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Adaptive Backstepping Control of Lightweight Tower Wind Turbine

Roberto Galeazzi1, Kasper T. Borup2, Henrik Niemann1, Niels K. Poulsen3 and Fabio Caponetti4

Abstract— This paper investigates the feasibility of operating
a wind turbine with lightweight tower in the full load region
exploiting an adaptive nonlinear controller that allows the
turbine to dynamically lean against the wind while maintaining
nominal power output. The use of lightweight structures for
towers and foundations would greatly reduce the construction
cost of the wind turbine, however extra features ought be
included in the control system architecture to avoid tower
collapse. An adaptive backstepping collective pitch controller
is proposed for tower point tracking control, i.e. to modify the
angular deflection of the tower with respect to the vertical axis
in response to variations in wind speed. The controller is shown
to guarantee asymptotic tracking of the reference trajectory.
The performance of the control system is evaluated through
deterministic and stochastic simulations including an extreme
wind gust event, and the feasibility of stabilizing the tower
position while maintaining the rated power output is shown.

I. INTRODUCTION

The turbine tower accounts for a significant portion of the
total cost of a wind turbine. Tegen et al [21] showed that
for a 1.5 MW land-based wind turbine (rotor diameter of
82.5 m; tower height of 80 m) the tower accounts for 16%
of the total turbine installed capital cost. Considering that the
current trend in the wind industry is “higher and bigger” to
enhance the capability of harvesting stronger winds, it can be
foreseen that the tower cost will hardly reduce. The large cost
stems from the fact that a tower needs to withstand bending
moments from the thrust acting on the turbine rotor.

The thrust force may be balanced through gravitational
forces by e.g. mounting the tower on a hinge-like structure
and having the thrust being controlled in such a way that
a dynamic equilibrium is reached with the turbine leaning
towards the wind. This would leave only compression forces
to be handled by the tower, allowing for a very light structure.

In offshore applications the hinge effect could be obtained
by a floating foundation operated by hydraulic and/or electro-
mechanical means. This would stabilize the platform in low
wind speeds for service. If no other means of control are
introduced, e.g. at the hinging point, then the challenge is
to design a control system that keeps the turbine balanced
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during operation by adjusting the pitch angle and/or the rotor
speed. This can be achieved only when the rotor is rotating;
therefore means for fastening the turbine on the hinge in
very low winds should also be available. The paper addresses
the tower stabilization problem for a wind turbine operating
in the full load region, i.e. for wind speeds larger than the
rated wind speed. The hinged wind turbine concept shares
challenges with floating wind turbines, see e.g. [18] and [22].

For a long period of time control theory has found a
challenging application in wind turbines. The methods most
frequently used in industry are based on classical design [15],
but more advanced techniques have also attracted attention
in research during the last decade [14]. Regulation of wind
turbines in the partial load and in the full load regions has
been addressed through gain scheduling [1], adaptive control
[10], robust control and µ-Synthesis design [6], [16], [17],
and model predictive control [8] just to mention a few.

Interesting examples of nonlinear control methods for the
partial load region can be found in e.g. [3], [5], and [19]. In
the full load region the aerodynamic torque and thrust lack
of explicit representations and this represents a challenge for
the application of methods such as e.g. feedback linearization
and backstepping. An attempt to overcome these issues by
an adaptive nonlinear controller was presented in [20].

A. Main Contribution

The main contribution of the paper is the design of an
adaptive backstepping collective pitch controller that guar-
antees that the moments due to the thrust force and the
gravitational force are dynamically balanced, hence ensuring
that the wind turbine is kept upright. The designed controller
achieves the control objective by ensuring the asymptotic
tracking of the reference tower angular displacement. Adap-
tivity is included to overcome the uncertain knowledge
of the thrust coefficient CT . By means of the extended
matching/tuning functions design procedure [13] a just-
parametrized adaptive controller is obtained.

To demonstrate that balancing of the tower against the
wind and electrical power regulation can be simultaneously
achieved, a PI generator torque controller is also designed
through Lyapunov stability theory for the regulation of the
electrical power to the rated value.

B. Organization of the Paper

The paper is structured as follows: Section II presents the
aerodynamic and mechanical model of the wind turbine with
lightweight tower; Section III formulates the control problem
and presents the main result in Proposition 1; Section IV
provides a performance evaluation of the proposed control



Fig. 1. Schematic of the horizontal axis wind turbine mounted on top of a
lightweight tower, which is modeled as an inverted pendulum with a hinge
mechanism at the pivot.

architecture through deterministic and stochastic simulations;
last, Section V draws some conclusions.

