Characterization and genetic variation of vibrio cholerae isolated from clinical and environmental sources in Thailand

Siriphap, Achiraya; Leekitcharoenphon, Pimlapas; Kaas, Rolf Sommer; Theethakaew, Chonchanok; Aarestrup, Frank Møller; Sutheinkul, Orasa; Hendriksen, Rene S.

Published in:
P L o S One

Link to article, DOI:
10.1371/journal.pone.0169324

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand

Achiraya Siriphap¹, Pimlapas Leekitcharoenphon², Rolf S. Kaas², Chonchanok Theethakaew¹, Frank M. Aarestrup², Orasa Sutheinkul³*, Rene S. Hendriksen²*

¹ Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand, ² National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark, ³ Faculty of Public Health, Thammasat University, Rangsit Center, Pathumthani, Thailand

* rshe@food.dtu.dk (RSH); orasa.s@fph.tu.ac.th, orasa.sut@maildol.ac.th (OS)

Abstract

Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXφ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements.

For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and
bioinformatic tools to analyze both historical and contemporary *V. cholerae* circulating in Thailand provided a more detailed understanding of the *V. cholerae* epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.
The objective of this study was to provide more knowledge of the genotypic variation in *V. cholerae* observed during the past three decades in Thailand. A collection of clinical and environmental *V. cholerae* serogroup O1, O139, and non-O1/non-O139 strains collected between 1983 and 2013 in Thailand were characterized by a combination of conventional microbiological tests, molecular methods, next generation sequencing, and bioinformatics tools to determine the pheno- and genotypes. In addition, the distribution of virulence-associated genes and the occurrence of antimicrobial resistance and corresponding resistance genes including the class 1 integron and SXT element among *V. cholerae* strains were subsequently analyzed to elucidate the emerging antimicrobial resistance and virulence properties.

Materials and Methods

Bacterial strains

A total of 78 *V. cholerae* strains were selected for this study based on the serogroups O1, O139, and non-O1/non-O139, the sources for these strains were the clinic and environment, and date (1983–2013) from the culture collection of the Department of Microbiology, Faculty of Public Health, Mahidol University, Thailand (Table A in S1 File). The clinical strains were previously isolated from stools and rectal swabs of patients suffering from sporadic cases or outbreaks of cholera in central Thailand and the environmental strains were isolated from seafood, water, and hand swabs.

Characterization of *V. cholerae*

The purity of all *V. cholerae* strains were assessed on Thiosulfate-citrate-bile salts-sucrose (TCBS) agar prior to confirmation using a combination of biochemical, serological, and molecular methods as previously described [29, 30]. Serogroups and serotypes were determined by slide agglutination utilizing specific polyvalent antisera against *V. cholerae* O1 and O139, and monovalent specific to Inaba and Ogawa antisera (S & A Reagents Lab, Bangkok, Thailand) and by touchdown-multiplex polymerase chain reaction (TMP PCR) using species-specific primers for *V. cholerae* (ompW gene) and serogroup-specific for O1 (rfbV gene) and O139 (wbfZ gene) [30].

All *V. cholerae* O1 strains were classified according to biotypes using the quality control strains; O395 (O1 Classical), N16961 (O1 El Tor), and MO45 (O139) and based on the combination of previously described conventional biotyping methods [31] and genotypically by a bioinformatics tool: MyDbFinder (https://cge.cbs.dtu.dk/services/MyDbFinder/) as previously described [32].

Antimicrobial susceptibility testing

Antimicrobial susceptibility to ampicillin (AMP), azithromycin (AZM), cefotaxime (CTX), chloramphenicol (CHL), ciprofloxacin (CIP), gentamicin (GEN), meropenem (MEM), nalidixic acid (NAL), sulfamethoxazole (SMX), ceftazidime (CAZ), tetracycline (TET), tigecycline (TGC), and trimethoprim (TMP) was performed by broth microdilution to determine minimum inhibitory concentration (MIC) with a commercially prepared, panel of dehydrated antimicrobials (Sensititre; TREK Diagnostic Systems Ltd., East Grinstead, England). Antimicrobial susceptibility test results were interpreted according to Clinical and Laboratory Standards Institute (CLSI) breakpoints [33], except for tigecycline, for which the clinical breakpoint was used according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations (http://www.eucast.org). *Escherichia coli* ATCC 25922 was used as reference strain for quality control according to CLSI guidelines [33].
Whole genome sequencing

