  stresses 

arising  during  solid-state  cooling,  interface  debonding  and limited  particle  strength.  It  is 

shown  that  if  the  nodule  internal  structure  is considered,  the  traditional  isotropy  assump-  

tion  leads to  the  de“nition  of a domain  of admissible  values for  the  effective  elastic  con-  

stants. However,  micromechanical  calculations  indicate  that  values within  the  domain  do 

not  provide  mesoscopic moduli  in  agreement  with  Young•s modulus  and Poisson•s ratio  

recorded  for  common  ferritic  ductile  iron  grades. This suggests that  graphite  nodules  may 

not  be considered  isotropic  at the  microscopic  scale, at least from  a mechanical  viewpoint.  

© 2016 Elsevier Ltd. All rights reserved.  
1. Introduction  

Since its  commercial  introduction  in  1948, ductile  cast 
iron,  also known  as spheroidal  graphite  iron  (SGI), has 

constantly  found  new  “elds  of application,  ranging  from  

the  automotive  sector to  the  wind  power  industry.  Nowa-  

days, 25% of the  castings produced  worldwide  are made of 
SGI ( 47th  Census of World  Casting Production,  2013 ). The 

main  reason behind  this  enormous  success is the  unique  

combination  of castability,  high  ductility  and strength  such 

material  can offer,  along with  lower  prices compared  to  

traditional  low  carbon steels ( Ductile  Iron  Society, 2013 ). 
Examples of typical  modern  SGI castings are small  and 

medium  sized heavily  loaded parts  with  high  demands for  
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(J. Hattel).  
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consistent  quality  for  the  automotive  industry  and very  

large industrial  components  with  extreme  demands for  

mechanical  properties,  particularly  fatigue  strength  and 

fracture  toughness ( Tiedje, 2010 ). 
From a metallurgical  viewpoint,  SGI is a ternary  Fe-C-Si 

alloy  whose properties  to  a large extent  are controlled  by 

chemical  composition,  cooling  rate  and heat treatment.  The 

“nal  microstructure  may be naturally  considered  as com-  

posite  ( Grimvall,  1997 ), consisting  of graphite  nodules  em-  

bedded in  a continuous  matrix  which,  in  most  engineering  

applications,  may be either  ferritic,  pearlitic  or a mixture  of 
the  two  ( American  Foundrymen•s  Society, 1992 ). Extensive 

experimental  investigations  carried  out  in  the  last 60 years 

have provided  qualitative  knowledge  of the  effects of the  

most  important  microstructural  parameters  on the  overall  

mechanical  properties  of SGI ( Labrecque and Gagne, 1998 ). 
Nevertheless, a comprehensive  quantitative  description  has 

always  been challenged  by the  intrinsic  material  complex-  

ity,  and much  work  remains  to  be done to  cast light  on 
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Table 2 
Micromechanical  modeling  of the  SGI elasto-plastic  response: as- 
sumed nodules• mechanical  behavior.  

Year Authors  Nodules considered  as: 

1996 Kuna and Sun (1996  ) Voids 
1996 Brocks et al. (1996  ) Voids / rigid  spheres 
1998 Steglich and Brocks (1998  ) Voids / rigid  spheres 
1999 Zhang et al. (1999  ) Voids 
2005 Bonora and Ruggiero (2005  ) Isotropic  linear  elastic, 

E g =  300…375 GPa 
2011 Kosteski et al. (2011  ) Isotropic  linear  elastic, 

E g =  15 GPa, � g =  0.3 

e 
assumed by researchers while  modeling  the  microme-  

chanical  behavior  of SGI in  the  elastic  and elasto-plastic  

regime  respectively.  It  may be seen that  adopted  values 

for  Young•s modulus  span the  range 4…375 GPa, with  the  

•voidsŽ and •rigid  spheresŽ assumptions as lower  and up-  

per bounds. Certainly,  more  accuracy is needed if  models  

capable of predicting  the  SGI mechanical  performance  are 

to  be devised. 
In this  context,  the  present  work  aims at determining  

an effective  elastic  constitutive  description  of the  graphite  

nodules  based on physical  grounds,  which  may be subse- 
quently  used for  further  investigations  on the  SGI mechan-  

ical  properties.  The analysis is carried  out  using both  ana- 

lytical  and numerical  micromechanical  techniques  and it  is 

conceptually  divided  into  two  main  parts. In the  “rst  one, a 

few  assumptions  regarding  the  nodules• internal  structure  

and behavior  are introduced,  and it  is shown  that  they  lead 

to  the  de“nition  of a domain  of admissible  values for  the  

elastic  moduli.  In the  second part,  an inverse  analysis is 

carried  out  to  single  out  values within  the  admissible  do-  

main  which  allow  matching  the  macroscopic  Young•s mod-  

ulus  and Poisson•s ratio  of a standard  ferritic  SGI grade. To 

make the  inverse  analysis more  realistic,  the  in”uence  of 
several factors, as interface  debonding,  plasticity  and duc-  

tile  damage in  the  matrix  induced  by residual  stresses, as 

well  as inelastic  deformation  of the  nodules,  is critically  as- 
sessed by means of a 3D periodic  unit  cell  model.  

2. Materials  

The object  of the  present  analysis is the  ferritic  ductile  

iron  GJS-400-15 according  to  the  European Standard EN 

1563, corresponding  to  the  GGG-40 grade for  the  DIN 1693 

Standard ( Iron-foundry.com,  n.d. ). The reason for  making  a 

precise material  selection  is that  Young•s modulus  varia-  

tions  of 5…10 GPa may be found  among the  different  SGI 
grades available  on the  market.  As the  internal  structure  of 
the  embedded  graphite  particles  is the  same, it  is usually  

assumed that  this  spread in  the  elastic  properties  is pri-  

marily  associated with  a different  volume  fraction  of the  

nodules,  as well  as with  a different  com position  of the  

metallic  matrix.  

The GJS-400-15 is here considered  as a 2-phase com-  

posite  material  constituted  by spherical  graphite  particles  

regularly  dispersed in  a homogeneous  ferritic  matrix,  with  

a volumetric  graphite  concentration  of 12% ( Steglich and 

Brocks, 1998 );  the  constitutive  behavior  of each constituent  

is discussed in  detail  in  the  following.  
2.1. Graphite nodules 

In agreement  with  what  implicitly  done by the  authors  

listed  in  Table 1 , two  fundamental  assumptions  are made 

regarding  the  graphite  nodules:  

1. they  can be considered  as mechanically  isotropic;  

2. their  behavior  can be described  by a linear  elastic  

model.  

These assumptions  have signi“cant  consequences. First  

of all, they  imply  the  nodules• mechanical  response to  be 

completely  determined  in  terms  of two  elastic  constants,  

usually  Young•s modulus  and Poisson•s ratio.  In addition,  

they  have important  implications  on the  description  of the  

local  stress and strain  “eld  in  and around  the  nodules,  e.g. 
the  stress state in  a nodule  subjected  to  hydrostatic  pres-  

sure is uniform,  etc. 
Furthermore,  a third  assumption,  physically  justi“ed  by 

TEM and micro-diffraction  investigations  of the  nodules• 

internal  structure  ( Miao  et al., 1990 , 1994 ), is introduced:  

3. the  basic nodule  building  blocks are graphite  

platelets  with  hexagonal  structure.  

It  follows  from  assumption  1 that  such building  blocks, 
which  are strongly  anisotropic,  must  then  be arranged  in  

a •statistically  homogeneousŽ way throughout  each nodule  

to  provide  overall  isotropic  elastic  properties.  This observa-  

tion  is crucial  for  the  development  of the  present  analysis, 
as it  allows  establishing  a domain  of physically  admissible  

values for  the  nodules• effective  elastic  moduli.  The proce-  

dure  is described  in  detail  in  Section 3.1 . 
As a concluding  remark,  it  is worth  saying that  in  the  

calculation  of residual  stresses arising  during  solid  state 

cooling,  the  nodules• mechanical  properties  are assumed to  

be unaffected  by temperature  variations  up to  750 °C and 

the  thermal  expansion  coe�cient  is set to  a constant  value 

of 2.5 × 10 Š6 °C Š1 ( Bonora and Ruggiero, 2005 ). 

2.2. Ferritic matrix  

Ferrite  is a metallic  phase characterized  by high  duc-  

tility  and moderate  yield  strength,  especially  in  the  vicin-  

ity  of nodules  due to  migration  of carbon atoms to  the  

graphitic  phase. Therefore, it  seems appropriate  to  de- 

scribe its  constitutive  response on the  basis of Lemaitre•s 

isotropic  damage model  ( Lemaitre,  1985 ) with  isotropic  

hardening,  whose  equations  in  Cartesian components  are 

summarized  as follows:  

€ additive  strain  decomposition:  

�  tot  
i j  =  �  e 

i j  +  �  
p 
i j  +  � i j  � 	 T (1)  

€ elastic  constitutive  law:  

� i j  

1 Š D 
=  

E 

1 +  �

�  

�  e 
i j  +  

�
1 Š 2 �

� i j  �  e 
kk 

�  

(2)  

€ ”ow  rule:  

� �  
p 
i j  =  

3 s i j  

2 �
� �

1 Š D 
(3)  
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Table 3 
Material  properties  for  ferritic  matrix  (after  ( Bonora and Ruggiero, 2005 )). 

Temperature  ( °C) Young•s modulus  (GPa) Thermal  exp. coe�cient  (x10  Š5 °C Š1 ) Initial  yield  stress (MPa) 

25 210 .0 1.25 297 
250 153 .8 1.50 194 
500 102 .5 1.60 137 
750 41 .4 … 96 
900 20 .0 … 70 
10 0 0 0 .1 2.40 60 

Table 4 
Plastic ”ow  and damage evolution  parameters  for  ferritic  matrix.  

