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ABSTRACT

Probabilistic forecasts in the form of ensembles of scenarios are required for complex decision-making

processes. Ensemble forecasting systems provide such products but the spatiotemporal structures of the

forecast uncertainty is lost when statistical calibration of the ensemble forecasts is applied for each lead time

and location independently. Nonparametric approaches allow the reconstruction of spatiotemporal joint

probability distributions at a small computational cost. For example, the ensemble copula coupling (ECC)

method rebuilds the multivariate aspect of the forecast from the original ensemble forecasts. Based on the

assumption of error stationarity, parametric methods aim to fully describe the forecast dependence structures.

In this study, the concept of ECC is combined with past data statistics in order to account for the autocor-

relation of the forecast error. The new approach, called d-ECC, is applied to wind forecasts from the high-

resolution Consortium for Small-ScaleModeling (COSMO) ensemble prediction system (EPS) run operationally

at theGermanWeather Service (COSMO-DE-EPS). Scenarios generated byECC and d-ECC are compared and

assessed in the form of time series by means of multivariate verification tools and within a product-oriented

framework. Verification results over a 3-month period show that the innovative method d-ECC performs as well

as or even outperforms ECC in all investigated aspects.

1. Introduction

Uncertainty information is essential for an optimal

use of a forecast (Krzysztofowicz 1983). Such information

can be provided by an ensemble prediction system (EPS)

that aims at describing the flow-dependent forecast un-

certainty (Leutbecher and Palmer 2008). Several de-

terministic forecasts are run simultaneously, accounting

for uncertainties in the description of the initial state, the

model parameterization, and, for limited area models,

the boundary conditions. Probabilistic products are

derived from an ensemble, tailored to a specific user’s

needs. For example, wind forecasts in the form of

quantiles at selected probability levels are of particular

interest for actors in the renewable energy sector

(Pinson 2013).

However, probabilistic products generally suffer

from a lack of reliability, the system showing biases and

failing to fully represent the forecast uncertainty. Sta-

tistical techniques allow users to adjust the ensem-

ble forecast, correcting for systematic inconsistencies

(Gneiting et al. 2007). This step, known as calibration, is

based on past data and usually focuses on a single or a

few aspects of the ensemble forecast. For example, cal-

ibration of a wind forecast can be performed by uni-

variate approaches (Bremnes 2004; Sloughter et al.

2010; Thorarinsdottir and Gneiting 2010) or bivariate

methods, which account for correlation structures of

the wind components (Pinson 2012; Schuhen et al.

2012). These calibration procedures provide reliable

predictive probability distributions of wind speed or

wind components for each forecast lead time and
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location independently. Decision-making problems

can however require information about the spatial

and/or temporal structure of the forecast uncertainty.

Examples of application in the renewable energy sector

resemble the optimal operation of a wind-storage sys-

tem in a market environment, the unit commitment

over a control zone, or the optimal maintenance plan-

ning (Pinson et al. 2009). In other words, scenarios that

describe spatiotemporal wind variability are relevant

products for end users of wind forecasts.

The generation of scenarios from calibrated ensemble

forecasts is a step that can be performed with the use of

empirical copulas. The empirical copula approaches are

nonparametric and, in comparison with parametric ap-

proaches (Keune et al. 2014; Feldmann et al. 2015),

simple to implement and computationally cheap. Em-

pirical copulas can be based on climatological records

[Schaake shuffle (ScSh); Clark et al. (2004)] or on the

original raw ensemble [ensemble copula coupling (ECC);

Schefzik et al. (2013)]. ECC, which features the conser-

vation of the ensemble member rank structure from the

original ensemble to the calibrated one, has the advan-

tage of being applicable to any location within the model

domain without restriction related to the availability of

observations. However, unrealistic scenarios can be

generated by the ECC approach when the postprocessing

indiscriminately increases the ensemble spread to a large

extent. Nonrepresentative correlation structures in the

raw ensemble are magnified after calibration, leading to

unrealistic forecast variability. As a consequence, ECC

can deteriorate the ensemble information content when

applied to ensembles with relatively poor reliability, as

suggested, for example, by the verification results in

Flowerdew (2014).

In this paper, a new version of the ECC approach is

proposed to overcome the generation of unrealistic

scenarios. Focusing on time series, a temporal compo-

nent is introduced into the ECC scheme accounting for

the autocorrelation of the forecast error over consecu-

tive forecast lead times. The assumption of forecast er-

ror stationarity, already adopted for the development of

fully parametric approaches (Pinson et al. 2009; Schölzel
and Hense 2011), is exploited in combination with the

structure information of the original scenarios. The new

approach based on these two sources of information,

past data and ensemble structure, is called dual-ensemble

copula coupling (d-ECC). Objective verification is per-

formed in order to show the benefits of the proposed

approach with regard to the standard ECC.

The manuscript is organized as follows. Section 2 de-

scribes the dataset used to illustrate the manuscript as

well as the calibration method applied to derive the

calibrated quantile forecasts from the raw ensemble.

