Carryover of CH3Hg from feed to sea bass and salmon

Rasmussen, Rie Romme; Håland, Weronica; Larsen, Bodil Katrine; Kotterman, Michiel; Sloth, Jens Jørgen; Marques, António T.; Granby, Kit

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Carryover of CH$_3$Hg from feed to sea bass and salmon

Rasmussen RR1; Håland W1; Larsen BK1; Kotterman M2; Sloth JJ1; Marques A3; Granby K1
1) Technical University of Denmark (DTU), 2) Wageningen Marine Research, IJmuiden, The Netherlands, 3) Portuguese Institute for the Sea and Atmosphere (IPMA)

Model. Fish concentration (C_{fish}) as a function of feed uptake, elimination (k_E) and growth dilution (k_G), where uptake depends on feed concentration (C_{feed}), assimilation (α) and feeding rate (F). From fish and feed weight (w), specific growth rate (SRG) and feed conversion rate (FCR) are calculated.

$$\frac{dC_{fish}}{dt} = \alpha \cdot F \cdot C_{feed} - k_E \cdot C_{fish}$$

FCR = $w_{feed \text{ consumed}} / \Delta w_{fish \text{ gained}}$ \hspace{1cm} [1]

$$k_G = \text{SGR} = (\ln w_t - \ln w_0)/ t$$ \hspace{1cm} [2]

$$C_{fish \text{ growth corrected}}(t) = C_{fish} \cdot (1 + k_G \cdot t)$$ \hspace{1cm} [3]

$$\ln (C_{fish}-C_{fish, \text{ control diet}}) = \text{constant} - k_E \cdot t$$ \hspace{1cm} [4]

$$C_{fish}(t) = \frac{\alpha \cdot F \cdot C_{feed}}{k_E} \cdot (1 - \exp (k_E \cdot t))$$ \hspace{1cm} [5]

Conclusion. Toxicokinetics were modeled. Feed with low levels of CH$_3$Hg (41-75 ng/g) showed assimilation (α) close to 100% and low elimination (k_E). Similar results for all diets.

<table>
<thead>
<tr>
<th>Diets</th>
<th>C$_{feed}$</th>
<th>k$_E$</th>
<th>α</th>
<th>k$_E$</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Spiked plastic</td>
<td>64</td>
<td>$-4 \cdot 10^{-3}$</td>
<td>0.69</td>
<td>$1 \cdot 10^{-3}$</td>
<td>1.04</td>
</tr>
<tr>
<td>2) Spiked oil + clean plastic</td>
<td>74</td>
<td>$1 \cdot 10^{-4}$</td>
<td>0.98</td>
<td>$-4 \cdot 10^{-4}$</td>
<td>0.96</td>
</tr>
<tr>
<td>3) Spiked oil</td>
<td>75</td>
<td>$-9 \cdot 10^{-4}$</td>
<td>0.84</td>
<td>$2 \cdot 10^{-4}$</td>
<td>1.08</td>
</tr>
<tr>
<td>4) Control</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>