Plastic ”ow  factor  k (MPa) Plastic ”ow  exponent  n Damage factor  S (MPa) Damage exponent  s Critical  eff. plastic  strain  p crit  (mm/mm)  

818.0 0.245 0.357 0.167 5.33 × 10 Š3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

€ yield  function:  

f =  
� e 

1 Š D 
Š � y ( r ) � 0 , � e =  

� 3 

2 
s i j  s i j  

� 1 /  2 

(4)

€ isotropic  hardening  rule:  

� y =  k ( r +  r 0 ) 
n , r 0 =  

�
� 0 

y 

k 

� 1 / n 

(5)

€ effective  plastic  strain  increment  and hardening  param-
eter  increment:  

� p =  
� r 

1 Š D 
, � r =  � � (6)

€ damage evolution  law:  

� D =  

� Y 

S 

� s 

� p , i f  p >  p crit  (7)

€ energy release rate:  

Y =  
� 2 

e R v 

2 E ( 1 Š D ) 
2 , R v =  

2 

3 
( 1 +  � ) +  3 ( 1 Š 2 � ) 

� � kk 

3 � e 

� 2 

(8)

€ consistency  condition:  

f � 0 , � � � 0 , f � � =  0 (9)

It  may be noticed  that  9 material  parameters  are re-
quired:  3 thermo-elastic  ( E, � , � ), 3 related  to  plastic  ”ow
( � 0 

y , k, n ) and “nally  3 related  to  damage ( p crit  , S, s ). In
principle,  an additional  parameter  specifying  the  condi-
tions  at which  crack nucleation  occurs would  be necessary:
however,  in  the  present  investigations  damage never  ex-
ceeds 0.1, which  is well  below  the  critical  fracture  initia-
tion  threshold  for  common  metals  and alloys. 

In Table 3 values for  ferrite  Young•s modulus,  thermal
expansion  coe�cient  and initial  yield  stress are reported
over  a wide  range of temperatures,  whereas  Poisson•s ra-
tio  is assumed to  be constant  and equal to  0.3. The ini-
tial  yield  strength  at room  temperature  deserves a special
comment,  as it  is considerably  lower  than  that  reported  in
( Baer et al., 1996 ) for  a •manufacturedŽ ferritic  matrix,  ob-
tained  by alloying  mild  steel Mk3Al  with  FeSi75 using fu-
sion metallurgy.  It  has to  be remarked,  however,  that  the
main  conclusions  of the  present  analysis are to  a large ex-
tent  unaffected  by the  speci“c  choice of the  initial  yield
stress value, and more  in  general  of the  other  plastic  and
damage parameters.  

The remaining  “ve  material  quantities  to  be entered
Lemaitre•s model  have been identi“ed  following  a two-step
procedure.  Initially,  an analytical  solution  to  Eqs. (1)  …( 9 )
for  uniaxial  tensile  loading  has been calculated  ( Andriollo
et al., 2016 );  it  turns  out  that  the  relation  between  effec-
tive  stress �  � =  � /  ( 1 Š D ) and t  otal  strain  �  tot  may be ex-
pressed as: 

�  tot  ( �  � ) =  �̄  tot  +  
�  � Š �̄

E 
+  2 B 

+  �  �  

m = 0 

( Š1 ) 
m 

2 m +  1 

�


m 

�

×

	  �
1 Š

�  � � + 1 

�  � � + 1 
lim  

� m + 1 /  2 

Š

�
1 Š

�̄ � + 1 

�  � � + 1 
lim  

� m + 1 /  2 

  

(10)

where  �̄  tot  and �̄ represent  the  critical  total  strain  and
stress at which  damage evolution  starts  ( p =  p crit  ) and the
other  quantities  are de“ned  as: 

B =  Š
z 

� +  1 
( �  � lim  ) 

� Š4 s + 1 
2 , 
 =  

Š2 s 

a +  1 

z =  
1 

nk 
1 
n 

� � +  1 

2 A 

� 1 /  2 

, �  � lim  =  

� � +  1 

2 A 
+  � � + 1 

� 1 /  ( � + 1 ) 

A =  

�
nk 

1 
n ( 2 ES ) 

s 
� Š1 

, a =  2 s +  
1 

n 
Š 1 

(11)

Then, by means of an inverse  analysis performed  us-
ing  MATLAB, the  best set of parameters  has been selected
according  to  a least square “tting  of the  experimental
stress-strain  curve  at room  temperature  for  ferrite  given
in  ( Zhang et al., 1999 ). Calculated values are reported  in
Table 4 . As no information  is available  for  the  post-yielding
behavior  of the  ferritic  matrix  at higher  temperatures,  plas-
tic  ”ow  and damage evolution  parameters  are assumed to
be constant,  except  for  the  temperature  dependence of the
initial  yield  stress previously  mentioned.  Time-dependent
deformation  mechanisms  are also neglected.  

3. Methods  and  theory  

As already  stated in  the  introduction,  the  aim  of the
present  analysis is to  determine  values for  the  nodules•
effective  isotropic  elastic  moduli  which  on the  one hand
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Table 5 
Elastic constants  of a single graphite  
platelet.  Entries  are in  GPa. 

C11 C44 C12 C13 C33 

1060 0.18 180 15 36.5 

Table 6 
Bounds on the effective  elastic  moduli  of a graphite  polycrystalline  
aggregate. Entries  are in  GPa. 

Bound order  Bulk  modulus  Shear modulus  

lower  upper  lower  upper  

1st ( Grimvall,  1997 ) 35.76 286.28 0.45 217.84 
2nd ( Grimvall,  1997 ) 36.20 204.20 0.80 146.20 
3rd  ( Wawra  et al., 1982 ) 36.56 163.48 1.41 111.35 
are admissible  with  respect to  the  physical  assumptions  

of Section 2.1 and on the  other  hand allow  matching  the  

macroscopic  Young•s modulus  and Poisson•s ratio  for  GJS- 
400-15.  

3.1. Bounds on the effective elastic constants of polycrystals 

with  hexagonal symmetry 

According  to  the  discussion  on the  statistical  order  of 
polycrystalline  material  reported  in  ( Wawra  et al., 1982 ), 
assuming that  nodules  are statistically  homogeneous  and 

isotropic  polycrystalline  aggregates consisting  of many  sin-  

gle anisotropic  graphite  crystals, then  1st order  upper  and 

lower  bounds  on the  effective  isotropic  elastic  constants  

can be derived,  corresponding  to  Voigt  and Reuss bounds. 

Moreover,  if  the  distribution  of the  local  elastic  moduli  is 

not  correlated  with  the  crystal  shape and size (for  instance, 

it  is excluded  that,  on average, lengthy  platelets  are stiffer  

in  one direction  than  compact  platelets),  then  tighter  2nd 

order  bounds  can be established,  corresponding  to  Hashin…
Shtrikman  bounds. Finally,  if  no particular  crystal  shape 

and size is distinguishable,  implying  that  many  platelet  

shapes and sizes exist  in  an irregular  composition,  even 

tighter  3rd  order  bounds  can be derived.  

Explicit  analytical  expressions for  the  1st, 2nd  and 3rd  

order  bounds  in  the  case of crystals  with  hexagonal  sym-  

metry  are quite  lengthy  and may be found  in  ( Grimvall,  

1997;  Watt  and Peselnick, 1980;  Kroner,  1977 ), respectively.  

By using the  former  in  combination  with  the  anisotropic  

elastic  constants  of a single  graphite  crystal,  bounds  on the  

effective  isotropic  bulk  and shear modulus  of the  polycrys-  

talline  aggregate may be determined.  Values calculated  in  

this  way  by Grimvall  (1997  ) and Wawra  et al. (1982  ) are 

reported  in  Table 6 . It  is worth  noticing  that  the  input  val-  

ues adopted  by these authors,  given  in  Table 5 , are quite  

outdated.  Nevertheless, calculations  made by the  present  

authors  using more  recent  data ( Savini et al., 2011 ) have 

shown  only  negligible  variations  in  the  results.  

Bounds expressed in  terms  of bulk  modulus  K and shear 
modulus  G can be converted  to  bounds  on Young•s modu-  

lus E and Poisson•s ratio  � by means of the  relations:  

E =  
9 KG 

3 K +  G 
, � =  

3 K Š 2 G 

2 ( 3 K +  G ) 
(12)  

together  with  their  inverse  formulas:  

K =  
E 

3 ( 1 Š 2 � ) 
, G =  

E 

2 ( 1 +  � ) 
(13)  

It  may be easily checked from  the  “rst  of Eq. (12)  that  

the  maximum  (minimum)  value of E is achieved when  

both  K and G are at their  maximum  (minimum).  Bounds 

de“ned  in  this  way  are denoted  by E u and E l respectively.  

Then, for  each value of E in  such interval,  Eq. (13)  may be 
employed  to  rewrite  the  constraints  in  terms  of E and � : 

K l <  
E 

3 ( 1 Š 2 � ) 
<  K u 

G l <  
E 

2 ( 1 +  � ) 
<  G u (14)  

where  the  superscripts  •uŽ and •lŽ denote  the  bound  type.  

Finally,  after  simple  algebraic  manipulations,  the  following  

expressions are obtained:  

E l <  E <  E u (15)  

max 

�  1 

2 

�
1 Š

E 

3 K l 

�
, 

E 

2 G u Š 1 

�  

=  � l <  � <  � u 

=  min  

�  1 

2 

�
1 Š

E 

3 K u 

�
, 

E 

2 G l 
Š 1 

�  

(16)  

The last two  relations,  complemented  by the  data of 
Table 6 , allow  determining  three  different  domains  of ad- 

missible  values for  the  effective  Young•s modulus  and Pois- 
son•s ratio,  according  to  the  statistical  order  assumed (1st, 
2nd  or 3rd)  for  the  distribution  of the  graphite  platelets  

within  the  single  nodules.  

3.2. Mesoscopic elastic constants of a 2-phase composite 

This section  presents the  micromechanical  techniques  

used to  construct  bounds  and estimates  for  the  overall  re-  

sponse of GJS-400-15 considered  as a composite  material,  

given  the  properties  of the  single  constituents.  