Sections 3 and 4 introduce the empirical copula ap-

proaches for the generation of scenarios and discuss in

particular the ECC and d-ECC methods. Section 5 de-

scribes the verification process for the scenario assess-

ment. Section 6 presents the results obtained by means

of multivariate scores and within a product-oriented

verification framework.

2. Data

a. Ensemble forecasts and observations

COSMO-DE-EPS is the high-resolution Consortium

for Small-Scale Modeling (COSMO) EPS run opera-

tionally at DWD. It consists of 20 COSMO-DE forecasts

with variations in the initial conditions, the boundary

conditions, and the model physics (Gebhardt et al. 2011;

Peralta et al. 2012). COSMO-DE-EPS follows the mul-

timodel ensemble approach,with four globalmodels each

driving five physically perturbedmembers. The ensemble

configuration implies a clustering of the ensemble mem-

bers as a function of the driving global model when large-

scale structures dominate the forecast uncertainty.

The focus here is on wind forecasts at 100-m height

above ground. The postprocessing methods are applied

to forecasts of the 0000 UTC run with an hourly output

interval and a forecast horizon of up to 21h. The ob-

servation dataset comprises quality-controlled wind

measurements from seven stations: Risoe, FINO1,

FINO2, FINO3, Karlsruhe, Hamburg, and Lindenberg,

as plotted in Fig. 1. The verification period covers a

3-month period: March–May 2013.

Figure 2a shows an example of a COSMO-DE-EPS

wind forecast at hub height. The forecast is valid on day

2 (March 2013) at FINO1 (see Fig. 1). The ensemble

members are shown in gray while the corresponding

observations are in black. In Fig. 2b, the raw ensemble

forecast is interpreted in the form of quantiles.

Formally, a quantile qt at probability level t (with

0 # t # 1) is defined as

q
t
d F21(t)5 inffy:F(y)$ tg , (1)

where F is the cumulative probability distribution of the

random variable Y 2 <:
F(y)5P(Y# y) . (2)

In practice, at each forecast lead time, the member of

rank n can be interpreted as a quantile forecast at

probability level tn:

t
n
5

n

N
e
1 1

, (3)

where Ne is the number of ensemble members.

4738 MONTHLY WEATHER REV IEW VOLUME 144



In the example shown in Fig. 2, the raw ensemble is

not able to capture the observation variability. Cali-

bration aims to correct for this lack of reliability by ad-

justing the mean and enlarging the spread of the

ensemble forecast.

b. Calibrated ensemble forecasts

Since COSMO-DE-EPS forecasts have been shown

to suffer from statistical inconsistencies (Ben

Bouallègue 2013, 2015), calibration has to be applied in

order to provide reliable forecasts to the users. The

method applied in this study is the bivariate non-

homogeneous Gaussian regression (EMOS; Schuhen

et al. 2012). The mean and variance of each wind com-

ponent, as well as the correlation between the two

components, characterize the predictive bivariate nor-

mal distribution. Corrections applied to the raw en-

semble mean and variance are optimized by minimizing

the continuous ranked probability score (CRPS;

Matheson and Winkler 1976). The calibration co-

efficients are estimated for each station and each lead

time separately (local version of EMOS), based on a

training period being defined as a moving window of

45 days.

The final calibrated products considered here are

Ne-equidistant forecasts of wind speed estimated for

each location and each forecast lead time separately,

where the Ne probability levels associated with the

forecast quantiles follow Eq. (3). Calibrated quantile

forecasts are shown in Fig. 2c. The spread of the en-

semble is increased with respect to Fig. 2b and thus the

observation variability is now captured by the forecast.

From a statistical point of view the calibration method

provides reliable ensemble marginal distributions and

reliable quantile forecasts as checked by means of rank

histograms and quantile reliability plots (not shown).

The performance of the applied calibration technique

is similar to the results obtained by other methods such

as quantile regression (Koenker and Bassett 1978;

Bremnes 2004).

Information about spatial and temporal dependence

structures, which are crucial in many applications, are

however no longer available after this calibration step

(see Fig. 2c). The next postprocessing step consists then

in the generation of consistent scenarios based on the

calibrated samples.

FIG. 2.Wind speed at 100-m height above ground (black solid lines) on 2Mar 2013 at FINO1 as a function of lead time (h): (a) COSMO-

DE-EPS forecast (gray lines), (b) raw ensemble forecast in the form of quantiles (gray symbols, assortedmembers; see text), (c) calibrated

quantile forecasts (gray symbols).

FIG. 1. Map of Germany and neighboring areas (approxi-

mately the COSMO-DE domain) with latitude– longitude along

the axes. Locations of the seven wind stations used in this

study (black circles). The station FINO1 is highlighted with

a gray circle.
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3. Generation of scenarios

The generation of scenarios with empirical copulas is

here briefly described. For a deeper insight into the

methods, the reader is invited to refer to the original

article by Schefzik et al. (2013) or to Wilks (2015) and

references within.

First, consider the multivariate cumulative distribu-

tion function (cdf) G defined as

G(y
1
, . . . , y

L
)5P[Y

1
# y

1
, . . . ,Y

L
# y

L
] (4)

of a random vector (Y1, . . . , YL) with y1, . . . , yL 2 R.