II. DYNAMICAL MODEL OF LIGHTWEIGHT
TOWER WIND TURBINE

The wind energy conversion system (WECS) considered
in this paper is a horizontal axis, three bladed variable
speed-variable pitch wind turbine with lightweight tower.
The extreme flexibility of the tower is modeled as a hinge
mechanism at the bottom of the tower that allows rotation
of the WECS around the y-axis of an inertial fixed frame.
Therefore, the wind turbine can be seen as an inverted
pendulum (the lightweight tower) atop of which the nacelle
and the rotor are placed. A schematic of the analyzed system
is shown in Fig. 1.

The dynamics of the wind turbine with lightweight tower
is analyzed in the following. First a brief overview of the
relevant aerodynamics is given in order to introduce the
forces and moments acting on the rotor disc and on the tower.
Then a mechanical model is set up, which accounts for the
rotor dynamics and the tower dynamics.

A. Aerodynamics

The available power Pa in the wind passing through a rotor
disc area A = πR2 with wind speed U∞ is

Pa =
1
2

ρaπR2U3
∞ (1)

where ρa is the air density, and R is the blade tip radius. Only
a fraction of the available wind power can be converted to
rotor power Pr, and the ratio between the two is given by

the non-dimensional power coefficient CP(λ ,β )

Pr =CP(λ ,β )Pa, (2)

where λ is the tip-speed ratio and β is the blades’ pitch
angle. The tip-speed-ratio λ is defined as

λ ,
ωrR
U∞

, (3)

where ωr is the rotor angular velocity.
The power coefficient CP(λ ,β ) has a theoretical maximum

achievable value CP,Betz = 0.593, known as the Betz limit;
however modern commercial wind turbines achieve 75% –
80% of the Betz limit [1], [4].

The passage of the wind through the rotor disc produces
two effects. The first effect is the aerodynamics torque Ta,
which determines the rotational motion of the rotor and
produces useful work. The aerodynamic torque is given by

Ta =
1
2

ρaπR2CP(λ ,β )
U2

∞

ωr
. (4)

The second effect is the thrust force that must be withstood
by the rotor, tower and foundations. The thrust force is given
by

FT =
1
2

ρaπR2CT (λ ,β )U2
∞ (5)

where CT (λ ,β ) is the non-dimensional thrust coefficient.
The aerodynamic coefficients CP and CT are complex

nonlinear functions of the blades’ pitch angle β and the
tip-speed-ratio λ , and their shape is strongly influenced by
the specific geometrical characteristics of the blades. Due
to their complex shape and variability closed form formulas
are hardly available, and it is then customary to use look-up
tables to model the aerodynamic effects.

Remark. In (4) and (5) the wind speed U∞ should be replaced
by the wind speed relative to the rotor Urel = U∞−Utower
since the nacelle is not stationary in the considered scenario.
However, the correction factor due to the linear velocity of
the nacelle in the fore-aft direction is expected to be small
as result of small variations of the angular deflection of the
tower; hence we assume that Urel ≈U∞.

B. Lightweight Tower Wind Turbine Dynamics

The dynamics of the wind turbine with flexible tower con-
sists of the dynamics of the rotor subject to the aerodynamic
torque and to the generator torque, and the dynamics of the
flexible structure (rotor-nacelle-tower) subject to the thrust
force and to the gravitational force.

Rotor Dynamics The modeling of the rotor dynamics
varies with regard to assumptions of stiffness in the shafts
of the drive-train, damping, inertia assessment and efficiency.
The adopted model is the traditional one-mass model since
for the main control objective at hand the inclusion of
torsional effects present e.g. in the two-mass drive-train
model does not add relevant dynamical effects/phenomena.

The rotor dynamics is derived applying Newton’s Second
Law for rotation, which links the angular acceleration of the



rotor to the aerodynamic torque Ta and generator torque Tg,
that is

Jω̇r = Ta−NgTg

=
1
2

ρaπR2CP(λ ,β )
U2

∞

ωr
−NgTg (6)

where J accounts for both the rotor and generator inertia,
and Ng is the gear ratio.