3.2.1. Analytical  bounds and estimates 

Analytical  results  in  relatively  simple  form  are only  

available  under  the  assumption  of isotropic  linear  elastic  

behavior  of both  the  nodules  and the  matrix  and perfect  

interface  bonding.  

First  order  upper  and lower  bounds  on the  equivalent  

mesoscopic elastic  moduli  of the  composite  material  are 

given  by:  

K u 
c =  c K n +  (1 Š c) K m ; G u 

c =  c G n +  (1 Š c) G m ;

1 

K l c 
=  

c 

K n 
+  

1 Š c 

K m 
;

1 

G l c 
=  

c 

G n 
+  

1 Š c 

G m 
(17)  

where  the  subscripts  •cŽ, •nŽ and •mŽ refer  to  composite,  

nodules  and matrix  respectively  and c denotes the  graphite  

nodules• volume  fraction.  Relations ( 17 ) require  as input  

the  effective  isotropic  elastic  moduli  of the  nodules,  which  

are only  known  within  the  domains  de“ned  by the  bounds  

discussed in  the  previous  section. Nevertheless, by using 

expressions ( 13 ), it  is possible to  demonstrate  that  for  a 
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Fig. 1. Micromechanical  3D periodic  unit  cell  representing  the mi-  
crostructure  of GJS-400-15. 

Fig. 2. Geometry  and mesh used in  the numerical  simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prescribed  value of the  nodules• effective  Young•s modulus
E n lying  in  the  interval  ( 15 ), the  maximum  upper  bounds
and minimum  lower  bounds  obtained  by varying  the  nod-
ule Poisson•s ratio  � n within  the  range ( 16 ) are given  by:  

K u,max 
c =  

c E n 

3 ( 1 Š 2 � u 
n ) 

+  ( 1 Š c ) K m ;

G u,max 
c =  

c E n 

2 

1 +  � l 

n 

� +  ( 1 Š c ) G m ;

1 

K 
l ,min  
c 

=  
3 c 


1 Š 2 � l 

n 

�

E n 
+  

1 Š c 

K m 
;

1 

G 
l ,min  
c 

=  
2 c ( 1 +  � u 

n ) 

E n 
+  

1 Š c 

G m 
(18)

Conversion  to  maximum  upper  bounds  and minimum
lower  bounds  in  terms  of Young•s modulus  and Poisson•s
ratio  may then  be easily performed  on the  basis of rela-
tions  ( 12 ). 

Often, second order  Hashin…Shtrikman bounds  are also
employed  in  this  kind  of analyses. Unfortunately,  they  can-
not  be used here as they  are strictly  valid  only  if  K n >  K m

and G n >  G m ( Hashin  and Shtrikman,  1963 ), which  is not
always  the  case in  the  present  investigations.  

As the  word  says, bounds  indicate  the  intervals  where
the  composite  equivalent  mesoscopic moduli  must  lie.
However,  if  there  is a large difference  in  the  elastic  prop-
erties  of the  two  constituents,  the  bounds  may fall  quite
apart,  becoming  of little  practical  interest.  In such a sit-
uation,  it  is important  to  have tools  providing  reason-
able estimates  (i.e. approximated  unique  values) for  the
mesoscopic moduli.  A very  widespread  class of analyti-
cal estimates  comprises  the  well-known  •dilute  methodsŽ,
which  work  satisfactorily  when  the  secondary phase vol-
ume fraction  is limited  to  a few  percent.  For the  problem
at hand, however,  the  nodules• concentration  is as high  as
12%. Therefore, the  Mori…Tanaka approach  ( Aboudi  et al.,
2012 ) is here preferred,  which  for  spherical  particles  yields
the  following  estimates  for  the  mesoscopic bulk  and shear
moduli:  

K c =  K m +  
c ( K n Š K m ) 

1 +  ( 1 Š c ) ( K n …K m ) /  ( K m +  4 G m /  3 ) 

G c =  G m +  
15 c ( G n Š G m ) ( 1 Š � m ) 

( 7 Š 5 � m ) +  ( 8 Š 10 � m ) G n /  G m Š 2 c ( 4 Š 5 � m ) ( G n /  G m Š 1 ) 

(19)

Similarly  to  “rst  order  bounds, conversion  to  estimates
in  terms  of Young•s modulus  and Poisson•s ratio  may be
easily achieved by means of relations  ( 12 ). 

3.2.2. Numerical 3D unit  cell predictions 

In order  to  overcome  the  limitations  affecting  the  ana-
lytical  methods  presented  in  the  previous  section  and tak-
ing  non-linearities  into  consideration,  a numerical  3D pe-
riodic  unit  cell  model  is introduced.  The GJS-400-15 mi-
crostructure  is therefore  schematized  as a periodic  cubic
cell  with  a single  central  spherical  nodule,  as shown  in
Fig. 1 . The ratio  between  nodule  diameter  and cell  side
is set to  0.61, hence satisfying  the  graphite  volume  frac-
tion  requirement.  Due to  geometrical  considerations,  only
1/8  of the  unit  cell  is analyzed, as Fig. 2 shows. Symmetry
boundary  conditions  are applied  on the  three  faces of the
cube intersecting  the  nodule,  whereas  periodic  boundary
conditions  are imposed  on the  other  faces according  to  the
procedure  described  in  ( Drago and Pindera, 2007 ), in  order
to  ful“ll  continuity  of displacements  and surface tractions
with  the  surrounding  microstructure.  

With  the  aim  of investigating  the  effects of a weak
nodule-matrix  bonding  on the  unit  cell  mechanical  re-
sponse, the  phase boundary  is modeled  as a friction-
less contact  interface  with  no tensile  strength  in  the
normal  direction,  as suggested in  ( Bonora and Ruggiero,
20 05;  Collini  and Nicoletto,  20 05 ). Moreover,  local  resid-
ual stresses arising  due to  the  thermal  expansion  coe�-
cient  mismatch  between  graphite  and ferrite  during  manu-
facturing  are accounted  for  by applying  a preliminary  uni-
form  cooling  to  the  entire  volume,  from  an initial  stress-
free temperature  T i down  to  20 °C. 

The composite  mesoscopic moduli  are calculated  from
simulations  of •uniaxialŽ tensile  tests along the  x-axis  on
the  basis of the  following  formulas:  

E c =  lim  
E 11 �  0 

�
�  � 11 

�  E 11 

�
, � c =  lim  

E 11 �  0 

�
Š

E 22 

E 11 

�
(20)
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Fig. 3. Admissible  domains  for  the nodules• effective  isotropic  elastic  
moduli.  
where  � 11 , E 11 and E 22 denote  normal  components  of the  

mesoscopic stress and strain  tensors, given  by the  average 

over  the  unit  cell  volume  V of the  corresponding  micro-  

scopic quantities:  

� 11 =  
1 

V 

�  

V 

� 11 d V, E 11 =  
1 

V 

�  

V 

�  11 d V, 

E 22 =  
1 

V 

�  

V 

�  22 dV (21)  

In plain  words,  the  limits  appearing  in  expressions ( 20 ) 

simply  indicate  that  it  is the  very  initial  slope of the  uni-  

axial  stress-strain  curve  which  should  be considered  in  the  

determination  of the  unit  cell  moduli.  For practical  im-  

plementation  purposes, though,  the  secant modulus  at a 

mesoscopic strain  of 0.01% is used instead.  

Finite  element  calculations  are performed  with  the  

commercial  software  ABAQUS. The mesh adopted,  visible  

in  Fig. 2 , is constituted  by approximately  15,0 0 0 hexa-  

hedral  2nd  order  elements  with  reduced  integration.  A 

small-strain  formulation  in  combination  with  a non-linear  

numerical  solution  procedure  based on the  full  Newton…
Raphson scheme is chosen, and the  contact  condition  at 
the  matrix-nodule  interface  is enforced  via the  augmented-  

Lagrange method.  Integration  of the  Lemaitre•s damage 

equations  at the  local  level  in  the  ferritic  matrix  is ac- 

complished  by a user-de“ned  material  subroutine,  accord-  

ing  to  the  implicit  scheme proposed  in  ( de Souza Neto, 
2002 ), where  a suitable  expression  for  the  consistent  tan-  

gent  modulus  is also reported.  

4. Results  and  discussion  

4.1. Admissible domain for the nodules• elastic constants 

The three  different  domains  for  the  nodules• effective  

isotropic  elastic  moduli,  which  are admissible  according  

to  the  three  different  levels of statistical  order  for  the  

graphite  platelets  discussed in  Section 3.1 , are shown  in  

Fig. 3 . Not  surprisingly,  it  is seen that  an increase in  the  

homogeneity  requirement  leads to  a contraction  of the  
corresponding  admissible  domain.  At “rst  glance, this  is 

particularly  evident  for  the  maximum  admissible  value 

of the  effective  Young•s modulus,  which  drops  from  the  

value of 521.3 GPa obtained  by applying  1 st order  bounds  

to  272.2 GPa for  3rd  order  bounds;  conversely,  the  min-  

imum  value increases from  1.3 GPa to  4.2 GPa. It  is also 

interesting  to  observe that  within  each domain,  interme-  

diate  Young•s modulus  values are characterized  by a very  

large variation  in  Poisson•s ratio,  which  may actually  be- 

come negative.  In principle,  this  possibility  should  not  

be excluded  a priori,  both  theoretically  and physically,  as 

there  is experimental  evidence of polycrystalline  materials  

whose cross-section  expands when  stretched  under  uniax-  

ial  tension  ( Lakes, 1993 ). Furthermore,  it  is known  that  py-  

rolytic  graphite,  which  may be considered  as transversely  

isotropic,  shows negative  Poisson•s ratio  in  the  isotropy  

plane ( Bert, 1969 ). 
From a practical  viewpoint,  an important  conclusion  

may be drawn  on the  basis of the  present  results.  As 

thoroughly  discussed in  Section 2.1 , the  isotropy  assump-  

tion  on the  nodules• mechanical  behavior  holds  only  if  

the  graphite  platelets  are arranged  in  a statistically  homo-  

geneous way  throughout  the  nodules  themselves.  Conse- 
quently,  their  effective  moduli  must  lie  at least within  the  

1st order  domain  indicated  in  Fig. 3 , henceforth  simply  de- 

noted  as admissible  domain.  This conclusion  stems directly  

from  the  physical  structure  associated with  the  graphite  

nodules.  It  is worth  remarking  that  most  of the  authors  

listed  in  Tables 1 and 2 have assumed values for  Young•s 

modulus  and Poisson•s ratio  in  the  range 4…36 GPa and 

0.2…0.3 respectively,  which  are outside  the  admissible  do-  

main.  The reason for  this  discrepancy  will  be discussed in  

the  remaining  sections, where  the  implications  of adopt-  

ing  nodules• effective  moduli  within  the  admissible  domain  

are analyzed with  respect to  the  effects they  have on the  

mesoscopic elastic  constants  of GJS-400-15. 