As in Eq. (2), we define the marginals Fi as

F
i
(y

i
)5P[Y

i
# y

i
] . (5)

Sklar’s theorem (Sklar 1959) states that G can be ex-

pressed as

G(y
1
, . . . , y

L
)5C[F

1
(y

1
),F

L
(y

L
)], (6)

where C is a copula that links an L-variate cumulative

distribution function G to its univariate marginal cdf’s:

F1, . . . , FL.

In Eq. (6), a joint distribution is represented as uni-

variate margins plus copulas. The problems of estimat-

ing univariate distributions and estimating dependence

can therefore be treated separately. Univariate cali-

bration marginal cdf’s F1, . . . , FL are provided by the

calibration step described in the previous section. The

choice of the copula C depends on the application and

on the sizeL of the multivariate problem.We focus here

on empirical copulas since they are suitable for prob-

lems with high dimensionality.

An empirical copula is based on a multivariate de-

pendence template, a specific discrete dataset z defined

in R
L. The chosen dataset is described formally as

zd f(z11, . . . , zN1 ), . . . , (z1L, . . . , zNL )g (7)

consisting ofL-tuples of sizeNwith entries inR. In other

words, L is the dimension of the multivariate variable

and N is the number of scenarios. The rank of znl for

n 2 f1, . . . , Ng and l 2 f1, . . . , Lg is defined as

Rn
l d �

N

i51

I(zil # znl ) , (8)

where I(�) denotes the indicator function taking a value

of 1 if the condition in parentheses is true and

0 otherwise.

In practice, N equidistant quantiles of Fl with

l 2 f1, . . . , Lg are derived from the univariate calibra-

tion step:

qd f(q1
1, . . . , q

N
1 ), . . . , (q

1
L, . . . , q

N
L )g (9)

with

qn
l d F21

l (t
n
); n 2 f1, . . . ,Ng, (10)

where tn is defined in Eq. (3). The sample q is re-

arranged following the dependence structure of the

reference template z. The permutations pl(n)dRn
l for

n 2 f1, . . . , Ng are derived from the univariate ranks

R1
l , . . . , R

N
l for l 2 f1, . . . , Lg and applied to the uni-

variate calibrated sample q. The postprocessed scenarios

~x1l , . . . , ~x
N
l for each margin l is expressed as

~x1l d q
pl(1)
l , . . . , ~xNl › q

pl(N)
l . (11)

The multivariate correlation structures are generated

based on the rank correlation structures of a sample

template z. The empirical copulas presented here only

differ in the way z is defined. In the following, let t 2
f1, . . . , Tg be a lead time and let L › T. For simplicity,

we consider here a single weather variable and a single

location.

a. Ensemble copula coupling

The rank structure of the ensemble is preserved after

calibration when applying the standard ECC approach.

The raw ensemble forecast is denoted x:

xd f(x11, . . . , xNe

1 ), . . . , (x1L, . . . , x
Ne

L )g, (12)

where Ne is the ensemble size. ECC applies without

restriction to any multivariate setting. The number of

scenarios generated with ECC is however the same as

the size of the original ensemble (N5Ne). The transfer

of the rank structure from the raw ensemble forecast to

the calibrated one consists then of taking x as the re-

quired template in Eq. (7).

Based on COSMO-DE-EPS forecasts in Fig. 3a

(identical to Fig. 2a), an example of scenarios derived

with ECC is provided in Fig. 3b. The increase in spread

after the calibration step implies a larger step-to-step

variability in the time trajectories. Figure 4 focuses on a

single scenario highlighting the difference between the

original and postprocessed scenarios.

b. Dual-ensemble copula coupling

ECC assumes that the ensemble prediction system

correctly describes the spatiotemporal dependence

structures of the weather variable. This assumption is

quite strong and cannot be valid in all cases. On the

other hand, based on the assumption of error statio-

narity, parametric methods have been developed that
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focus on the covariance structures of the forecast error

(Pinson et al. 2009; Schölzel and Hense 2011). We

propose a new version of the ECC approach, which is an

attempt to combine both types of information: the

structure of the original ensemble and the error auto-

correlation estimated from past data. Therefore, the

new scheme is called dual-ensemble copula coupling, as

the copula relies on a dual source of information.

For this purpose, we denote e the forecast error de-

fined as the difference between ensemble mean fore-

casts and observations:

ed fe
1
, . . . , e

T
g and (13)

5fy
1
2m(x

1
), . . . , y

T
2m(x

T
)g, (14)

where m(xt) and yt are the ensemble mean and the

corresponding observation at lead time t 2 f1, . . . , Tg,
respectively. The temporal correlation of the error is

described by a correlation matrix Re, defined as

R
e
5

0
BBBBB@

r
e1,e1

r
e1,e2

. . . r
e1,eT

r
e2,e1

r
e2,e2

. . . r
e2,eT

..

. ..
.