Tower Dynamics A simplified model of the flexible
structure can be derived by approximating the wind turbine
as an inverted pendulum fastened to the ground through
a hinge mechanism. The masses of the wind turbine are
lumped into two different points: the first mass m1 is located
at the nacelle height h1, while the second one, m2, is located
at a certain height h2 of the tower.

Let θt be the angular displacement of the tower with
respect to the vertical (as displayed in Fig. 1), then applying
again Newton’s Second Law for rotation and assuming the
damping of the hinge to be negligible, the rotation around
the y-axis is given by

It θ̈t = τ1− τ2

= (h1m1 +h2m2)gsinθt −h1FT cosθt , (7)

where It =Mth2
1 is the tower inertia of the structure with Mt =

m1 +m2 is the total mass; τ1 and τ2 the moments due to the
gravitational force Fg and the thrust force FT , respectively.

Note that the normal to the rotor plane is always
considered parallel to ground, and (7) is valid for θt ∈[
0;sin−1 (R/h1)

[
, where sin−1 (R/h1) is found by trigono-

metric relations as the point where the rotor blades touch
the ground.

Pitch Blade Dynamics The pitch blade actuator dynam-
ics is modeled as a first order system

β̇ =− 1
τβ

(β −βref), (8)

where τβ > 0 is the actuator time constant, and βref is the
control input.

Generator Torque Dynamics Assuming that an inner
loop is closed by a local controller actuating the generator
current, the generator torque dynamics is then modeled as
a first order system (9), where τg > 0 is the generator time
constant, and Tg,ref is the control input

Ṫg =−
1
τg
(Tg−Tg,ref). (9)

C. State Space Model
Let x = [θt ,ωt ,ωr,β ,Tg]

T be the state vector where ωt =
θ̇t , and u = [βref,Tg,ref]

T be control input vector. Then the
state space model of the whole system reads

ẋ =


θ̇t
ω̇t
ω̇r

β̇

Ṫg

=



ωt
c1 sinθt − c2CT (ωr,β ,U∞)U2

∞ cosθt

c3CP(ωr,β ,U∞)
U3

∞

ωr
− c4Tg

− 1
τβ

(β −βref)

− 1
τg
(Tg−Tg,ref)


(10)

where the following constants have been defined to ease
derivations, c1 , (m1h1 +m2h2)g/It , c2 , ρaπR2h1/2It , c3 ,
ρaπR2/2J and c4 , Ng/J.

The state is assumed to be fully accessible and additional
measurements of the wind speed U∞ and the produced
electrical power Pe are available, hence the output vector
is y = [xT,U∞,Pe]

T.

III. LIGHTWEIGHT TOWER
POINT TRACKING CONTROL

This section presents the main contribution, namely Propo-
sition 1, where an adaptive backstepping collective pitch
controller is designed to stabilize the wind turbine against
the wind. This is achieved through the asymptotic tracking
of the tower inclination trajectory θt,ref. The adopted design
method is based on tuning functions [13, Chapter 4], which
allows designing an adaptive controller of minimum order,
that is the number of parameter estimates is equal to the
number of unknown parameters.

The secondary control objective is to regulate the electrical
power Pe at the rated value P̄e. This is fulfilled by means of
a PI generator torque controller designed through Lyapunov
stability theory.

Problem Statement (Tower Point Tracking Control). Con-
sider the wind turbine with lightweight tower (10) operating
in the full load region, i.e. the wind speed U∞ ≥ Ū , where Ū
is the rated wind speed. Let θt,ref(t) , θt,ref(U∞,β ,λ ) ∈ C 3

the reference trajectory for the tower deflection θt , which
guarantees that the moments due to the gravitational force
Fg is in dynamical balance with the moment due to the
thrust force FT . The control problem is to achieve asymptotic
tracking of the tower reference trajectory, i.e. limt→∞ θt =
θt,ref, while regulating the electrical power Pe to the rated
value P̄e.

The wind turbine tower deflection is controlled through
the reference pitch angle βref of the rotor blades, and the
power output is regulated utilizing the reference generator
torque Tg,ref.

For the first controller a time-varying, linear in the param-
eters approximation of the thrust coefficient CT is proposed

CT (λ ,β )≈ α0(t)+α1(t)λ +α2(t)β (11)

where α j(t) j = 1,2,3 is assumed to be a slowly varying
function of time such that α̇ j ≈ 0. This approach has already
been successfully adopted in [20] to approximate the power
coefficient for the design of an adaptive individual pitch
controller.