V. cholerae genomic DNA was extracted using the Invitrogen Easy-DNA™ Kit (Invitrogen, Carlsbad, CA, USA). The concentrations of the extracted DNA were determined using a Qubit dsDNA BR assay kit (Invitrogen). The genomic DNA was prepared for Illumina paired-end sequencing using the Illumina (Illumina, Inc., San Diego, CA) NexteraXT® Guide 150319425031942 following protocol revision C. A sample of pooled NexteraXT Libraries was loaded onto an Illumina MiSeq reagent cartridge using MiSeq Reagent Kit v2 and 500 cycles with a Standard Flow Cell. The libraries were sequenced using the MiSeq Illumina platform and MiSeq Control Software 2.3.0.3. All strains were paired-end sequenced.

Raw sequence data were submitted to the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under study accession no.: PRJEB14630 (http://www.ebi.ac.uk/ena/data/view/PRJEB14630). The raw reads were assembled using the Assemble pipeline (version 1.0) available from the Center for Genomic Epidemiology (CGE; http://cge.cbs.dtu.dk/services/all.php) based on the Velvet algorithms for *de novo* short reads assembly. A complete list of genomic sequence data is available in Table B in S1 File.

The use of bioinformatics tools

Identification of *V. cholerae* and determination of associated virulence genes and pathogenicity islands. MyDbFinder is a BLAST-based search-engine that was developed as “an empty database” in the same format as the ResFinder tool [34] to identify user-defined genes (https://cge.cbs.dtu.dk/services/MyDbFinder/). The users populate their own database by including DNA sequences of interest in FASTA format into a pure text file. MyDbFinder query raw reads or assembled genome data and outputs the best matching genes from the user’s database.

The web-server MyDbFinder 1.0 was used to, *in silico*, determine the species-specific gene (*ompW*), serogroup-specific genes (*rfbV*-O1, *wbfZ*-O139), biotypes-specific genes (*ctxB*, *rstR*, *tcpA*), specific gene (*VC2346*) of the 7th pandemic strain, putative virulence genes (*ctxA*, *ctxB*, *zot*, *ace*, *tcpA*, *hlyA*, *stn*, *ctxA*, *rtxA*, *ompU*, *toxR*, *mshA*, TTSS), and pathogenic islands (PAI): (VPI-1, VPI-2, VSP-1, VSP-2) in all *V. cholerae* strains with a selected threshold equal to 95% identity as previously described [32]. The genes used in this study are shown in Table C in S1 File.

Determination of antimicrobial resistance genes, SXT element, and class 1 integron. In all *V. cholerae* strains, antimicrobial resistance genes were detected based on the assembled sequences using the ResFinder tool (version 2.1, 80% threshold for %ID/ 60% minimum length) available from CGE [34]. The SXT element, class 1 integron, and presence of mutation in the DNA gyrase gene (*gyrA*), and the DNA topoisomerase IV genes (*parC* and *parE*) were determined using MyDbFinder as previously described [32]. The nucleotide sequence of integrase gene of the SXT element (*intSXT*), the class 1 integron (*intI*), *gyrA*, *parC*, and *parE* genes of the quinolone-resistant *V. cholerae* strains from GenBank were used as references (Table C in S1 File).

ICEVcHai1 (JN648379) and *dfrA18* gene of SXT^{MO10} (AY034138) were used as templates in MyDbFinder (threshold, 95% identity) to determine which *V. cholerae* strains contained an *intSXT* gene.

Multilocus sequence type. The assembled sequences were analyzed to identify the MLST, sequence type (ST) for *V. cholerae* using the MLST tool (version 1.7) available from CGE [35]. The seven housekeeping genes: *adk*, *gyrB*, *metE*, *mdh*, *pntA*, *purM*, and *pyrC* as previously described by Octavia *et al.* (2013) [36], were extracted from 78 *V. cholerae* genomes in this study and 6 *V. cholerae* genomes from the NCBI database (M66-2, O395, N16961, MO45,
MS6, 2010EL-1786). Concatenation of the housekeeping gene sequences was performed with an in-house python script. A multiple alignment was created from the concatenated sequences using MUSCLE via MEGA5 [37]. The final phylogenetic MLST tree was constructed by MEGA5 using the maximum likelihood method of 1,000 bootstrap replicates using Tamura-Nei model for inference [38]. Figtree (http://tree.bio.ed.ac.uk/software/figtree/) was used to visualize the tree. The confidence of the nodes in the tree is estimated by bootstrap values, calculated by sampling with replacements from the multiple sequence alignment. New STs were confirmed by PCR as previously described Octavia et al. (2013) [36].