⋱ ..
.

r
eT ,e1

r
eT ,e2

. . . r
eT ,eT

1
CCCCCA, (15)

where ret1,et2
is the correlation coefficient of the forecast

error at lead times t1 and t2. The empirical correlation

matrix R̂e is estimated based on the training samples

used for the univariate calibration step at the different

lead times. In our setup, R̂e is regularly updated on a

daily basis from the moving windows of 45 days defined

as training datasets for the EMOS application.

Again here, we aim to construct a template [Eq. (7)] in

order to establish the correlation structures within the cali-

brated ensemble: qdf(q1
1, . . . , q

Ne

1 ), . . . , (q1
T , . . . , q

Ne

T )g.
In the d-ECC approach, the template is built by performing

the following steps:

1) Apply ECC with the original ensemble forecast x as

the reference sample template, in order to derive a

postprocessed ensemble of scenarios ~x:

~xd f(~x11, . . . , ~xNe

1 ), . . . , (~x1T , . . . , ~x
Ne

T )g. (16)

2) Derive the error correction ci imposed to each

scenario i (i 2 1, . . . , Ne) of the reference template

by this postprocessing step:

ci d fci1, . . . , ciTg and (17)

5f~xi1 2 xi1, . . . , ~x
i
T 2 xiTg. (18)

3) Transformation step: Apply a transformation to the

correction ci of each scenario based on the estimate

of the error autocorrelation R̂e and its eigendecom-

position R̂e 5ULU21 in order to derive the adjusted

corrections ci:

c
^i 5 R̂1/2

e ci and (19)

5UL1/2U21ci . (20)

4) Derive the so-called adjusted ensemble x
^
:

x
^
d f(x^1

1, . . . , x
^Ne

1 ), . . . , (x
^1

T , . . . , x
^Ne

T )g, (21)

where a scenario x
^i 5 fx^i

1, . . . , x
^i

T)g of x
^
is defined

as a combination of the original member and the

adjusted error correction, namely,

x
^i 5 xi 1 c

^i . (22)

5) Take x
^
as the reference template in Eq. (7) so that

the new empirical copula is based on the adjusted

ensemble.

The d-ECC reference template x
^

combines the raw

ensemble structure and the autocorrelation of the fore-

cast error reflected in the adjusted member corrections.

FIG. 3. As in Fig. 2, but for scenarios (a) COSMO-DE-EPS, (b) ECC-derived, and (c) d-ECC-derived, and the corresponding observations

(black lines).
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The transformation of the scenario corrections in Eq. (20)

adjusts their correlation structure based on the error cor-

relation matrix R̂e. Taking the square root of the correla-

tion matrix [Eq. (20)] resembles a signal processing

technique, which is described as a coloring transformation

of a vector of random variables (Kessy et al. 2015).

4. Illustration and discussion of d-ECC

Focusing on a single member, the d-ECC steps are

illustrated in Fig. 4. First, the correction associated with

each ECC scenario with respect to the corresponding

original ensemble member is computed [black line in

Fig. 4b; Eq. (18)]. This scenario correction is adjusted

based on the assumption of temporal autocorrelation of

the error [dashed line in Fig. 4b; Eq. (20)]. This adjusted

scenario correction is then superimposed onto the

original ensemble forecast before the correlation struc-

ture of the adjusted ensemble is drawn again.

The new scheme reduces to the standard ECC in the

case where rank(xit)5 rank(x
^i
t) for all i 2 f1, . . . , Neg

and t 2 f1, . . . , Tg, which means that the additional

terms c
^i do not have any impact on the rank structure of

the ensemble. This case occurs if the following condi-

tions are met:

d R̂e 5 I, where I is the identity matrix, which means that

there is no temporal correlation of the error in the

original ensemble;
d c5 0, where 0 is the null vector, which means that the

calibration step does not impact the forecast, the

forecast being already well calibrated; and
d c5 h3 J, where h is a constant and J an all-ones

vector, which means that the calibration step corrects

only for bias errors and the system is spread-bias free.

So the d-ECC typically takes effect if calibration cor-

rects the spread and if this correction is correlated in

time at the member level.

Additional insight can be gained by looking at the

following equations. Let the observation yt and the

postprocessed ensemble members ~xit be realizations of

random variables Y and ~X. Consider the covariance of

the forecast error denoted k and defined as

k
t1,t2

d Ef[Y
t1
2m( ~X

t1
)][Y

t2
2m( ~X

t2
)]g , (23)

where t1 and t2 are two lead times and E[�] the expec-

tation operator. It is assumed that the postprocessed

ensemble mean m(~xt) is fully bias corrected so that

E[Yt 2m( ~Xt)]5 0.