A. Adaptive Backstepping Tower Deflection Control

Let Θref = [θt,ref,ωt,ref, ω̇t,ref, ω̈t,ref]
T be the reference tra-

jectory vector including position, velocity, acceleration, and
jerk. Further, let θ̃t = θt,ref− θt and ω̃t = ωt,ref−ωt be the
position and velocity tracking errors. Then using (11) the



tower deflection dynamics in (10) can be rewritten as
˙̃
θt = ω̃t (12)
˙̃ωt = ω̇t,ref− c1 sinθt

+ c2(α0 +α1λ +α2β )U2
∞ cosθt . (13)

The control objective is to design an adaptive collective
pitch feedback control law that stabilizes the origin of the
system (12)-(13). Instead of operating directly on θ̃t and
ω̃t we define the manifold s = ω̃t +Λθ̃t = 0, Λ > 0, where
the tracking error dynamics has to be constrained by the
control law. On the manifold the error dynamics is governed
by ˙̃

θt = −Λθ̃t , which guarantees that the origin is locally
exponentially stable and the convergence rate depends on Λ.

In the new variable s the tracking error dynamics (12)-(13)
together with the pitch actuator dynamics read

ṡ = ˙̃ωt −Λω̃t

= χ(ξ , t)β +υ
T (ξ , t)ϕ +ψ (ξ ,e, t) (14)

β̇ =− 1
τβ

(β −βref) (15)

where ξ = [θt ,ωt ]
T, e = [θ̃t , ω̃t ]

T, χ(ξ , t) = c2α2U2
∞ cosθt is

the uncertain input gain, υ (ξ , t) = [U2
∞ cosθt ,ωrU∞ cosθt ]

T is
the regressor, ϕ = [ᾱ0, ᾱ1]

T = [c2α0,c2Rα1]
T is the unknown

parameter vector, and ψ (ξ ,e, t) = ω̇t,ref−c1 sinθt−Λω̃t is a
known nonlinear function.

It is also assumed that the sign of χ(ξ , t) is known and
constant for all t > 0; for the specific region the turbine works
on it is negative.

Proposition 1. Let z = [z1,β −Φ(z1,ξ ,e, ϕ̂, ρ̂, t)]T be the
vector of error variables, where

Φ(z1,ξ ,e, ϕ̂, ρ̂, t),−ρ̂
(
κ1z1 +υ

T(ξ , t)ϕ̂ +ψ(ξ ,e, t)
)︸ ︷︷ ︸

φ

The collective pitch control law

βref , β + τβ

[
−κ2z2− χ̂

(
z1−

∂Φ

∂ z1
β − ∂Φ

∂ω̃t
β

)
+

(
∂Φ

∂ z1
+

∂Φ

∂ω̃t

)(
υ

T
ϕ̂ +ψ

)
− ∂Φ

∂ω̃t
Λω̃t

+
∂Φ

∂θt
ωt +

∂Φ

∂ ϕ̂

˙̂ϕ +
∂Φ

∂ ρ̂

˙̂ρ− ρ̂
(
σ̂

T
ϕ̂ + ω̈t,ref

)]
(16)

with the adaptation laws

˙̂ϕ = Γ1

[
π +

(
∂Φ

∂ z1
+

∂Φ

∂ω̃t

)
υz2

]
(17)

˙̂χ = γ1

(
z1z2−

∂Φ

∂ z1
β z2

)
(18)

˙̂ρ =−γ2sgn(χ)φz1 (19)
˙̂σ = Γ2ρ̂ϕ̂z2 (20)

globally stabilizes the origin of the z-dynamics, and guar-
antees that θt → θref as t → ∞. The gains κ1, κ2, γ1, γ2
are greater than zero, and the matrices Γ1, Γ2 are positive
definite and symmetric.

Proof. First an adaptive feedback stabilizing control law is
designed for the dynamics of z1, which equals the s-dynamics
(14), by using the collective blade pitch angle β as virtual
control input. Stabilization is achieved through a control
Lyapunov function (CLF) by designing a stabilizing function
Φ and a tuning function π . Then the system is augmented
with the pitch actuator dynamics by means of the error
variable z2. Stabilization of the z2-dynamics through a second
CLF is achieved through the design of the update laws for the
parameter estimates ϕ̂ , χ̂ , ρ̂ , σ̂ , and the adaptive feedback
control βref.