Genomic islands in the chromosomes of V. cholerae. Variation of genomic islands including CTX, VPI-1, VPI-2, VSP-1, VSP-2, and the super-integron were visualized and determined based on chromosome I and II of the reference genome V. cholerae N16961 (accession no. AE003852 and AE003853) using a BLAST atlas. All protein sequences from the reference genome were aligned against other V. cholerae genomes using BLASTP. The presence and absence of genes were visualized in a circle, with greater similarity represented by higher intensity of color [39].

Results

Characterization of V. cholerae strains

Of the 78 V. cholerae strains investigated, 44 belonged to serogroup O1, 16 to O139, and 18 to non-O139/non-O1. Among the 44 V. cholerae O1 strains, 24 strains were identified as Inaba and 20 strains as Ogawa (Fig 1, Table D in S1 File).

The biotype classification of the 44 V. cholerae O1 strains revealed 15 strains determined as being typical El Tor similar to the phenotype of El Tor strain N16961 (CCA'HSE'PB'rVP'). The 15 strains all carried according to MyDbFinder identical genes; ctxB, rstR, and tcpA with the exception of three environmental strains (TC22, MK14, and 4T5) and one clinical strain (TC183). Two strains (VC O1-8 and VC O1-10) belonged to the biotype Classical, exhibiting the phenotype CCA'HSE'PB'sVP' and genotypically similar to O395 strain (Classical). Furthermore, 26 V. cholerae O1 strains tested phenotypically El Tor but revealed using MyDbFinder mixed Classical and El Tor genotypes and determined as an El Tor variant. Finally, one V. cholerae O1 strain (MK14) expressed phenotypically both biotypes (CCA'HSE'PB'VP') and was determined as belonging to the hybrid biotype (Fig 1, Table D in S1 File).

The MLST types of the 78 V. cholerae and 6 reference genomes were analyzed and assigned to 26 different STs (Fig 1). The analysis showed that 50 strains were represented by ST69, making this the most common ST and all 50 of these strains related to clinical strains. Among clinical strains, 38 O1 El Tor and 12 serogroup O139 belonged to the same cluster with the pandemic strains (N16961 and MO45) and the Haitian strain (2010EL1786). The strains harbored the 7th pandemic-specific gene (VC2346) according to MyDbFinder, suggesting that they belong to the same clonal lineage. The cluster is also linked to the pre-6th pandemic strain from Thailand (MS6), which was closely related to the cluster of the O1 Classical strains (ST73) including the strains related to the 6th pandemic (Table E in S1 File). All of the non-O1/non-O139 strains and the environmental strains, except for four O139 strains belonging to ST187, were assigned to different novel STs, suggesting a high degree of genetic diversity.

Distribution of virulence-associated genes and pathogenicity islands

The distribution of virulence-associated genes and pathogenicity islands among the 78 V. cholerae strains was determined using MyDbFinder (Fig 1 and Table 1). All strains harbored the virulence-associated genes hlyA, rtxA, and toxR, with only the stn gene absent. Ten of the 17
Fig 1. In silico MLST tree of Vibrio cholerae strains related with virulence gene profiles. The *V. cholerae* clinical (*) and environmental (+) strains in Thailand were related to pandemic and epidemic strains. Seven housekeeping genes were extracted from *V. cholerae* genomes. The phylogenetic tree was generated by FigTree.