After postprocessing, the forecast scenarios and ob-

servation time series are considered as drawn from the

same multivariate probability distribution, so the fore-

cast error covariance can also be expressed as

k
t1,t2

5Ef[ ~X
t1
2m( ~X

t1
)][ ~X

t2
2m( ~X

t2
)]g (24)

5r
~xt1

,~xt2
s

~xt1
s

~xt2
, (25)

where r~xt1,~xt2
refers to the correlation between ~xt1 and ~xt2,

and s~xt refers to the square root of the variances be-

tween the members of the calibrated ensemble

(~x1, . . . , ~xNe) at lead time t. The corresponding estima-

tors are

k̂
t1,t2

5
1

N
e
2 1

�
Ne

i51

f[~xit1 2m(~x
t1
)][~xit2

2m(~x
t2
)]g , (26)

ŝ
~xt
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
e
2 1

�
Ne

i51

[~xit 2m(~x
t
)]2

vuut , (27)

and

FIG. 4. Illustration of the concept of d-ECC based on the ex-

ample in Fig. 3 showing (a) 1 among the 20 scenarios and (b) the

correction applied to the original scenario after postprocessing.

The raw ensemble forecast (here member 13) is represented in

gray, the ECC scenario in black, and the d-ECC scenario in black

with clear circles. The dashed line represents the scenario correc-

tion adjusted by the transformation step (see text).
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r̂
~xt1

,~xt2
5

k̂
t1,t2

ŝ~xt1
ŝ~xt2

. (28)

From Eq. (18) recall that

~xit 5 xit 1 cit ; (29)

so, we can rewrite the expression in Eq. (25) as

r~xt1
, ~xt2

s~xt1
s~xt2

5 r
xt1

,xt2
s
xt1
s
xt2
1 r

ct1
,ct2
s
ct1
s
ct2
1 « , (30)

where rxt1,xt2
is the error autocorrelation in the original

ensemble, rct1,ct2
the autocorrelation of the corrections,

and sxt and sct the standard deviation of the original

ensemble and the standard deviation of the correction at

lead time t, respectively. The term « corresponds to the

estimated covariances of x and c, and can be considered

to be negligible assuming that the original forecast and

the corrections are drawn from two independent ran-

dom processes.

Furthermore, the stationarity assumption of d-ECC

implies that the correlation r~xt1,~xt2
can also be estimated

from past error statistics:

r~xt1
, ~xt2

5E[r̂
et1

,et2
], (31)

where the notation r̂et1,et2
refers to the elements of the

estimated correlation matrix R̂e. The stationarity

assumption takes effect in the transformation step

of d-ECC [Eq. (20)], which modifies the correlation

of the scenario corrections rct1,ct2
and pushes it toward

the estimated correlation r̂et1,et2
. In other words, the

transformation affects rct1,ct2
sct1

sct2
[second term in

Eq. (30)]. We expect d-ECC to have a relevant im-

pact if rct1,ct2
sct1

sct2
dominates the sum in Eq. (30).

Typically, this is the case when the spread sxt of the

original ensemble differs from the spread s~xt after

calibration.

To illustrate the impact of the transformation step on

the correlation structure of the reference template, the

scenario-generation techniques are applied to a basic

synthetic dataset. For this purpose, we consider that

observations and forecasts are drawn from bivariate

normal distributions noted N (m, S), with m the mean

vector and S the covariance matrix. The mean vector is

set to a null vector,

m5

�
0

0

�
,

in all cases. The covariance matrix of the observation

distribution is set to

S
obs

5

�
1 0:5

0:5 1

�
,

so the distribution has unit variances and a correlation

coefficient of 0.5 between the two dimensions. Using this

setting results in target quantiles of the calibration

process that correspond to the quantiles of the standard

normal distribution. The covariance matrix of the fore-

cast distribution is defined as

S
fct
5

�
a ba

ba a

�

with a a spread parameter and b a correlation parameter

that allow us to simulate deficiencies in spread and

correlation of the synthetic ensemble forecasts. Post-

processing using ECC and d-ECC is applied considering

50 ensemble members and a sample of 1000 cases. The

impact of the multivariate postprocessing schemes is il-

lustrated by plotting the correlation coefficient between

the two dimensions of the process for a range of a and b

parameters (Fig. 5). The correlation coefficient of the

observation is maintained as a constant (0.5) and the

correlation of the raw forecasts is modified by varying

the parameter b from 0.1 to 0.9. The spread parameter a

takes a value of 0.5 to simulate an underdispersive

ensemble, 1 a calibrated ensemble, and 1.5 an over-

dispersive ensemble.

The correlation structure of the forecast is not modi-

fied by applying ECC, as illustrated by the gray dashed

line while the gray line shows how the transformation

step affects the correlation structure of the forecast: the

correlation is increased when the ensemble is under-

dispersed and decreased in cases of overdispersion. We

find that d-ECC appears to be appropriate in the cases

of ensemble forecasts with the following combination of

characteristics: underdispersion combined with a lack of

autocorrelation or overdispersion combined with too

strong autocorrelation in the time series.

This investigation could certainly be extended consid-

ering more complex idealized studies and developing a

rigorous mathematical framework. This would be wel-

comed as further research and would add additional ev-

idence to the expected behavior of d-ECC. Furthermore,

in the remainder of this paper, time series derived with

d-ECC are compared to ECC-derived scenarios. A com-

plementary study could aim to estimate the benefits of

the dual approach with respect to purely statistical

methods that only account for error characteristics es-

timated from historical data (Pinson et al. 2009; Möller
et al. 2013).