Step 1 Introducing the error state z the dynamics (14)
is rewritten as

ż1 = χ
(
z2 +Φ+υ

T
ϕ +ψ

)
. (21)

The control objective in this step is to design the stabilizing
function Φ(z,ξ ,e, ϕ̂, ρ̂, t) such that the origin of (21) is
stable.

Consider the control Lyapunov function candidate

V1(z1, ϕ̃) =
1
2

z2
1 + ϕ̃

T
Γ
−1
1 ϕ̃ > 0, ∀ (z1, ϕ̃) 6= 0, (22)

where ϕ̃ = ϕ− ϕ̂ is the parameter estimation error, and Γ1 =
ΓT

1 > 0 is a matrix of adaptation gains.
The time derivative of V1 along the trajectories of (21) is

V̇1 = z1ż1 + ϕ̃
T

Γ
−1
1

˙̃ϕ

= z1
[
χ (z2 +Φ)+υ

T
ϕ +ψ

]
+ ϕ̃

T
Γ
−1
1

˙̃ϕ (23)

The virtual control function Φ is chosen as

Φ(z1,ξ ,e, ϕ̂, ρ̂, t),−ρ̂φ (z1,ξ ,e, ϕ̂, ρ̂, t)
=−ρ̂

(
κ1z1 +υ

T
ϕ̂ +ψ

)
, (24)

where κ1 > 0 is the controller gain, and ρ̂ is the estimate of
ρ = 1/χ that is introduced since the direct estimate χ̂ may
occasionally take value zero.

Inserting the virtual control law (24) into (23) the time
derivative of the Lyapunov function reads

V̇1 =−κ1z2
1 +χz1z2−χρ̃φz1− ϕ̃

T (
Γ
−1
1

˙̂ϕ−υz1
)
, (25)

which is sign undetermined due to the presence of the
last three terms. However, instead of designing adaptation
laws directly in this step that will allow suppressing the
contributions related to ρ̃ and ϕ̃ , the next step is awaited and
the tuning function π = υz1 is introduced. The term χz1z2
will also be dealt with in the next step.

The z1-dynamics with the virtual control law
Φ(s,ξ ,e, ϕ̂, ρ̂, t) becomes

ż1 =−κ1z1 +χ (z2− ρ̃φ)+υ
T

ϕ̃. (26)

Step 2 The z2-dynamics is given by

ż2 = β̇ − Φ̇(z1,ξ ,e, ϕ̂, ρ̂, t)

=− 1
τβ

(β −βc)

−
(

∂Φ

∂ z1
ż1 +

∂Φ

∂ξ
ξ̇ +

∂Φ

∂e
ė+

∂Φ

∂ ϕ̂

˙̂ϕ +
∂Φ

∂ ρ̂

˙̂ρ +
∂Φ

∂ t

)



=− 1
τβ

(β −βref)+ ρ̂κ1
(
χβ +υ

T
ϕ +ψ

)
+ ρ̂υ

T ˙̂ϕ

+ ρ̂

(
∂υT

∂θt
ϕ̂ +

∂ψ

∂θt

)
− ρ̂Λ

(
χβ +υ

T
ϕ +ψ−Λω̃t

)
+
(
κ1z1 +υ

T
ϕ̂ +ψ

) ˙̂ρ + ρ̂

(
σ

T
ϕ̂ +

∂ψ

∂ t

)
(27)

where the partial derivatives of the virtual control input
Φ(z1,ξ ,e, ϕ̂, ρ̂, t) are given in the Appendix. As shown in
(45) the computation of ∂υT/∂ t would require the time
derivative of the wind speed U̇∞. Although the wind speed is
available from measurement, its differentiation will produce a
very noisy signal that will deteriorate the performance of the
control system. Therefore the additional unknown parameter
σT = ∂υT/∂ t is added and, once again assuming that its
variation over time is small (i.e. σ̇ ≈ 0), an estimate of it
will be computed in the control algorithm.