doi:10.1371/journal.pone.0169324.g001
virulence-associated genes (ctxA, ctxB, zot, ace, tcpA, hlyA, mshA, rtxA, ompU, and toxR) were found in 34 of the clinical strains (serogroup O1 and O139). Moreover, these strains contained the pathogenicity islands (PAIs) VPI-1, VPI-2, VSP-1, and VSP-2, except for two strains of O139 (6668/3 and 6225/3), which lacked VSP-2. All non-O1/non-O139 strains obtained from a clinical source harbored the hlyA, rtxA, and toxR genes, whereas strain IPD1231/8 52B in addition also harbored the mshA, TTSS, and VPI-2. Two out of four O1 strains of environmental origin harbored hlyA, mshA, rtxA, ompU, toxR, and VPI-2. Only one O1 strain contained the genes chxA (TC 22), TTSS (MK14), and VSP-1 (MK14). Among environmental strains, the virulence-associated genes and the PAIs of the non-O1/non-O139 similar to the O1 strain were detected but lacked TTSS and VSP-1. All four O139 strains harbored hlyA, rtxA, ompU, toxR, and VPI-2. Nine V. cholerae genomes based on the different serogroups, biotypes, and sources were compared using a BLAST atlas. The atlas revealed several variable genomic regions in chromosome I (Fig 2A) and II (Fig 2B). VPI-1, VPI-2, and VSP-2 were determined in the chromosome I among the regions of PAIs including CTXφ, especially the clinical strains of O1 El Tor (510/77, 22116, P25), and O139 (22136). The O1 Classical (VC O1-8) and non-O1/non-O139 (IPD221/8 44B) strain lacked VSP-1 and VSP-2. Among the environmental strains, the O1 strain (MK14) harbored two PAIs, VSP-1 and VPI-2, while both O139 (DT8) and non-O1/non-O139 strains (VCR12) harbored only VPI-2. A large genomic island, super-integron, located in the chromosome II, showed more genetic diversity and obviously differed among these strains.

Antimicrobial resistant strains, antimicrobial resistance genes, class 1 integron, and SXT element

The MIC determination of all 78 V. cholerae strains revealed that 48 of them originating between 1991 and 2013 were resistant to at least one antimicrobial (Table 2). The 48 strains were resistant to TMP (52.6%), SMX (48.7%), NAL (43.6%), TET (14.1%), AMP (7.7%), and AZM (6.4%). Moreover, 27 (56.3%) of the 48 antimicrobial resistant strains were considered multidrug
resistant (MDR) and conferred resistance to three or more antimicrobial classes and exhibited four distinct MDR patterns: NAL-SMX-TMP, NAL-TET-TMP, NAL-SMX-TET-TMP, and AZM-NAL-SMX-TET-TMP (Table F in S1 File). It is noteworthy to mention that some resistance genes were observed among the strains being phenotypically susceptible. These strains were of O1, O139, and non-O1/non-O139, isolated between 1983 and 2010 and harbored the catB9 (60.3%) and floR (35.9%) conferring resistance to chloramphenicol (O-acetyltransferase activity) and florfenicol (co-resistance to both chloramphenicol and florfenicol), respectively.

The presence of the specific integrase genes of class 1 integron (int1 gene) and SXT element (intSXT gene) were in silico determined among the 78 V. cholerae strains using MyDbFinder (Table 3). All of the strains lacked the int1 gene. In contrast, 43 strains of V. cholerae serogroups O1, O139, and non-O1/non-O139 isolated during 1991 to 2013 presented the intSXT. The SXT element harbored the following antimicrobial resistance genes: sul2, dfrA1, dfr18, floR, strA, and strB, which are mostly associated with SMX and TMP resistant strains (Fig 3).

The majority of V. cholerae strains (52.6%) were resistant to TMP, of which strains belonging to serogroup O1 (2001–2005) contained the dfrA1 gene and O139 strains (1991–2000) contained the dfrA18 gene (Table 3). All 38 (48.7%) strains conferring resistance to SMX contained sul2 gene. Among the six AMP-resistant strains (7.7%), four O139 environmental strains (DT8, DT7, WKB T9, and PKN T5) and one clinical non-O1/non-O139 strain (1231/8 52B) harbored the blacP1 and the blacARB-9 gene, respectively, whereas only one non-O1/non-O139 environmental strain (1-WASTE-HSH1-TY2) harbored the blacARB-7 gene. All five clinical O1 strains (6.4%) resistant to AZT contained the mphA gene. Interestingly, the 11 strains resistant to TET lacked resistance genes. The genes strA and strB conferring resistance to streptomycin were present in 39 strains (50%) including 12 strains (100%) of O139 and 1 strain (25%) of non-O1/non-O139 isolated during 1991–2000.

Amino acid substitutions in codon gyrA (Ser83Ile) and parC (Ser85Leu) were observed in 34 NAL-resistant strains (43.6%) isolated between 1991 and 2013 belonging to serogroup O1, O139, and non-O1/non-O139. In addition, one non-O1/non-O139 strain (1262 W278) conferred resistance to quinolone harboring the qnrVC5.