Another important aspect of d-ECC is the estimation

of the correlationmatrix R̂e. Bymeans of this matrix, the
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assumption of error autocorrelation is checked and

adjusted. The matrix is estimated from the training

datasets used for calibration at the different lead times.

Based on the dataset described in section 2, Fig. 6 shows

the lagged correlation of the forecast error derived from

R̂e. The correlation is decreasing as a function of the

time lag, reaching near-zero values for lags greater than

10 h. However, for short and very short time lags, the

correlation is high and stable over the rolling training

datasets. In particular, focusing on a time lag of 1 h, the

correlation ranges between 60% and 80%. The corre-

lation variability shown in Fig. 6 is estimated over a

3-month period. Similar results are obtained when

checking the variability of the correlation within each

training dataset (not shown). The exhibited low vari-

ability indicates that the temporal correlation of the

forecast error is not flow dependent. As a consequence,

d-ECC can be seen as a ‘‘universal’’ approach that does

not suffer restriction related to the forecasted weather

situation.

Considering again our case study, the scenarios gen-

erated with d-ECC based on the COSMO-DE-EPS

forecasts are shown in Fig. 3c. The d-ECC-derived sce-

narios are smoother and subjectively more realistic than

the ones derived with ECC in Fig. 3b. In Fig. 4, focusing

on a single scenario, it is highlighted that the difference

between the original and the d-ECC time trajectories

varies gradually from one time interval to the next, while

abrupt transitions occur in the case of the ECC scenario,

as in this example between hours 15 and 17.

Note that d-ECC does not give the same result as

would a simple smoothing of the calibrated scenarios ~x.

Smoothing in time would modify the values q of the

calibrated ensemble and possibly diminish its reliability.

Instead, d-ECC affects the time variability of the scenarios

by constructing a template [Eq. (7)] based on x
^
[Eq. (22)]

while preserving the calibrated values q.

5. Verification methods

a. Multivariate scores

Verification of scenarios is first performed by assess-

ing the multivariate aspects of the forecast by means of

adequate scores. The scores are applied with a focus on

FIG. 5. Correlation coefficients between the two dimensions of the synthetic bivariate datasets as a function of the correlation parameter

b with the spread parameter a 5 (a) 0.5, (b) 1, and (c) 1.5. The dashed lines with clear circles correspond to the observations, the solid

black lines to the raw ensemble, the gray dashed lines to the ECC ensemble, and the gray solid lines to the d-ECC ensemble.

FIG. 6. Temporal lagged correlation coefficients summarizing the

error correlation matrix R̂e used in the d-ECC approach. The box-

and-whisker plots indicate the variability within the 3-month cali-

bration period as function of lag time: the boxes cover the 25%–

75% quantiles, the black line shows the 50% quantiles, and the

whiskers extend to the 5%–95% quantiles.
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scenarios in the form of time series. Considering an

ensemble with Ne scenarios x(n) with n 2 f1, . . . , Neg
and an observed scenario y, the energy score (ES;

Gneiting et al. 2008) is defined as

ES5
1

N
e

�
Ne

n51

ky2 x(n)k2 1

2N2
e

�
Ne

m51
�
Ne

p51

kx(m)2 x(p)k , (32)

where jj�jj represents the Euclidean norm. ES is a gen-

eralization of the CRPS to the multivariate case.

Th eES suffers from a lack of sensitivity to mis-

representation of correlation structures (Pinson and

Tastu 2013). We consider therefore additionally the

p-variogram score (pVS; Scheuerer and Hamill 2015),

which has better discriminative properties in this re-

spect. Based on the geostatistical concept of variogram,

pVS is defined as

pVS5 �
i 6¼j

v
ij

"
jy

i
2 y

j
jp 2 1

N
e

�
Ne

n51

jx(n)i 2 x
(n)
j jp

#2

(33)

with p the order of the variogram and where vij are

weights and the indices i and j indicate the ith and the jth

components of the marked vectors, respectively. To

focus on rapid changes in wind speed, the weights vij are

chosen proportional to the inverse square distance in

time such that

v
ij
5

1

(i2 j)2
, i 6¼ j , (34)

since i and j are here forecast lead-time indices.

b. Multivariate rank histograms

The multivariate aspect of the forecast is in a second

step assessed by means of rank histograms applied to

multidimensional fields (Thorarinsdottir et al. 2016).

Two variants of the multivariate rank histogram are

applied: the averaged rank histogram (ARH) and the

band depth rank histogram (BDRH). The difference

between the two approaches lies in the way they dis-

tinguish pre-ranks from multivariate forecasts. ARH

considers the averaged rank over themultivariate aspect

while BDRH assesses the centrality of the observation

within the ensemble based on the concept of functional

band depth.

The interpretation of ARH is the same as the in-

terpretation of a univariate rank histogram: <-shaped,

\-shaped and flat rank histograms are interpreted as un-

derdispersion, overdispersion, and calibration of the

underlying ensemble forecasts, respectively. The inter-

pretation of BDRH is different: a < shape is associated

with a lack of correlation, an \ shape to a too high

correlation in the ensemble, a skewed rank histogram to

bias or dispersion errors and a flat rank histogram to

calibrated forecasts.

c. Product-oriented verification

In addition to multivariate verification of time series

scenarios, the forecasts are assessed within a product-

oriented framework. This type of scenario verification

follows the spirit of the event-oriented verification

framework proposed by Pinson and Girard (2012).

