A toolbox for accelerating strain engineering of oleaginous yeast Yarrowia lipolytica

Holkenbrink, Carina; Beder, Johannes; Dam, Marie Inger; Borodina, Irina

Published in: Online Proceedings

Publication date: 2016

Document Version Peer reviewed version

Link back to DTU Orbit

A Toolbox for Accelerating Strain Engineering of Oleaginous Yeast *Yarrowia lipolytica*

Holkenbrink, C., Beder, J., Dam, M.I., and I. Borodina

The non-conventional oleaginous yeast *Y. lipolytica* is valued for its capability to accumulate high amounts of storage lipids and to degrade hydrophobic substrates. It is an attractive host for the production of lipids and fatty acid-derived compounds and for bioremediation, however the strain development is hampered by the lack of genetic tools. We seek to develop a genome editing toolbox, which will allow rapid iterative combinatorial strain engineering (Figure 1), i.e., repeatedly introducing combinations of multiple edits, such as gene knock-ins/knock-outs. First, we developed a set of standardized integration vectors for gene overexpression from high expression genome spots. Second, we adopted CRISPR-Cas9 technology for *Y. lipolytica* to enable genome editing with high efficiency without the need of a selection marker. We demonstrate the utility of the toolbox by engineering a strain for production of a potential platform chemical, α-ketoglutarate, from renewable feedstocks.