The whole genome sequence of the strains harboring the SXT element revealed a structure organized similar to ICEVchHai1 and SXT4010 in the GenBank (Fig 3). Most strains except...
for 4053024303, 4053024306, and 22138 shared the similar structures of SXT element with common known deletions in loci VC1786ICE6 and VC1786ICE14. The variations in the SXT structures separated the individual serogroup O1, O139, and non-O1/non-O139 into distinct branches of the phylogenetic tree (Fig 3). The SXT elements of O1 strains were divided into two clades (GI and GII). The SXT structure of GI was highly similar to the structure of ICEVchHai1. Nineteen loci including \(\text{dfrA18} \) and \(\text{floR} \) were absent in GII. The SXT structures among the O139 strains harbored loci similar to SXT \(\text{MO10} \) and ICEVchHai1 but lacked 25 loci including \(\text{dfrA1} \). For non-O1/non-O139 strains, four strains harbored the SXT element and their SXT structures were similar to those of O139 strains. Only one resistant strain, VHS1-22I, harbored \(\text{floR} \), \(\text{strA} \), \(\text{strB} \), and \(\text{sul2} \) genes. Two susceptible strains and one NAL-resistant strain did not contain these antimicrobial resistance genes including \(\text{dfrA18} \) and \(\text{dfrA1} \).

Table 2. Frequency of resistance of Vibrio cholerae strains in Thailand.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Serogroup</th>
<th>No. of strains</th>
<th>No. (%) of resistant strains</th>
<th>No. (%) of strains resistant to various antimicrobial agents indicated CLSI clinical breakpoints values (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AMP</td>
</tr>
<tr>
<td>Year:</td>
<td></td>
<td></td>
<td></td>
<td>≥32</td>
</tr>
<tr>
<td>1983–1990</td>
<td>O1</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>non</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1991–2000</td>
<td>O139</td>
<td>12</td>
<td>12 (100.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>non</td>
<td>4</td>
<td>3 (75.0)</td>
<td>1 (25.0)</td>
</tr>
<tr>
<td>2001–2010</td>
<td>O1</td>
<td>32</td>
<td>27 (84.4)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>O139</td>
<td>12</td>
<td>12 (100.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>non</td>
<td>4</td>
<td>3 (75.0)</td>
<td>1 (25.0)</td>
</tr>
<tr>
<td>2011–2013</td>
<td>O1</td>
<td>5</td>
<td>1 (20.0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>O139</td>
<td>4</td>
<td>4 (100.0)</td>
<td>4 (100.0)</td>
</tr>
<tr>
<td></td>
<td>non</td>
<td>1</td>
<td>1 (14.3)</td>
<td>1 (14.3)</td>
</tr>
</tbody>
</table>

Source:

Clinical 54 40 (74.1) 1 (1.9) 5 (9.3) 27 (50.0) 38 (70.4) 10 (18.5) 39 (72.2)

Environmental 24 8 (33.3) 5 (20.8) 0 7 (29.2) 0 1 (4.2) 2 (8.3)

Total 78 48 (61.5) 6 (7.7) 5 (6.4) 34 (43.6) 38 (48.7) 11 (14.1) 41 (52.6)

Abbreviations: AMP, ampicillin; AZM, azithromycin; NAL, nalidixic acid; SMX, sulfamethoxazole; TET, tetracycline; TMP, trimethoprim; non, non-O1/non-O139. No resistance observed for cefotaxime (R \(\geq 4 \) μg/ml), ceftazidime (R \(\geq 16 \) μg/ml), chloramphenicol (R \(>32 \) μg/ml), ciprofloxacin (R \(>4 \) μg/ml), gentamicin (R \(\geq 16 \) μg/ml), meropenem (R \(\geq 16 \) μg/ml), and tigecycline (R \(>2 \) μg/ml) (tigecycline was interpreted according to EUCAST based on clinical breakpoint.

doi:10.1371/journal.pone.0169324.t002

Discussion

Since 1982, *V. cholerae* has been present and emerging in Thailand [40]. In the last decade, sporadic cholera cases have been observed in Thailand caused primarily by *V. cholerae* O1 and O139. In this study, we found that the phenotypic results characterizing *V. cholerae* were all in concordance with the in silico genotypic data revealed by WGS targeting the following genes: \(\text{ompW} \), \(\text{rfbV} \), \(\text{wbfZ} \), \(\text{ctxB} \), \(\text{rstR} \), and \(\text{tcpA} \). These genes have previously been used to classify *V. cholerae* strains [27, 30, 41–43]. The tested strains were classified into serogroups O1, O139, and non-O1/non-O139 showing that both *V. cholerae* serogroup O1 and O139 are present in Thailand and have potentially caused cholera.