Probabilistic forecasts that require time trajectories are

provided and assessed by means of well-established

univariate probabilistic scores.

Two types of products derived from forecasted sce-

narios are examined here. The first one is defined as the

mean wind speed over a day (here, a day is limited to the

21-h forecast horizon). The second product is defined as

the maximal upward wind ramp over a day, a wind ramp

being defined as the difference between two consecutive

forecast intervals. For both products, 20 forecasts are

derived from the 20 scenarios at each station and each

verification day.

The performances of the ensemble forecasts for the

two types of products are evaluated by means of the

CRPS. The CRPS is the generalization of the mean

absolute error to predictive distributions (Gneiting

et al. 2008), and can be seen as the integral of the

Brier score (BS; Brier 1950) over all thresholds or the

integral of the quantile score (QS; Koenker and

Bassett 1978) over all probability levels. Considering

an ensemble forecast, the CRPS can be calculated

as a weighted sum of QS applied to the sorted en-

semble members (Bröcker 2012). For more insight

into forecast performance in terms of attributes, the

CRPS is decomposed following the same approach

(Ben Bouallègue 2015): the CRPS reliability and

resolution components are calculated as weighted

sums of the reliability and resolution components of

the QS at the probability levels defined by the en-

semble size [see Eq. (3)], respectively. Formally, we

write

CRPS
reliability

5
2

N
e

�
Ne

n51

QS
(tn)
reliability and (35)

CRPS
resolution

5
2

N
e

�
Ne

n51

QS
(tn)
resolution , (36)

where QS
(tn)
reliability and QS

(tn)
resolution are the reliability and

resolution components, respectively, of the QS applied

to the quantile forecasts at probability level tn. The QS

decomposition is performed following Bentzien and
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Friederichs (2014). The CRPSreliability is negatively ori-

ented (the lower the better) while the CRPSresolution is

positively oriented (the higher the better).

d. Bootstrapping

The statistical significance of the results is tested by

applying a block-bootstrap approach. Bootstrapping is a

resampling technique that provides an estimation of the

statistical consistency and is commonly applied to me-

teorological datasets (Efron and Tibshirani 1986).

A block-bootstrap approach is applied in the follow-

ing, which consists of defining a block as a single day

during the verification period (Hamill 1999). Each day is

considered to be a separate block of fully independent

data. The verification process is repeated 500 times by

using each time a random sample with replacement of

the 92 verification days (March–May 2013). The derived

score distributions illustrate consequently the variability

of the performance measures over the verification pe-

riod and not between locations. Boxplots are used to

represent the distributions of the performance measures,

where the quantile of the distributions at probability

levels of 5%, 25%, 50%, 75%, and 95% are highlighted.

6. Results and discussion

Before applying the verification methods introduced

in the previous section, we propose to explore statisti-

cally the COSMO-DE-EPS time series variability by

means of a spectral analysis, an analysis of the time se-

ries in the frequency domain. Such an analysis is useful

in order to describe the statistical properties of the

scenarios but also has direct implications for user’s ap-

plications (see below; Vincent et al. 2010). A Fourier

transformation is applied to each forecasted and ob-

served scenario and the contributions of the oscillations

at various frequencies to the scenario variance are ex-

amined (Wilks 2006). In Fig. 7, the mean amplitude of

the forecast and observation time series over all stations

and verification days is plotted as a function of their

frequency components.

As has already been suggested by the case study, this

analysis confirms that the ECC considerably increases

the variability of the time trajectories with respect to

the original ensemble, in particular at high frequencies.

The ECC scenario fluctuations are also much larger

than the observed ones. Indeed, the amplitude is on

average about 2 times larger at high frequencies in

ECC time series than in the observed results, which

explains the visual impression that ECC scenarios are

unrealistic. Conversely, scenarios derived with the new

copula approach do not exhibit such features. While

the original ensemble shows a deficit of variability with

respect to the observations, the d-ECC approach al-

lows for improving this aspect of the forecast. This first

result, showing that d-ECC scenarios have a mean

spectrum similar to that of the observations, is com-

plemented with an objective assessment of the fore-

casted scenarios based on probabilistic verification

measures.

Figure 8 shows the performance of the forecasted

time trajectories by means of multivariate scores. The

postprocessed scenarios perform significantly better

than the rawmembers in terms of ES (Fig. 8a). In terms

of pVS, the d-ECC scenarios are better than the ECC

ones and significantly better than the raw ones when

p 5 0.5 (Fig. 8b). For higher orders of the variogram

(here p 5 1; Fig. 8c), the forecast improvement after

postprocessing is still clear when using d-ECCwhile the

ECC results are slightly worse than those of the original

forecasts.