4.2. Perfect bonding assumption 

Initially,  the  in”uence  of nodules• effective  moduli  ly-  

ing  within  the  admissible  domain  is assessed by assuming 

linear  elastic  behavior  of both  material  constituents  and 

perfect  interface  bonding.  In this  way,  the  mechanical  re-  

sponse of the  composite  GJS-400-15 may be studied  using 

the  analytical  relations  presented  in  Section 3.2.1 . 
Figs. 4 and 5 present  the  in”uence  of the  nodules• ad- 

missible  moduli  on the  mesoscopic Young•s modulus  and 

Poisson•s ratio  respectively.  It  may be seen that  several 
contours  are plotted  in  addition  to  the  reference  litera-  

ture  values ( American  Foundrymen•s  Society, 1992;  •Mat-  

base: the  free and independent  online  materials  proper-  

ties resource,Ž 2015 ), which  are quite  standard  for  the  SGI 
material  at hand. The “rst  contour  indicates  the  exten-  

sion of the  1st order  Voigt-Reuss bounds:  for  each value 

of E n , when  � n is varied  within  the  corresponding  ad- 

missible  range ( 16 ), the  elastic  response of GJS-400-15 is 

bounded  by the  green area. The second and third  con-  

tours,  instead,  represent  estimates  produced  by the  analyt-  

ical  Mori-Tanaka  approach  and the  numerical  3D unit  cell  
model.  
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response recorded  during  uniaxial  testing.  In the  end, this
is what  many  of the  authors  listed  in  Table 1 have done.
However,  it  is di�cult  to  justify  such isotropic  parameters
on the  basis of physical  grounds  and, in  addition,  there  is
no guarantee  that  they  will  work  for  different  loading  con-
ditions.  Moreover,  even if  they  provide  good results  at the
mesoscopic level,  the  description  they  offer  in  terms  of mi-
croscopic  stress & strain  “elds  in  and around  the  nodules
is quite  disputable.  This element  has to  be kept  in  mind  es-
pecially  if  fatigue  crack nucleation  and propagation  in  SGI
is to  be analyzed. 
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This paper presents a micro-mechanical  approach  to  model  the  intrinsic  elastic  anisotropy  of the  graphite  

particles  in  ductile  iron.  Contrary  to  most  of the  published  works  in  the  “eld,  the  constitutive  behav-  

ior  is directly  derived  on the  basis of the  nodule  characteristic  internal  structure,  composed of graphite  

platelets  arranged  into  conical  sectors. In this  way,  the  large uncertainty  traditionally  associated with  lo-  

cal mechanical  measurements  of micro-hardness  is eliminated.  The proposed  anisotropic  description  is 

validated  by simulating  the  macroscopic  ductile  iron  elastic  response by means of a 3D periodic  unit  cell  
model.  In this  respect, an explicit  procedure  to  enforce both  periodic  displacement  and periodic  traction  

boundary  conditions  in  ABAQUS is presented,  and the  importance  of ful“lling  the  traction  continuity  con-  

ditions  at the  unit  cell  boundaries  is discussed. It  is shown  that  localized  inelastic  deformation  is likely  

to  develop  for  loading  conditions  which  can still  be considered  as elastic  at the  macroscopic  scale. The 

presence of a weak  interface  between  the  graphite  and the  matrix  is also investigated,  and it  is found  to  

affect  the  results  to  a limited  extent  only.  

© 2016  Elsevier Ltd. All  rights  reserved. 
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. Introduction  

Among  the  multitude  of high-performance  metallic  materials
vailable  today,  ductile  cast iron,  also known  as spheroidal  graphite

ron  (SGI), is probably  one of the  very  few  boasting  a positive
rowth  rate  on the  market  since its  commercial  introduction  in
948 ( Ductile  Iron  Society, 2013 ). According  to  recent  estimates,
s many  as 25% of the  castings produced  worldwide  are made of
GI ( 47th Census of World  Casting Production , 2013 ) and represent
ainly  small  and medium  sized heavily  loaded parts  with  high  de-
ands for  consistent  quality  for  the  automotive  sector and very

arge industrial  components  with  extreme  demands for  mechani-
al properties,  particularly  fatigue  strength  and fracture  toughness
 Tiedje, 2010 ). 

From a metallurgical  perspective,  SGI may be classi“ed  as a
ernary  Fe-C-Si alloy  ( Labrecque and Gagne, 1998 ) whose  proper-
ies to  a large extent  are controlled  by chemical  composition,  cool-
ng  rate  and heat treatment.  The “nal  microstructure  may be nat-
� Corresponding  author.  
E-mail addresses: titoan@mek.dtu.dk  (T. Andriollo),  jest@mek.dtu.dk  
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rally  considered  as composite  ( Grimvall,  1997 and Sjögren and
vensson, 2004 ), consisting  of graphite  nodules  embedded  in  a
ontinuous  matrix  which,  in  most  engineering  applications,  may be
ither  ferritic,  pearlitic  or a mixture  of the  two.  

Due to  its  high  technological  importance,  a number  of papers
ave addressed the  problem  of modeling  the  mechanical  behavior
f SGI, particularly  ductile  fracture  and fatigue.  Nevertheless, the

ntrinsic  material  complexity  has always  posed severe challenges,
nd as recently  pointed  out  by ( Hütter  et al., 2015 ) in  a review
rticle,  much  work  is still  needed to  bridge  the  gap between  mi-
rostructural  features  and global  properties.  Particularly,  according
o the  former  authors,  a deeper understanding  of the  mechanical
esponse of the  single  constituents  at the  micro  scale is highly  nec-
ssary. 

Concerning  this  point,  an important  element,  which  has prob-
bly  received  much  less consideration  than  necessary in  the  past,

s the  mechanical  nature  of the  graphite  particles.  Several numeri-
al investigations  on the  non-linear  behavior  of SGI during  tensile
esting  published  in  the  late  •90 s (( Kuna and Sun, 1996 ; Brocks
t al., 1996 and Zhang et al., 1999 ) among others)  were  based on
he  concept  of a voided  material  model,  meaning  that  the  nodules
ere  simply  neglected  in  the  analyses. This was motivated  by their
resumed  •softŽ nature  and the  early  debonding  from  the  matrix,

http://dx.doi.org/10.1016/j.ijsolstr.2016.09.023
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Graphite nodules mechanical description

Phenomenological approach

Constitutive behavior 
postulated a priori

Micromechanical approach

Constitutive behavior defined on 
the basis of the internal structure

Material parameters 
identification required

Direct 
measurements

Geometrical
arrangement

Knowledge of basic Òbuilding 
blocksÓ needed

Indirect 
measurements

Thermo-elastic
properties

Nanoindentation Several available TEM Literature

Fig. 1. Schematic of the  two  different  approaches used to model  the mechanical  behavior  of the  graphite  nodules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

g  

t  

c  

w  

e  

f  

e  

n  

w  

t  

i
 

s  

n  

c  

t  

v  

r  

A  

e  

l  

b  

r  

e  

m  

f  

p
 

a  

t  

c  

s  

c  

i  

t  

o  

o  

i  

r  

g  

p

often  observed experimentally  ( Dong et al., 1997 ). It  is quite  clear,
however,  that  this  assumption  may be reasonable at high  values
of the  triaxiality  ratio,  but  it  cannot  be justi“ed  under  pure  shear
or in  situations  where  the  hydrostatic  part  of the  stress tensor  be-
comes negative.  Several experimental  facts point  in  this  direction,
as discussed in  detail  in  ( Andriollo  et al., 2015a,b ). Perhaps, the
most  striking  evidence of this  is that  1) at temperatures  close to
the  eutectoid  transformation,  the  nodules  remain  undeformed  un-
der heavy compressive  deformation  of SGI samples ( Hervas et al.,
2013 ) and 2) the  low-cycle  fatigue  behavior  with  negative  stress
ratio  is better  reproduced  by numerical  models  where  nodules  are
treated  as rigid  spheres instead  of voids  ( Rabold and Kuna, 2005 ).
Hence, as loading  scenarios for  real SGI components  usually  in-
volve  complex  combinations  of tensile  and compressive  stresses
( Shirani  and Härkegård,  2011 ), the  simplistic  voided  material  as-
sumption  is likely  inadequate.  

On the  other  hand, including  the  graphite  particles  in  the  anal-
ysis is not  trivial,  primarily  because of the  lack of reliable  data
concerning  their  mechanical  properties.  The vast majority  of au-
thors  who  have tried  to  model  the  nodules• behavior  have followed
the  phenomenological  approach  summarized  in  Fig. 1 , assuming an
isotropic  linear  elastic  response. Unfortunately,  the  procedure  suf-
fers from  two  important  shortcomings.  