Consider the control Lyapunov function candidate

V2 =V1 +
1
2

z2
2 +

1
2γ1

χ̃
2 +
|χ|
2γ2

ρ̃
2 +

1
2

σ̃
T

Γ
−1
2 σ̃ (28)

where γ1 > 0, γ2 > 0, and Γ2 > 0 are adaptation gains. The
time derivative of V2 along the trajectories of the z2-dynamics
reads

V̇2 = V̇1 + z2ż2 +
1
γ1

χ̃ ˙̃χ +
|χ|
γ2

ρ̃ ˙̃ρ + σ̃
T

Γ
−1
2

˙̃σ (29)

Stabilization of the (z1,z2)-dynamics is achieved through
the collective pitch control law (16) with the parameter
estimation laws (17)-(20). Inserting the adaptive control law
(16), (17)-(20) into (29) the time derivative of the Lyapunov
function reads

V̇2 =−κ1z2
1−κ2z2

2− χ̃

(
1
γ1

˙̂χ− z1z2 +
∂Φ

∂ z1
β z2

)
− ρ̃

(
|χ|
γ1

˙̂ρ +χφz1

)
− σ̃

T (
Γ
−1
2

˙̂σ − ρ̂ϕ̂z2
)

− ϕ̃
T
[

Γ
−1 ˙̂ϕ−π +

(
∂Φ

∂ z1
+

∂Φ

∂ω̃t

)
υz2

]
=−κ1z2

1−κ2z2
2 ≤ 0. (30)

The LaSalle-Yoshizawa theorem [13, Theorem 2.1] estab-
lishes that the error state vector z and the parameter estimates
χ̂ , ϕ̂ , σ̂ are bounded, and z→ 0 as t→∞. Since z1 = s, s is
also bounded and converges to zero. This in turn implies that
the tracking error dynamics asymptotically is constrained to
the manifold s = 0, where the θ̃t -dynamics is governed by
˙̃
θt =−Λθ̃t . Hence θ̃t → 0 as t→ ∞, that is θt → θt,ref.

Due to the boundedness of z2 and the virtual control input
Φ(z1,ξ ,e, ϕ̂, ρ̂, t) also the pitch blade angle β is bounded.
From (16) it follows that also the control input βref is
bounded.

B. Electrical Power Regulation

The second control objective is the power regulation at the
rated value P̄e. Let eP = P̄e−Pe be the power regulation error,

then the control goal can be reformulated as the stabilization
of the origin of the power error dynamics

ėP =−Ṗe

=−N
[
ω̇rTg +ωrṪg

]
=−N

[
ω̇rTg−

ωr

τg

(
Tg−Tg,ref

)]
. (31)

Instead of inserting (6) into (31), which will result in an
explicit dependency on the complex and uncertain power
coefficient CP(λ ,β ), the term Nω̇rTg is considered as a time-
varying bounded disturbance d(t). The control objective is
then achieved through a PI regulator, which guarantees global
uniform ultimate boundedness (GUUB) of the solutions of
the closed loop eP-dynamics. If the disturbance is constant
then the power controller guarantees global exponential
stability (GES) of the origin of the eP-dynamics.

Proposition 2. Consider the system

ėP = N
ωr

τg
Tg−N

ωr

τg
Tg,ref +d (32)

where |d(t)| ≤ dmax ∀ t > 0. The PI regulator

Tg,ref , Tg +
τg

Nωr

(
κ3eP +κ4

∫ t

0
eP d τ

)
, ωr 6= 0 (33)

guarantees that the solutions of the closed loop eP-dynamics
are globally uniformly ultimately bounded. If the disturbance
d(t) = d0 then (33) renders the origin of eP-dynamics
globally exponentially stable. The controller gains satisfy
κ3 > δ > 0, and κ4 > 0.

Proof. The closed loop system augmented with an integral
state read as

ėI = eP (34)
ėP =−κ3eP−κ4eI +d (35)

Consider the Lyapunov function W (η) = 1
2 ηTPη where

P =

[
κ4 +δκ3 δ

δ 1

]
(36)

and η = [eI ,eP]
T. W (η) is positive definite if 0 < δ <

κ3/2+
√

κ2
3/4+κ4. The time derivative of W (η) along the

trajectories of (34)-(35) is

Ẇ =−(κ3−δ )e2
P−δκ4eI +(eP +δeI)d

≤−min{κ3−δ ,δκ4}||η ||22 +
√

1+δ 2||η ||2dmax

=−(1−ϑ)min{κ3−δ ,δκ4}||η ||22
−ϑ min{κ3−δ ,δκ4}||η ||22 +

√
1+δ 2||η ||2dmax

≤−(1−ϑ)min{κ3−δ ,δκ4}||η ||22 (37)

∀ ||η ||2≥
√

1+δ 2dmax
ϑ min{κ3−δ ,δκ4}

with 0<ϑ < 1. Hence the solutions
of (34)-(35) are globally uniformly ultimately bounded.