Figure 9 depicts the results in terms of multivariate

rank histograms for ARH (top panel) and BDRH

(bottom panel). The raw ensemble shows clear re-

liability deficiencies (Figs. 9a,d), which motivated the

use of postprocessing techniques. Forecasts derived with

ECC continue to show underdispersiveness but also too

little correlation (Figs. 9b,e) while forecasts derived with

d-ECC are better calibrated according to the rank his-

tograms in Figs. 9c,f. Indeed, both plots indicate good

reliability among the d-ECC-derived scenarios.

FIG. 7. Spectral analysis of the scenarios from the raw ensemble

(black lines) of the scenarios derived with ECC (dashed gray lines)

and with d-ECC (gray lines). Each line corresponds to 1 scenario

among the 20. The spectrum of the observed time series is repre-

sented by the dashed line with clear circles.
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Figure 10 focuses on two products drawn from the

time series forecasts: the daily mean wind speed (top

panel) and the daily maximal upward ramp (bottom

panel). The performance are assessed in terms of CRPS,

CRPS reliability, and CRPS resolution, from left to

right, respectively. Looking at the results in terms of

CRPS, we note the high degree of similarity between

Figs. 10a and 10d and Figs. 8a and 8c. As for the ES,

postprocessing significantly improves the forecasts of

the daily mean product. As for pVS with p 5 1, d-ECC

improves the ramp product with respect to the original

while ECC does not generate improved products. The

CRPS decomposition allows us to provide detail related

to the origin of these performance improvements. We

see in Figs. 10b,e that the CRPS results are mainly ex-

plained by the impact of the postprocessing on the

CRPS reliability components. However, focusing on the

results in terms of CRPS resolution in Figs. 10c,f, we

note that the resolution of the original and d-ECC

products are comparable while ECC deteriorates the

resolution of the ramp product with respect to the original.

These verification results are interpreted as follows.

Calibration corrects for the mean of the ensemble

forecast and this is reflected, after the derivation of

scenarios, by an improvement in the ES and daily mean

product skill. Calibration also corrects for spread de-

ficiencies increasing thevariability of the ensemble forecasts.

This increase in spread associated with the preservation of

the rank structure of the original ensemble, as is the case

with the ECC approach, enlarges indiscriminately the tem-

poral variability of the forecasts and leads to a slight de-

terioration of the pVS and ramp product results.

The d-ECC approach provides scenarios with a temporal

variability comparable to that of the observations. In that

case, the benefit of the calibration step in terms of reliability

(at single forecast lead times) persists at the multivariate

level (looking at time trajectories) after the reconstruction

of scenarios with d-ECC. Themultivariate reliability, or the

FIG. 8. Multivariate scores of time series: (a) energy score and (b),(c) p-variogram scores for p5 0.5 and 1, respectively, in the form of

box plots drawn from the application of a 500-block bootstrapping for the raw, ECC, and d-ECC. The box-and-whisker plots indicate the

25%–75% and 5%–95% confidence intervals, respectively.

FIG. 9. Multivariate rank histograms: (a)–(c) average rank and (d)–(f) band depth rank for (a),(d) time series from the raw ensemble and

derived with (b),(e) ECC and (c),(f) d-ECC.
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reliability of derived products, is significantly improved af-

ter postprocessing, though it is not perfect for specific de-

rived products.Moreover, d-ECC scenarios performaswell

as the original ensemble forecast in terms of resolution. So,

unlike ECC, d-ECC is able to generate reliable scenarios

with a level of resolution that does not deteriorate with

respect to the original ensemble forecasts.

7. Conclusions and outlook

A new empirical copula approach is proposed for the

postprocessing of calibrated ensemble forecasts. The

so-called dual-ensemble copula coupling approach is in-

troduced with a focus on temporal structures of wind fore-

casts. The new scheme includes a temporal component in

the ECC approach accounting for the error autocorrelation

of the ensemblemembers. The estimation of the correlation

structure in the error based on past data allows for adjusting

the dependence structure in the original ensemble.

Based on COSMO-DE-EPS forecasts, the scenarios

derived with d-ECC prove to be qualitatively realistic

and quantitatively of superior quality. Postprocessing of

wind speed combining EMOS and d-ECC improves the

forecasts in many aspects. In comparison to ECC,

d-ECC drastically improves the quality of the derived

scenarios. Applications that require temporal trajecto-

ries will fully benefit from the new approach in that case.

As for any postprocessing technique, the benefit of the

new copula approach can be weakened by improving the

representation of the forecast uncertainty with more

efficient member generation techniques and/or by im-

proving the calibration procedure correcting for conditional

biases. Meanwhile, with its low additional complexity and

computational costs, d-ECC can be considered to be a

valuable alternative to the standardECC for the generation

of consistent scenarios from COSMO-DE-EPS.

Though only the temporal aspects have been inves-

tigated in this study, the dual-ensemble copula ap-

proach could be generalized to any multivariate

setting. Further research is however required for the

application of d-ECC at scales that are unresolved by

the observations. For example, geostatistical tools

could be applied for the description of the autocorre-

lation error structure at the model grid level. More-

over, the mathematical interpretation of the d-ECC

scheme developed here would benefit from further

theoretical investigation.
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