First  of all, it  is very  hard, if  not  impossible,  to  perform  a di-
rect  identi“cation  of the  required  material  parameters.  In fact, the
only  easy way  to  experimentally  characterize  the  nodules  is via
nano-indentation  ( Oliver  and Pharr, 1992 ). The method  however,
is quite  disputable,  as it  relies  on an exact isotropic  elastic  solu-
tion  ( Harding  and Sneddon, 1945 ) whereas  graphite  is notoriously
highly  anisotropic  at the  local  scale. Moreover,  it  was argued by
( Bonora and Ruggiero, 2005 ) that  the  sharp indenter  usually  em-
ployed  could  simply  separate the  graphite  layers without  creating
any elastic  deformation  at all. In light  of these considerations,  pa-
rameters  identi“cation  based on indirect  measurements,  e.g. test-
ing  the  stiffness  of SGI at the  macroscopic  level,  is sometimes  pre-
ferred.  In both  cases, however,  the  phenomenological  approach  has
proved  to  lead to  large uncertainties,  as con“rmed  by Table 1 ,
which  reports  the  nodules• isotropic  elastic  constants  assumed by
several researchers over  the  last 30 years. 

The second important  drawback  is that  the  isotropy  assump-
tion  cannot  be justi“ed  using elastic  bound  theory  analysis. In a
recent  work,  ( Andriollo  and Hattel,  2016 ) determined  an admis-
ible domain  for  the  Young•s modulus  and Poisson•s ratio  of the
raphite  particles  by means of homogenization  theory  for  polycrys-

alline  materials.  Using both  analytical  and numerical  microme-
hanical  techniques,  the  implications  of adopting  nodules• moduli
ithin  such admissible  domain  were  investigated  in  relation  to  the
ffective  elastic  constants  of a common  grade of ductile  iron.  It  was

ound  that  the  predicted  effective  parameters  never  match  the  ref-
rence experimental  values, no matter  the  choice of the  admissible
odules• moduli.  Furthermore,  this  important  conclusion  still  holds
hen  the  in”uence  of factors  like  weak  interface  bonding  between

he matrix  and the  graphite  and local  residual  stresses arising  dur-
ng  manufacturing  is taken  into  account. 

The limitations  of the  phenomenological  approach  discussed
o far  motivate  the  adoption  of different  strategies  to  model  the
odules.  As shown  in  Fig. 1 , another  possibility  is to  use a mi-
romechanical  approach, where  the  nodules• properties  are ob-
ained  directly  on the  basis of their  real internal  structure.  As pre-
iously  mentioned,  the  latter  is composed of graphite  platelets  ar-
anged in  a characteristic  radial  fashion  ( Theuwissen  et al., 2012 ).
s the  moduli  of the  graphite  hexagonal  unit  cell  are known,  the
lastic  response of the  entire  nodule  can in  principle  be calcu-

ated  without  the  need of any inverse  analyses. To the  authors•
est knowledge,  the  only  systematic  work  along this  line  was car-
ied  out  by ( Dryden  and Purdy, 1989 );  in  their  analysis, how-
ver, a quite  rough  approximation  of the  platelets  arrangement  was
ade in  order  to  solve the  problem  analytically,  which  was later

ound  to  generate unrealistic  values for  the  macroscopic  SGI elastic
roperties.  

The aim  of the  present  work  is to  extend  the  “ndings  of the
bovementioned  authors  by considering  a more  realistic  descrip-

ion  of the  nodules• internal  structure  according  to  the  most  re-
ent  TEM investigations.  More  speci“cally,  the  observed subdivi-
ion of the  graphite  particles  into  conical  sectors is taken  into  ac-
ount.  Validation  of the  proposed  model  is performed  by calculat-
ng  the  effective  elastic  properties  of a periodic  SGI unit  cell  con-
aining  a single  graphite  nodule  and comparing  them  with  those
f a well-known  ferritic  ductile  iron  grade. Due to  the  complexity
f the  underlying  3D geometry,  the  commercial  software  ABAQUS

s used for  the  purpose. Within  this  context,  a thorough  discussion
egarding  the  implementation  of suitable  boundary  conditions  is
iven, motivating  the  importance  of prescribing  both  periodic  dis-
lacements  and tractions  along the  cell  boundaries.  



T. Andriollo  et al. / International  Journal of Solids and Structures 100…101 (2016) 523…535 525 

Table 1 
Micromechanical  modeling  of the  SGI elastic  response: assumed values for  the nodules• isotropic  
elastic  moduli.  

Year Authors  Young•s modulus  (GPa) Poisson•s ratio  

1980 ( Speich et al., 1980 ) 8 .5 0 .29 
1992 ( Era et al., 1992 ) 303 Not  speci“ed  
1997 ( Boccaccini, 1997 ) 8 .5 0 .2 
1998 ( Pundale et al., 1998 ) 0 (void)  0 (void)  
2002 ( Cooper et al., 2002 ) 8 .5 0 .2 
2003 ( Gaudig et al., 2003 ) 4 .17 0 .2225 
2004 ( Sjögren and Svensson, 2004 ) � 0 .2 
2005 ( Bonora and Ruggiero, 2005 ) 300…375 Not  speci“ed  
2005 ( Collini  and Nicoletto,  2005 ) 15 0 .3 
2006 ( Nicoletto  et al., 2006 ) 15 0 .3 
2014 ( Carazo et al., 2014 ) � 0 .2225 
2015 (T. Andriollo  et al., 2015a, b ) 0…20 0 .15 
2015 ( Fernandino  et al., 2015 ) 15 0 .28 

� E g =  0.173 € Nodularity  +  18.9 �  36.2 GPa for  100% nodularity.  

1
2

3

Fig. 2. Graphite  platelet  hexagonal  unit  cell. 

Table 2 
Elastic constants  of a single graphite  platelet.  Entries  
are in  GPa. ( Savini et al., 2011 ). 
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1  
. Micro-scale  material  models  

.1. Basic nodule structure  according to TEM investigations 

The characteristic  spherical  shape of the  graphite  particles  in
uctile  cast iron  is normally  obtained  by adding  Mg and, in  some
ases, rare earth  elements  such as Ce and La to  the  base liquid
etal,  which  combine  with  S and O to  produce  a melt  of high  pu-

ity.  Formation  of graphite  nodules  according  to  the  stable Fe-C-Si
hase diagram  during  subsequent  solidi“cation  is achieved via ad-
ition  of proper  inoculants  ( Tiedje, 2010 ). 

It  seems to  be well  established  now  ( Miao  et al., 1990 and
heuwissen  et al., 2012 ) that  the  basic building  blocks forming  the
odules  in  the  solidi“ed  material  are graphite  platelets  consisting
f graphene layers piled  up without  any crystallographic  defects.
hese structural  units  have thicknesses in  the  sub-micrometer

ange and appear to  be elongated  along the  graphene planes. From
 continuum  point  of view,  they  can be described  on the  basis of
he  hexagonal  unit  cell  reported  in  Fig. 2 ( Sjogren, 2007 ), where
he  3-direction  is orthogonal  to  the  graphene layers. The elastic
roperties  of such hexagonal  symmetry  may be fully  de“ned  in

erms  of 5 independent  constants  ( Tromans, 2011 ), which  are re-
orted  in  Table 2 . It  can be noticed  that  the  stiffness  in  the  basal
lane, expressed by C11, is extremely  high,  above 1 TPa, whereas

hat  along the  orthogonal  direction,  associated with  C33, is more
han  one order  of magnitude  smaller.  
The single  graphite  platelets  are arranged  into  conical  sectors,
hich  radiate  from  the  nodule  center  to  the  outer  periphery  as
isible  in  Fig. 3 (a). Within  a sector, the  platelets  are stacked on
ach other,  with  the  3-direction  constant  and oriented  approxi-
ately  radially,  as schematically  shown  in  Fig. 3 (b). Nevertheless,

he  stacking  is not  perfect,  and rotations  about  the  3-axis  occur
n an almost  regular  basis, de“ning  domains  of similar  orientation
 Theuwissen  et al., 2014 ). 

.2. Graphite nodule micromechanical models 

.2.1. Geometry 

Assuming  the  nodule  to  have spherical  shape, a natural  prob-
em  is its  subdivision  into  conical  sectors of similar  size. Moreover,
heir  overall  number  must  not  exceed a few  tens, according  to  the
xperimental  data provided  by the  authors  listed  in  the  previous
ection. The simplest  way  to  perform  this  task is to  use orthog-
nal  planes passing through  the  center  of the  sphere:  this  leads

o the  •Type6Ž and •Type8Ž nodule  models  visible  in  Fig. 4 , where
he  name indicates  the  number  of sectors generated. Models  with
ore  partitions  may be obtained  by subdividing  each conical  sec-

or  of •Type8Ž in a qualitatively  symmetric  fashion,  hence creat-
ng  nodules  with  32, 48 and 80 sectors respectively.  Except for
Type6Ž, the  basic features  of each different  model  may be ex-
ressed in  terms  of parameters  of the  related  spherical  triangles,
hich  are de“ned  as the  elements  of the  spherical  surface iden-

i“ed  by a given  sector. This information  is provided  in  Table 3 ,
here  the  distortion  index  is de“ned  as: 

I =  

�
� l 1 Š l̄ 

�
� +  

�
� l 2 Š l̄ 

�
� +  

�
� l 3 Š l̄ 

�
�

3 ̄l 
, l̄ =  

l 1 +  l 2 +  l 3 

3 
(1)  

 i , i  =  1,2,3 being the  spherical  triangle  side lengths.  It  may be seen
hat  DI is almost  always  close to  zero, indicating  a good level  of
ymmetry  of the  underlying  partitioning;  furthermore,  no large
ize differences  exist  among conical  sectors of the  same model
ype,  in  agreement  with  experimental  observations.  