In Thailand, several studies have reported the emergence of *V. cholerae* however, the bio-type *V. cholerae* O1 classical has not been detected since 1986 [27, 44–46]. Interestingly, this
<table>
<thead>
<tr>
<th>Year</th>
<th>Serogroup</th>
<th>SXT</th>
<th>Aminoglycoside</th>
<th>Beta-lactam</th>
<th>Phenicol</th>
<th>Sulphonamide</th>
<th>Trimethoprim</th>
<th>MLS</th>
<th>Quinolone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>strA</td>
<td>strB</td>
<td>blaP1</td>
<td>blacARB-7</td>
<td>blacARB-9</td>
<td>caB9</td>
<td>fioR</td>
</tr>
<tr>
<td>1983–1990</td>
<td>O1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>non-O1/ non-O139</td>
<td></td>
<td>(28.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991–2000</td>
<td>O1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>non-O1/ non-O139</td>
<td></td>
<td>(33.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001–2010</td>
<td>O1</td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>non-O1/ non-O139</td>
<td></td>
<td>(100.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011–2013</td>
<td>O1</td>
<td></td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>non-O1/ non-O139</td>
<td></td>
<td>(84.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>43</td>
<td>39</td>
<td>39</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(55.1)</td>
<td>(50.0)</td>
<td>(50.0)</td>
<td>(6.4)</td>
<td>(1.3)</td>
<td></td>
<td>(35.9)</td>
</tr>
</tbody>
</table>

Abbreviations: MLS, macrolide-lincosamide-streptogramin
study revealed that two strains obtained from stool samples in 2000 were identified as the Classical biotype and were genetically similar to the strains related to the 6th cholera pandemic (Table E in S1 File). This indicated that the Classical biotype might have re-emerged, causing cholera outbreaks in Thailand after having been absent for several years during the 6th cholera pandemic. The decline of typical El Tor strains coincided with the first reports from Bangladesh of the emergence of the El Tor variant strain [16]. Furthermore, the El Tor variants possessing both the Classical and El Tor biotypes were recovered from clinical strains during 2004–2010. Detection of the El Tor variant was previously reported in Cameroon, India, and Thailand [18, 32, 41]. The variant of the Classical and El Tor biotypes increases the severity of the disease and may result in higher morbidity and mortality [47, 48]. Kim et al. suggested that the El Tor variant possessing the Classical biotype originated through recombination between the Classical and El Tor types of CTXφ [49]. One hybrid strain of this study, MK14, originating from a river water sample, lacked the biotype-specific genes as well as the main virulence genes (ctxAB and tcpA), suggesting it to be a non-toxigenic strain and in agreement with previous reports [50, 51]. The non-toxigenic strains, however, have been responsible for causing mild to moderate diarrhea in human volunteers in clinical trials [2]. These El Tor variant strains clustered together with the clinical strains including typical El Tor biotype and O139 serogroup. Moreover, the in silico MLST analysis showed that the clinical strains had a highly genetic relationship with the pandemic and outbreak strains. The majority of the clinical strains O1 and

Fig 3. Genetic variation of SXT element in Vibrio cholerae. The SXT structures of among 43 V. cholerae strains from Thailand were compared. Reads were mapped to genes of ICEVcHai1 (accession no. JN648379) and dfrA18 gene in SXTMO10 element (accession no. AY034138).