If d = d0 then by choosing κ3 > δ + d0 and κ4 > d0 it
follows that Ẇ ≤ −min{κ3− δ − d0,δ (κ4− d0)}||η ||22 < 0.
Since W (η) is also radially unbounded, i.e. λmin(P)||η ||22 ≤
W (η) ≤ λmax(P)||η ||22, then the origin of the power error
dynamics is GES [12, Theorem 4.10].
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Fig. 2. Thrust coefficient CT (λ ,β ) for NREL 5 MW offshore baseline
wind turbine.

IV. PERFORMANCE ASSESSMENT

The tracking and stabilization performance of the proposed
adaptive control system architecture has been tested through
simulations. The wind turbine model is based on the three-
blade, variable speed-variable pitch 5 MW baseline wind
turbine described in [11]. The lightweight tower flexibility
has been included by treating the wind turbine as an inverted
pendulum.

The thrust coefficient, CT (λ ,β ), and power coefficient,
CP(λ ,β ), have been calculated in [2] using the blade element
momentum theory as described in [7]. Figure 2 shows the
obtained thrust coefficient for the considered turbine.

First, deterministic simulations including only step
changes in the mean wind speed have been run to assess
that the proposed control system is in fact capable of
asymptotically tracking reference changes in tower angular
displacement while regulating the generated electrical power
at the rated value. Then the control system has been tested
against a wind gust to assess the capability of withstanding
sudden and large wind speed variation. Last, stochastic
simulations have been run to evaluate the performance of the
control system in more realistic operational wind conditions.

A. Tower Displacement Trajectory Generator

The reference trajectory Θref = [θt,ref,ωt,ref, ω̇t,ref, ω̈t,ref]
T

for the adaptive collective pitch controller is provided
through a fourth order low-pass filter whose input is θt,ref.
The current reference angle θt,ref is computed by means of
(7) as

θt,ref = tan−1
(

h1FT

It(h1m1 +h2m2)

)
(38)

B. Deterministic simulations

Deterministic simulations have been run with a mean wind
speed U∞ = 15 m/s and step changes of amplitude 1.5 m/s.
Figures 3-5 show the performance of the designed control
systems in response to step changes in the mean wind speed.
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Fig. 3. Control objectives: (top) the tower angular displacement θt
asymptotically tracks the reference θt,ref; (middle) the electrical power Pe is
regulated at its nominal value; (bottom) evolution of the uncontrolled rotor
angular velocity ωr .
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Fig. 4. Control signals: (top) mean wind speed profile; (middle) requested,
βref, and delivered β collective pitch angle; (bottom) requested, Tg,ref, and
delivered Tg generator torque.

The adaptive backstepping controller asymptotically con-
strains the dynamics of the tracking error e on the manifold
s = ω̃t +Λθ̃t (Fig. 5). This guarantees that the tower angular
displacement θt smoothly tracks the reference displacement
θt,ref, keeping the tower in dynamic balance against the
wind. Figure 3 shows an increase of the tower deflection in
correspondence of an increase in wind speed. This is clearly
expected since the thrust force increases together with the
wind speed and hence the tower can lean forward.

The power regulation is easily fulfilled by the designed
PI regulator, which after each steps regulates the electrical
power back to its nominal value in less than 2 minutes. The
control objectives are both achieved without stressing the
actuators, which operate away from rate and displacement
saturations at all times, as shown in Fig. 4.

Figures 6-7 show the performance of the adaptive closed-
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Fig. 6. Control objectives for wind gust: (top) the tower angular displace-
ment θt asymptotically tracks the reference θt,ref; (middle) the electrical
power Pe is regulated at its nominal value; (bottom) evolution of the
uncontrolled rotor angular velocity ωr .

loop system in response to an extreme rising wind gust,
which has been designed in agreement with the international
standard specified in IEC 61400-1: 15 m/s rising wind gust
on top of the mean wind speed U∞ = 15 m/s. The adaptive
collective pitch controller stabilizes the tower deflection θt
around its reference trajectory (Fig. 6 (top)), guaranteeing
that the moments due to the gravity force and the thrust
force are dynamically in balance and without overloading
the pitch actuator (Fig. 7 (middle)).