.2.2. Elastic properties 

On the  basis of the  real nodule  internal  structure,  each conical
ector is assigned anisotropic  elastic  properties  according  to  Table
 . The 3-direction  is de“ned  as the  direction  connecting  the  center
f the  nodule  to  the  centroid  of the  related  spherical  triangle.  As a
ody  exhibiting  hexagonal  symmetry  is transversely  isotropic  with
espect to  the  basal plane (i.e. the  graphene layers in  this  case),
he  other  two  material  directions  can be set arbitrarily  without  af-
ecting  the  analysis. 

In order  to  facilitate  the  comparison  with  ( Dryden  and Purdy,
989 ) “ndings,  an additional  model  is introduced,  where  the
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Fig. 5. Micromechanical  periodic  unit  cell  representing  the microstructure  of SGI. 
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l  
t  is useful  mentioning  here that  these values correspond  to  a bulk
odulus  of 162.7 GPa and to  a shear modulus  of 79.5 GPa. 

. Homogenization  technique  

.1. Periodic boundary conditions 

Considering  any two  equivalent  points  x and x +  d lying  on op-
osite  faces of the  unit  cell  and separated by the  characteristic  pe-
iodic  length  d , boundary  conditions  can be applied  as ( Drago and
indera, 2007 ):  

 ( x +  d ) =  u ( x ) +  �̄  · d 

 ( x +  d ) =  Št  ( x ) 
(2)  

here  u and t  denote  displacement  and surface traction.  The 2nd
rder  tensor  �̄  represents  the  average of the  in“nitesimal  strain
ver  the  entire  volume,  and it  is normally  an externally  imposed
uantity.  Application  of the  periodic  conditions  ( 2 ) is su�cient  to
uarantee  continuity  of the  displacements  and of the  surface trac-

ions  across adjacent  unit  cells. 

.2. Averaging relations 

A linear  elastic  relation  between  volume  averages of the  stress
nd strain  “elds  over  the  unit  cell  is sought  in  the  form:  

¯ =  C̄ :  �̄  (3)  

here  C̄ is the  4th  order  effective  stiffness  tensor.  Its independent
omponents  are determined  by prescribing  in  sequence six inde-
endent  loadings  in  the  form  �̄  (1) , . . . , �̄  (6) according  to  Eq. (2)  , and
ecording  the  resulting  average stresses �̄ (1) , . . . , �̄ (6) . The result-
ng  linear  system of equations  can then  be solved for  the  effective
lastic  constants.  

The calculated  effective  stiffness  tensor  can be decomposed into
n isotropic  and an anisotropic  part  as follows:  

¯  =  C̄ iso +  C̄ ani (4)  

The former  can be further  written  as: 

¯  iso =  3 ̄k S +  2 µ̄ D (5)

here  S and D are the  spherical  and deviatoric  projection  tensors
 Itskov,  2007 ) , which  form  an orthogonal  basis for  isotropic  4th
rder  tensors. The quantities  k̄ and µ̄ represent  the  effective  bulk
nd shear modulus  respectively  and may be calculated  as: 

¯  =  
1 

3 

�
C̄ | S 

�

�  S | S �  
, µ̄ =  

1 

2 

�
C̄ | D 

�

�  D | D �  
(6)  
t

here  � · | ·�  indicates  the  scalar product  between  4th  order  ten-
ors. Conversion  to  effective  Young•s modulus  and Poisson•s ratio
s performed  via the  basic relations:  

¯ =  
9 ̄k µ̄

3 ̄k +  µ̄
, �̄ =  

3 ̄k Š 2 µ̄
2 
�
3 ̄k +  µ̄

� (7)  

Finally,  an anisotropy  index  may be obtained  as ( Fernandino
t al., 2015 ):  

 a =  

�  �
C̄ Š C̄ iso | C̄ Š C̄ iso 

�

�
C̄ | C̄ 

�

�  1 /  2 

(8)  

The latter  quantity  provides  an indication  of the  material  degree
f anisotropy  and will  be used in  Section 5.4 to  discuss the  validity
f the  periodic  unit  cell  assumption  in  the  context  of modeling  the
GI behavior.  

. Numerical  implementation  

.1. Setting up periodic boundary conditions in ABAQUS 

In order  to  gain insight  into  the  meaning  of the  periodic  con-
itions  ( 2 ), it  is useful  to  write  down  the  “nite  element  system
f equations  for  the  entire  unit  cell, within  the  framework  of
mall  strain  linear  elasticity.  For convenience,  a symmetric  mesh
s assumed. All  external  boundary  degrees of freedom  (dofs)  are
rouped  into  the  ordered  vectors  u +  

b and u Šb , such that  the  generic
-elements  of such two  vectors  correspond  to  equivalent  nodes ly-
ng  on opposite  faces of the  unit  cell, separated by the  character-
stic  distance  d . The remaining  internal  dofs are denoted  by the
ector  u i  . Under  these assumptions,  the  “nite  element  system of
quations  takes the  form:  
 

 

K ii  K +  
ib  K Šib  

K +  
bi  K ++  

bb K +  Š
bb 

K Šbi  K Š+  
bb K ŠŠ

bb 

�  

�  ·

  
�  

�  

u i  

u +  
b 

u Šb 

�  
�  

�  
=  Š

  
�  

�  

0 

f  +  
b 

f  Šb 

�  
�  

�  
(9)  

here  the  K elements  represent  submatrices  of the  global  stiffness
atrix  and f  +  

b and f  Šb denote  the  external  nodal  forces, which  are
nitially  unknown.  The system ( 9 ) is complemented  by the  periodic
oundary  conditions  ( 2 ), which  promptly  yield  the  following  two
dditional  sets of equations:  

u +  
b 

�
=  

�
u Šb 

�
+  [  �̄  ]  · { d } 

f  +  
b 

�
=  Š

�
f  Šb 

� (10)  

nd if  the  stiffness  matrix  is non-singular,  a unique  solution  may
e found.  

The natural  method  to  impose  linear  constraints  of the  form
 10 ) in  ABAQUS is to  use the  •Linear  constraint  equationsŽ com-
and  ( Dassault Systèmes Simulia  Corp., 2013a ), which  allows  en-

orcing  scalar linear  relation  among dofs of the  type:  

 1 u 1 +  a 2 u 2 +  . . . +  a k u k =  0 (11)

here  u j , j =  1:  k are generic  displacement  dofs and a j , j =  1:  k are
eal coe�cients.  Nevertheless, this  approach  has two  limitations:  

1. the  “rst  dof  appearing  in  an equation  is always  eliminated  and
cannot  be used in  subsequent  relations;  

2. equations  can only  be formulated  in  terms  of displacement
dofs, hence imposition  of ( 10 b) does not  appear as trivial.  

Recently, ( Qi et al., 2015 ) have discussed the  simpli“ed  ABAQUS
mplementation  of only  the  displacement  part  of the  periodic
oundary  conditions,  claiming  that  ( 10 a) alone was su�cient  to
btain  the  desired  periodic  solution.  However,  as will  be shown

ater  in  this  work,  this  cannot  ensure continuity  of the  surface trac-
ions  across adjacent  unit  cells. 
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ABAQUS
Generate periodic unit cell model including:
- 3 reference points, whose displ. components 

correspond to: 1) average normal strains, 2) 
average shear strains 3) rigid body translation 

- fixed displ. BCs at the reference points
- boundary node and element sets
Generate and export stiffness matrix limited to 
boundary elements 

PYTHON SCRIPT-1
Find one-to-one correspondence between nodes 
located on opposite faces of the unit cell
Assemble constraints in matrix format:
- impose periodic displacements
- impose periodic tractions
Re-order the constraint matrix columns: boundary 
dofs first, then remaining internal dofs, finally dofs of 
reference points    
Reduce matrix to echelon form using Gauss-Jordan 
pivoting

PYTHON SCRIPT-2
Create a set for every node giving nodal force 
contribution along the boundary 
Impose constraints as linear equations 
Set the desired average strains and run the analysis

Mesh data + 
stiffness matrix

Linear constraints set in 
echelon matrix form

Fig. 6. Procedure for  setting  up periodic  displacement  and traction  boundary  con-  
ditions  in  ABAQUS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. De“nition  of useful  node sets on the unit  cell  mesh:  (a) face internal  nodes, 
(b) edge internal  nodes, (c) pair  of opposite  parallel  edges along y-direction,  (d)  
corner  nodes. 
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In principle,  within  the  ABAQUS environment,  imposition  of
( 10 a) should  imply  that  ( 10 b) is satis“ed  a priori.  The reason is
that  when  an equation  of the  type  ( 11 ) is prescribed,  ABAQUS gen-
erates constraint  forces (in  addition  to  the  internal  nodal  forces) at
all  dofs involved  in  the  equation,  which  are proportional  to  their
respective  coe�cients.  Then, as the  coe�cients  of the  elements  of
u +  

b and u Šb must  be set as opposite  in  view  of ( 10 a), it  means that
the  related  constrained  nodal  forces are opposite  too, which  is ex-
actly  what  ( 10 b) speci“es.  

Nevertheless, in  the  context  of the  present  work,  a procedure
which  explicitly  enforces both  periodic  displacement  and periodic
traction  conditions  is suggested. The reason is twofold.  On the
one hand, the  proposed  method  is more  general  and can be used
in  other  types of analyses where  imposition  of relations  between
tractions  at the  local  level  is required.  On the  other  hand, a very
simple  way  to  cope with  the  “rst  limitation  of the  •Linear  con-
straint  equationsŽ command  is given, which  is relevant  even in  sit-
uations  when  only  ( 10 a) is to  be imposed,  especially  when  dealing
with  3D unit  cell  geometries.  

The procedure  is illustrated  in  Fig. 6 and it  is based on Python
scripting.  It  can been seen that,  in  order  to  impose  the  periodic
traction  condition,  entries  of the  global  stiffness  matrix  related  to
the  boundary  nodal  forces are extracted  by means of the  MATRIX
GENERATE command  ( Dassault Systèmes Simulia  Corp., 2013b ).
Moreover,  repetition  of dofs already  set as “rst  dof  in  previous
equations  is avoided  by prior  reduction  to  echelon form  via Gauss-
ordan pivoting  of the  matrix  associated with  the  set of linear  con-
traints.  