doi:10.1371/journal.pone.0169324.g003
O139 belonged to ST69 and showed genetic similarity to the 7th pandemic strain (N16961), the Haitian outbreak strain (2010EL-1786), and the Cameroon outbreak strains [32]. In addition, all of the clinical strains harbor the specific gene marker of the 7th pandemic clone. These findings suggest that the clinical strains (1983–2010) in Thailand might originate from a common ancestor of the 7th pandemic strain. The STs of the clinical strains showed that they were closely related to the pre 6th pandemic strain (M66-2) and a previous outbreak strain in Thailand (MS6) [52]. The clinical strains of O1 and O139 were highly conserved with regard to MLST (ST69) but contained different virulence genes, particularly ctxAB and tcpA. These findings have previously been reported and might be a result of horizontal gene transfer [36, 53, 54]. The in silico MLST analysis clearly showed discrimination amongst the different sources (clinical and environmental) and serogroups O1 and O139 as compared with non-O1/non-O139 strains. The clinical strains of O1 and O139 were highly conserved with regard to MLST (ST69), while the environmental strains of O1, O139, and non-O1/non-O139 and the clinical strains of non-O1/non-O139 revealed different and novel STs. This indicates that the environmental strains including non-O1/non-O139 were highly diverse; however, these results might be caused by gene recombination and/or mutation [36].

Furthermore, the environmental strains could be distinguished from the clinical strains using in silico MLST based on the difference in the virulence gene profiles. The environmental strains of O1 and O139 lacked the CTXΦ and tcpA genes, especially. However, these strains harbored other virulence genes similar to non-O1/non-O139. Both chxA and TTSS genes were frequently found among non-O1/non-O139 pathogenic strains and associated with diarrhea [36, 51, 55]. However, the environmental O1 strains in this study harbored chxA gene (TC22) and TTSS (MK14), indicating virulence potential to cause disease.

Our study showed that the antimicrobial resistance profiles SMX-TMP and NAL-SMX-TMP were predominant among the clinical strains of serogroup O139 and O1, respectively. In addition, other clinical strains exhibited resistance to TET, AZM, and AMP in contrast to the environmental strains which were mostly resistant to NAL followed by AMP, TMP, and TET. Previous reports have described different antimicrobial resistant profiles compared with those from Thailand, such as resistance to furazolidone, NAL, sulfisoxazole, streptomycin, and trimethoprim/sulfamethoxazole in Haiti [56] as well as TET, streptomycin, sulfisoxazole and trimethoprim in China [57]. During 2003–2011, V. cholerae O1 has been reported as being resistant to erythromycin, TET, trimethoprim/sulfamethoxazole, and AMP in Thailand [27].

Our study showed a similar concordance between the antimicrobial susceptibility testing data and the in silico-detected corresponding resistance genes in the V. cholerae strains using the ResFinder bioinformatics tool [34]. A few disagreements were observed and confirmed by re-testing the MIC determination. These discrepancies related to TET-resistant strains in which no conferring resistance genes or other resistance mechanisms could be detected. This phenomenon is well-known and has previously been reported related to potential efflux pumps [58]. In contrast, we observed some strains that harbored both floR and catB9 but displayed a susceptible phenotypic resistance profile. This observation has also been described in a recent publication describing the cholera in Haiti [56]. Similarly, susceptible non-O1/non-O139 strains harboring the qnrVC5 gene did not express resistance to quinolone. Normally, one would anticipate isolates that harbor the genes floR and catB9 would be associated with reduced susceptibility to CHL [59] and those that harbor the gene qnrVC5 would be associated with quinolone resistance. These abnormalities are most likely linked to incorrect interpretative criterion.

According to World Health Organization (WHO) recommendations, TET and CIP are the drugs of choice for the treatment of cholera. Unfortunately, there is a lack of prudent usage in Thailand because these antimicrobials are being misused/overused in the agricultural section [60]. During 2003–2011, the endemic cholera strains in Thailand were resistant to TET,
whereas cholera was still susceptible to CIP as proven by Chomvarin et al., 2013 [27] and in this study. Amino acid substitutions in gyrA and parC are the main mechanism responsible for quinolone resistance in V. cholerae [56, 58, 61]. In this study, the same point mutations in gyrA (S83I) and parC (S85L) were detected among NAL-resistant strains found in both clinical and environmental sources.