To be noted that although the wind speed goes back to
its initial value the system does not converge to the initial
operating point. This is a consequence of the fact that the
rotor angular velocity ωr is not controlled, and hence it
varies in response to variations in aerodynamic torque Ta
and generator torque Tg according to (6). Simulating over a
longer period of time it is possible to observe that both ωr
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Fig. 7. Control signals for wind gust: (top) wind speed profile with
wind gust; (middle) requested, βref, and delivered β collective pitch angle;
(bottom) requested, Tg,ref, and delivered Tg generator torque.

and Tg reach new steady state values; therefore the dynamics
of the whole system remains bounded.

C. Stochastic simulations

Stochastic simulations have been run using the RISØ DTU
SB-2 wind model [9] that includes the rotational turbulence
and the tower shadow effects. The turbulence intensity is
12%. The wind speed is then computed as an average value
of the fixed-point wind speed over the whole rotor. The mean
wind speed U∞ used in the simulations is 15 m/s.

Figures 8-9 show the performance of the proposed control
architecture. The wind speed fluctuations introduce continu-
ous variations in the desired tower position θt,ref; nevertheless
the adaptive collective pitch controller well tracks the mean
value of the reference trajectory, as shown in Fig. 8 (top),
keeping the moment due to the gravity force always in
dynamic balance with the moment due to the thrust force.

V. CONCLUSIONS

This paper has investigated the feasibility of advanced
nonlinear adaptive control of a wind turbine with a
lightweight tower in the full load region. An adaptive back-
stepping collective pitch controller has been designed to
guarantee asymptotic tracking of the reference tower dis-
placement, while a PI regulator has been designed to meet the
electrical power generation requirements. Simulation results
show the efficacy of the proposed control architecture: the
tracking and regulation control objectives are met simulta-
neously without overloading the actuators.

APPENDIX

The total time derivative of the virtual control input
Φ(z1,ξ ,e, ϕ̂, ρ̂, t) is

Φ̇ =
∂Φ

∂ z1
ż1 +

∂Φ

∂ξ
ξ̇ +

∂Φ

∂e
ė+

∂Φ

∂ ϕ̂

˙̂ϕ +
∂Φ

∂ ρ̂

˙̂ρ +
∂Φ

∂ t
(39)
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Fig. 8. Control objectives for the stochastic simulation: (top) the tower
angular displacement θt tracks in mean value the reference θt,ref; (middle)
the electrical power Pe is well regulated keeping the standard deviation
below 1 kW; (bottom) evolution of the uncontrolled rotor angular velocity
ωr .
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Fig. 9. Control signals for the stochastic simulation: (top) wind speed
profile; (middle) requested, βref, and delivered β collective pitch angle;
(bottom) requested, Tg,ref, and delivered Tg generator torque.

where the partial derivatives are given by

∂Φ

∂ z1
=−ρ̂κ1 (40)

∂Φ

∂ξ
=−ρ̂

[
∂υT

∂θt
ϕ̂ +

∂ψ

∂θt
,

∂υT

∂ωt
ϕ̂ +

∂ψ

∂ωt

]
=−ρ̂

[
−U∞

(
ˆ̄α0U∞ + ˆ̄α1ωr

)
sinθt − c1cosθt ,0

]
(41)

∂Φ

∂e
=−ρ̂

[
∂ψ

∂ θ̃t
,

∂ψ

∂ω̃t

]
=−ρ̂ [0,−Λ] (42)

∂Φ

∂ ϕ̂
=−ρ̂υ

T =−ρ̂
[
U2

∞ cosθt ,ωrU∞ cosθt
]

(43)

∂Φ

∂ ρ̂
=−

(
κ1z1 +υ

T
ϕ̂ +ψ

)

=−
(
κ1z1 + ˆ̄α0U2

∞ cosθt + ˆ̄α1ωrU∞ cosθt + ω̇t,ref

− c1 sinθt −Λω̃t
)

(44)

∂Φ

∂ t
=−ρ̂

(
∂υT

∂ t
ϕ̂ +

∂ψ

∂ t

)
=−ρ̂

[
ω̈t,ref +2 ˆ̄α0U∞U̇∞ cosθt

+ ˆ̄α1
(
ω̇rU∞ cosθt +ωrU̇∞ cosθt

)]
(45)
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