.2. Avoiding over-constraining  

The choice of the  boundaries  over  which  periodic  conditions
ave to  be imposed  deserves special attention.  In fact, it  is of ut-
ost  importance  to  avoid  generating  a number  of linear  indepen-
ent  constraints  greater  than  the  number  of dofs associated with

he  boundary  nodes: if  that  happens, spurious  deformation  will  oc-
ur  in  the  unit  cell, adversely  affecting  the  quality  of the  overall
nalysis. 

A simple  strategy  to  deal with  the  abovementioned  issue is pre-
ented here. With  reference  to  the  3D unit  cell  mesh of Fig. 7 , the
ollowing  quantities  are introduced:  

€ n f :  number  of face internal  nodes 

€ n e : number  of edge internal  nodes 

€ n c : number  of corner  nodes 

€ n b =  n f +  n e +  n c : number  of total  boundary  nodes 

Periodic  displacement  boundary  conditions  are applied  consid-
ring  all  n b nodes. Constraints  are set between  all  possible pairs  of
quivalent  nodes, meaning  that  a single  corner  node will  be sub-

ected  to  3 linear  constraints  of the  vector  type  ( 10 )(a), an edge
ode to  two,  and a face node to  one only.  The total  number  of

inear  independent  equations  C d generated  in  this  way  may be de-
ermined  as: 

 d =  3 

� 1 

2 
n f +  

3 

4 
n e +  ( n c Š 1 ) 

�
(12)

Conversely, periodic  traction  boundary  conditions  are imposed
onsidering  the  face internal  nodes only,  plus  the  internal  nodes

ying  on 3 pairs  of opposite  parallel  edges as shown  in  Fig. 7 (c),
ne pair  for  each Cartesian direction.  Consequently,  the  number  of
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Fig. 8. Structure  of the  set of linear  constraint  equations  associated with  the periodic  boundary  conditions:  (a) before and (b) after  Gauss-Jordan pivoting.  
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Fig. 9. Comparison  between  2D plate  deformed  con“gurations  obtained  by either  
enforcing  or not  the periodic  traction  condition.  
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ndependent  traction  constraints  C t created is given  by:  

 t =  3 

� 1 

2 
n f +  

1 

4 
n e 

�
(13)  

The overall  number  of linear  independent  equations  C tot  is then:

 tot  =  C d +  C t +  3 (14)  

here  the  last term  relates to  the  prescribed  motion  of a single
elected node, necessary to  avoid  rigid  body  translation.  By in-
erting  expressions ( 12 and 13 ) into  ( 14 ), it  can be easily veri“ed
hat  C tot  = 3 n b , i.e. the  number  of independent  constraints  is exactly
qual to  the  number  of boundary  dofs. 

. Results  and  discussion  

.1. Periodic boundary conditions implementation  veri“cation  

In order  to  verify  the  quality  of the  ABAQUS implementation
rocedure  described  in  Sections 4.1 and 4.2 , the  full  set of lin-
ar constraint  equations  for  a test  unit  cell  with  340 boundary
odes has been generated  by imposition  of the  appropriate  peri-
dic  conditions.  The structure  of the  associated matrix  is shown

n  Fig. 8 (a), where  the  blue  dots indicate  the  non-zero  entries.
ig. 8 (b)  reports  the  structure  of the  same linear  system, but  af-

er  Gauss-Jordan pivoting:  the  number  of pivots  found  is exactly
020 =  3 � 340. It  may be noticed  that  each boundary  dof  is con-
trained  to  the  internal  dofs of the  boundary  elements  and to  the
ofs of the  reference  points,  which  represent  the  average strains

mposed  to  the  unit  cell. It  has to  be pointed  out,  however,  that
he  blue  area on the  right-hand  side of Fig. 8 (b)  is not  as •numeri-
ally  denseŽ as it  might  appear. Several entries  are a few  orders  of
agnitude  smaller  compared  to  the  pivot  coe�cient,  and some are
on-zero  only  due to  round-off errors;  therefore,  they  can simply
e neglected  in  order  to  speed up the  analysis. 

.2. Necessity of the periodic boundary traction  condition  

The work  of ( Qi et al., 2015 ) previously  mentioned  offers  an ex-
mple  of the  application  of the  so-called  •Uni“ed  displacement-
ifference  periodic  boundary  conditionsŽ,  proposed  by ( Xia et al.,
006 ) to  model  composites  with  periodical  distribution  of the  re-

nforcing  phase. According  to  the  latter  authors,  within  the  frame-
ork  of a displacement-based  “nite  element  analysis, the  condi-

ion  ( 10 a) alone is su�cient  to  guarantee  the  uniqueness  of the
olution  and the  ful“llment  of the  traction  continuity  requirement
long the  unit  cell  boundaries.  

However,  it  is the  present  authors• opinion  that  such state-
ent  may be misleading.  In fact, if  the  traction  condition  ( 10 b)
s neglected, the  associated system of equations  ( 9 ) is underdeter-
ined,  unless further  assumptions  are made on the  nature  of the

xternal  nodal  forces f  +  
b and f  Šb , which  are of course unknown

or  the  problem  at hand. Such additional  assumptions  are to  a
arge extent  subjective  and implementation-dependent,  and there-
ore  might  lead to  non-unique  results.  

For instance, the  constraints  ( 10 a) could  be handled  by intro-
ucing  a corresponding  number  of Lagrange multipliers,  which
ould  essentially  correspond  to  f  +  

b , while  implicitly  enforcing  f  Šb 
o  zero. To appreciate  the  implications  of this  particular  choice on
he  “nite  element  solution,  a simple  100 by 150 µ m rectangular
late  subjected  to  plane strain  conditions  is analyzed. The plate
as Young•s modulus  and Poisson•s ratio  equal to  205 GPa and 0.29
espectively.  Moreover,  a central  circular  graphite  inclusion  of ra-
ius  40 µ m is present,  with  the  graphene planes having  the  elas-
ic  properties  listed  in  Table 2 and oriented  at 45 °. The solution
o the  “nite  element  system of equations  is calculated  in  Matlab,
hich  offers  a simpler  interface  to  set up customized  linear  con-
traints.  This can be achieved by generating  the  full  stiffness  matrix
n  ABAQUS “rst,  by means of the  MATRIX GENERATE command,
nd then  exporting  it  to  Matlab.  Fig. 9 shows the  deformed  con“g-
ration  of the  plate  subjected  to  an average shear strain  of 0.1%, at
 scaling factor  of 50. On the  same “gure,  the  deformed  con“gura-
ion  obtained  by applying  both  constraints  ( 10 a and b) at the  same
ime  is plotted.  It  is seen that  a large difference  exists between  the
wo  solutions,  despite  both  satisfy  the  displacement  part  of the  pe-
iodic  boundary  conditions.  
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Fig. 10. Orientation  of nodule  model  •Type8Ž with  respect to the unit  cell  axes expressed in  terms  of the three  angles � , � , � . 
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5.3. Effect of nodule orientation  relative to the unit  cell axes 

After  having  veri“ed  the  correct  implementation  of the  peri-
odic  boundary  conditions  and before  comparing  numerical  predic-
tions  to  experiments,  the  focus is turned  to  the  role  played  by the
nodule  orientation  relative  to  the  unit  cell  axes. In principle,  this
aspect should  be discussed for  all  different  models  introduced  in
Section 2.2 except  for  •TypeInfŽ, as conditions  of spherical  symme-
try  no longer  exist  due to  nodule  partitioning  into  a “nite  num-
ber of conical  sectors. However,  as the  aim  here is to  “nd  out
whether  or not  the  relative  orientation  has a signi“cant  impact  on
the  effective  elastic  properties,  the  presentation  can be restricted
to  •Type8Ž only, which  will  be shown  later  to  be characterized  by
the  largest  value of the  anisotropy  index.  

With  reference  to  Fig. 10 , the  nodule  orientation  may be spec-
i“ed  in  terms  of the  three  angles � , � , � . The “rst  two  give the
direction  of the  nodule  local  Cartesian axis e 1 

� with  respect to  the
unit  cell  axes e 1 , e 2 , e 3 , whereas  the  last one speci“es  the  nodule
rotation  about  e 1 • . When  all  � , � , � are set to  zero the  unit  cell
axes coincide  with  those de“ned  locally  on the  nodule,  i.e. e 1 

� =  e 1 ,
e 2 

� =  e 2 and e 3 
� =  e 3 . 

Due to  symmetry  considerations,  the  dependence of the  effec-
tive  isotropic  elastic  constants  on the  nodule  relative  orientation
can be analyzed limiting  � and � to  the  range[0,  � /2].  In order  to
represent  the  results  graphically,  it  is also useful  to  introduce  the
� -average of a generic  quantity  q ( � , � , � ) as: 

q � ( � , � ) =  
1 

2 �
2 �
�  
0 

q ( � , � , � ) d� (15)

and the  � -range  as: 

	 q � ( � , � ) =  max { q ( � , � , � ) | � �  [  0 , 2 � ]  } 

Š min  { q ( � , � , � ) | � �  [  0 , 2 � ]  } (16)

The � -average of the  effective  isotropic  Young•s modulus
Ē � ( � , � ) and the  corresponding  � -range  	 Ē � ( � , � ) for  nodule
model  •Type8Ž are plotted  in  Fig. 11 (a and b) respectively.  It  is
seen that  by changing  the  nodule  orientation  with  respect to  the
unit  cell  axes only  variations  within  less than  1 GPa are recorded.
Changes in  the  effective  Poisson•s ratio  are even less pronounced
and bounded  by the  interval  0.278…0.279. Therefore, it  is concluded
that  nodule  orientation  is perfectly  negligible  within  the  context  of
the  present  work  and henceforth,  zero value of the  � , � , � angles
is always  assumed. 