The SXT element is an ICE that translocates a panel of antimicrobial resistance genes via horizontal gene transfer [62]. The first SXT, SXTMO10, was discovered in V. cholerae O139 strain MO10. It harbored resistant determinants to trimethoprim (dfrA18), streptomycin (strA, strB), sulfamethoxazole (sul2), and chloramphenicol (floR) [63]. Other ICEs identified in O1 and non-O1/non-O139 harbor a similar set of resistance genes as the SXTMO10 strain [28, 64]. Recently, WGS has been used to identify a variant of SXT in a Haitian O1 strain, ICEVch-Hai1 harboring dfrA1, strA, strB, sul2, and floR [56]. We analyzed the genetic variation in SXT elements by comparing with gene loci in ICEVchHai1 and dfrA18 in SXTMO10. ICEVchHai1 has previously been used as the reference for comparison with the SXT element in India [64]. In this study, we found that the SXT in each of the different serogroups O1, O139, and non-O1/non-O139 were distinctly different. The SXT structures of the O1 strains showed a higher genetic similarity with ICEVchHai1 than the SXT structures of O139 and non-O1/nonO139 strains. This indicated that the acquired SXT element in the O1 Thai strains were similar to those of the Haitian and Indian strains. These findings are consistent with a previous study that showed identity of SXT within the same serogroup of V. cholerae [28].

In this study, we found that the re-occurrence of classical toxigenic strains have been persisted since 2000 in Thailand. The variation of phenotypic and genotypic characteristics shows that the V. cholerae O1 biotype El Tor variant has caused the majority of the outbreaks since 2004. The V. cholerae O1 and O139 obtained from clinical source commonly harboured CTXϕ and tcpA. Conversely, their environmental strains lacking those virulence genes could be detected. Moreover, the occurrence of SXT element and resistance genes conferring antimicrobial resistance was encountered among Thai strains. These findings suggest that lysogenicity of V. cholerae O1 for CTXϕ and other genetic markers including resistance genes should be further intensively surveillance and control. Future application of WGS combined with bioinformatic tools, such as MLST [35], MyDbFinder, ResFinder [34], and VcTypeFinder (in development), have in this study proven the power and are highly discriminatory methods in understanding the epidemiology of V. cholerae.

Conclusions

In this study, we used WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand. To our knowledge, this is the first time since 1986 that the presence of V. cholerae O1 classical has been reported causing cholera outbreaks in Thailand. We found that the majority of the pathogenic strains belonged to V. cholerae O1 biotype El Tor variant and O139. In silico analysis showed that the clinical strains shared common genetic background as well as harbored virulence genes, PAIs and mobile genetic elements associated with antimicrobial resistance while environmental strains were highly diverse. This study contributed to understanding the epidemiology of V. cholerae in Thailand that ultimately can be applied for control measures and management of the disease in Thailand.

Supporting Information

S1 File. Supplementary_table1-Sequence_info. (XLS)
Author Contributions

Conceptualization: OS CT RSH FMA.

Data curation: PL.

Formal analysis: AS PL.

Funding acquisition: FMA OS RSH.

Investigation: AS RSH PL.

Methodology: RSH PL AS RSK.

Project administration: RSH.

Resources: FMA.

Software: AS PL RSK.

Supervision: RSH OS CT PL.

Validation: RSH OS.

Visualization: AS PL.

Writing – original draft: AS.

Writing – review & editing: RSH PL.

References

4. Yamai S, Okitsu T, Shimada T, Katsube Y. [Distribution of serogroups of *Vibrio cholerae* non-O1 non-O139 with specific reference to their ability to produce cholera toxin, and addition of novel serogroups]. Kansenshogaku Zasshi. 1997; 71(10):1037–45. PMID: 9394556

50. Kim EJ, Lee D, Moon SH, Lee CH, Kim SJ, Lee JH, et al. Molecular insights into the evolutionary path-
49. Kumar P, Jain M, Goel AK, Bhadauria S, Sharma SK, Kamboj DV, et al. A large cholera outbreak due to
47. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typ-
45. Preeprem S, Mittrapaphorn P, Bhoopong P, Vuddhakul V. Isolation and characterization of
44. Safa A, Bhuiyan NA, Nusrin S, Ansaruzzaman M, Alam M, Hamabata T, et al. Genetic characteristics of
41. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic
40. Edgar RC, Hallin PF, Binnewies TT, Ussery DW. The genome BLASTatlas- a GeneWiz extension for visualization
39. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genet-
37. Edgar RC. MUSCLE : multiple sequence alignment with high accuracy and high throughpu t. Nucleic
35. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typ-
34. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
33. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
31. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genet-
27. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic
24. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
23. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
22. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
21. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
19. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
18. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
15. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
14. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
13. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
12. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
11. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
10. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
9. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
8. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
7. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
6. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
5. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
4. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
3. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
2. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
1. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-
0. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Sup-