5.4. Effective isotropic elastic constants for SGI 

Numerical  calculations  of the  elastic  properties  of the  3D unit
cell  reported  in  Fig. 5 have been carried  out  using trilinear  hex-
ahedral  elements  and approximately  20 0 0 boundary  nodes. Local
esh re“nement  has been performed  in  both  the  nodule  and the
atrix  nearby  the  material  discontinuity  interface,  in  order  to  cap-

ure  strong  gradients  arising  in  this  region.  Results in  terms  of all
our  effective  isotropic  elastic  constants  and anisotropy  index  are
eported  in  Table 4 . Besides the  nodule  models  with  increasing
umber  of sectors introduced  previously,  the  case of graphite  re-
laced by a spherical  void  is also considered;  in  addition,  reference
lastic  values for  GJS-400-15 ductile  iron  are given  to  allow  com-
arison  with  experimental  “ndings.  

In general, it  is immediately  clear that  all  models  largely  over-
stimate  the  overall  material  stiffness.  If  Young•s modulus  and
oisson•s ratio  are chosen to  describe the  elastic  properties  of SGI,

he  latter  quantity  is in  quite  good agreement  with  experimental
easurements,  but  the  former  is constantly  20 to  30 GPa above

he admissible  range, no matter  the  number  of sectors considered.
he discrepancy  with  the  reference  values is so large that  even the
oided  material  model  provides  a better  approximation  as regards
acroscopic  elastic  properties  of SGI at room  temperature,  despite
eing inadmissible  from  a physical  point  of view  because in  con-

rast  with  some experimental  observations,  as mentioned  in  the
ntroduction.  

Fig. 12 (a and b) offer  a more  direct  interpretation  of the  de-
endence of the  isotropic  constants  on the  number  of partitions

he  nodule  is divided  into.  The higher  this  number,  the  greater
oisson•s ratio  and the  lower  Young•s modulus,  despite  a sort  of
lateau  seems to  be present  for  this  last quantity  when  the  num-
er of sectors is increased beyond  32. Conversely, the  effective
hear modulus  steadily  decreases, indicating  a progressive  reduc-
ion  in  shear resistance of the  unit  cell  with  increasing  number  of
artitions.  The only  non-monotonic  behavior  is shown  by the  bulk
odulus,  which  achieves a minimum  value in  correspondence  of

he  •Type48Ž nodule  model.  

From a physical  perspective,  the  reason for  the  very  high  stiff-
ess exhibited  by the  unit  cell  is the  particular  spatial  arrangement
f the  graphite  platelets  in  the  nodule.  Fig. 13 shows stress con-

ours  taken  over  the  x-y  mid-section  of the  unit  cell  for  an ex-
ernally  imposed  average volumetric  strain  of �̄  11 =  0.05%, with  the
ther  average strain  components  set to  zero. It  can be noticed  that,

ndependently  of the  number  of conical  sectors, the  normal  stress
omponent  perpendicular  to  the  graphite  platelets,  reported  in  Fig.
3 (c and d), is more  than  “ve  times  smaller  than  the  maximum
rincipal  stress, visible  in  Fig. 13 (e and f), which  lies in  the  plane
f the  graphenes. In addition,  only  the  more  external  layers of the
odule  are mechanically  loaded, whereas  the  central  region  is al-
ost  stress-free. This suggests that  the  nodule  behaves similar  to

 rigid  shell:  the  very  high  hoop stiffness,  which  is more  than  30
imes  larger  than  the  radial  one according  to  Table 2 , prevents  any
tress transmission  from  the  surface to  the  bulk  of the  graphite
article.  Not  surprisingly,  this  phenomenon  is more  pronounced  in
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Fig. 11. Calculated effective  Young•s modulus  as a function  of the  nodule  orientation  with  respect to the unit  cell  axes, for  •Type8Ž model. (a) Average value for  a given  e 1 • 
direction.  (b) Variation  range due to nodule  rotation  around  local  e 1 • axis. Values are in  GPa. 

Table 4 
Effective  isotropic  elastic  constants  and anisotropy  index  calculated  for  different  nodule  models. Values for  the case of graphite  replaced by 
a spherical  void  are also given, as well  as the reference experimental  values for  GJS-400-15 ductile  iron.  

Nodule  model  Bulk  modulus  (GPa) Shear modulus  (GPa) Young•s modulus  (GPa) Poisson•s ratio  Anisotropy  index  (%) 

Void  122 .9 63 .7 163 .1 0 .279 1 .32 
Type6 150 .1 79 .1 201 .8 0 .276 3 .12 
Type8 149 .3 77 .8 198 .9 0 .278 3 .31 
Type32 148 .7 75 .9 194 .7 0 .282 0 .05 
Type48 148 .6 75 .8 194 .3 0 .282 0 .31 
Type80 148 .8 75 .7 194 .1 0 .283 0 .09 
TypeInf  150 .8 75 .6 194 .3 0 .285 0 .04 
Exp. GJS…400…15 126 .5 ÷ 128.7 65 .2 ÷ 66.4 167 .0 ÷ 170.0 0 .280 …

Fig. 12. Effective  elastic  constants  for  nodule  models  with  increasing  number  of conical  sectors, expressed as (a) Young•s modulus  and Poisson•s ratio,  (b) bulk  modulus  and 
shear modulus.  
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TypeInfŽ rather  than in •Type8•,  the former being  characterized  by 

 higher  level  of spherical  symmetry.  

Fig. 13 (e and f)  also indicate  that  unrealistic  stress values, in  the
rder  of several hundred  MPa, are generated  in  the  nodule  external

ayers for  effective  strain  levels which  are not  su�cient  to  promote
ielding  of the  material  at the  macroscale. Indeed, if  the  experi-
ental  isotropic  constants  for  SGI are used to  calculate  the  effec-

ive  stress tensor  for  the  loading  con“guration  under  examination,
n equivalent  von Mises stress of only  75 MPa is obtained,  which

s approximately  1/3  the  macroscopic  yield  strength.  This suggests
hat  localized  inelastic  deformation  either  in  the  matrix  or in  the
raphite  probably  occurs while  ductile  iron  is still  •macroscopi-
allyŽ in the  elastic  regime.  The incapability  of the  present  model
 µ
o take into  account  the  inelastic  behavior  of the  SGI constituents
ight  explain  its  excessively high  effective  stiffness  compared  to

he  measured one. 
Concerning  analogies with  previous  works  in  the  “eld,  the  only

artial  comparison  can be done with  the  analytical  “ndings  of
 Dryden  and Purdy, 1989 ). Considering  a graphite  platelets  arrange-
ent  equivalent  to  the  •TypeInfŽ model  discussed in  the  present
nalysis, the  previous  authors  came up with  the  following  simple
athematical  expressions for  the  dependence of the  effective  bulk
nd shear moduli  on the  graphite  volume  fraction  c g :. 

¯  =  k m ( 1 Š 0 . 43 c g ) 

¯ =  µ m ( 1 Š 0 . 83 c g ) 
(17)  
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particle  and the  ferritic  matrix  does not  change the  results  signif-
icantly.  The mismatch  between  numerical  predictions  and experi-
ments  is probably  due to  the  incapability  of the  present  model  to
account  for  localized  inelastic  deformation  of the  SGI constituents.  
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A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to charac-
terize the microstructure and analyze the local mesoscale residual elastic strain � elds around graphite
nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic strains are
measured with a maximum strain of ~6.5 e 8 � 10� 4 near the graphite nodules extending into the matrix
about 20 mm, where the elastic strain is near zero. The experimental data are compared with a strain
gradient calculated by a � nite element model, and good accord has been found but with a signi � cant
overprediction of the maximum strain. This is discussed in terms of stress relaxation during cooling or
during storage by plastic deformation of the nodule, the matrix or both. Relaxation by plastic defor-
mation of the ferrite is demonstrated by the formation of low energy dislocation cell structure also
quanti � ed by the DAXM technique.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Ductile cast iron (DCI) is an attractive engineering material, as it
has strength and toughness very similar to steel, and the machin-
ability advantages make it very cost effective [1] . An example of
industrial applications is the heavy components for wind turbine,
e.g. the main shaft. One design requirement for such components is
good fatigue resistance, as the fatigue failure is a main failure mode
during their service life [2] .

From a microscopic point of view, DCI is a composite material,
consisting of graphite nodules embedded in a metal matrix which,
in most engineering applications, can be either ferrite, or pearlite or
a mixture of the two [1] . The differences in the thermal expansion
coef� cients between the metal matrix and the graphite nodules can
lead to local thermal residual stresses in the composites during
cooling from the processing temperature to room temperature
[3,4] . Due to the presence of the local residual elastic stresses, fa-
tigue cracks may be initiated at the nodules because of overstrain,
lsevier Ltd. All rights reserved.
as the local residual stresses may be larger than the � ow stress of
the metal matrix. But they may also be lower as they may relax by
plastic deformation of the nodules or the surrounding volume [5] .
In the past many studies have been conducted to quantify and
model the residual stresses in metal matrix composites containing
particles that are harder than the metal matrix, e.g. SiC or Al 2O3

reinforced aluminum matrix composite [6,7] and Al/W metal ma-
trix composite [8] . For a system like DCI, where the particles
(graphite nodules) are considerably softer than the metal matrix,
there has however not been much knowledge about the local re-
sidual stress. Many researchers believed the local residual stresses
to be minor, considering the fact that graphite is soft; and the local
residual stresses were neglected in most micromechanical models
[9] . However, recently the formation of residual stress comparable
to the material yield stress has been predicted by � nite element
models in DCI [10] . To optimize design and processing of DCI
components, the magnitude of the local mesoscale residual stresses
must therefore be known.

It is however a challenging task to quantify local residual
stresses experimentally. Recently, the development of new exper-
imental characterization techniques has given promising possibil-
ities. For example, a novel synchrotron X-ray technique, the so-
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