Redox-Sensitive liposomes for glioblastoma treatment.

Lund, Mette Aagaard; Bak, Martin; Kamaly, Nazila; Andresen, Thomas Lars

Publication date: 2016

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Redox-Sensitive Liposomes for Glioblastoma Treatment

Mette A. Lund, Martin Bak, Nazila Kamaly, Thomas L. Andresen
Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranistics, Building 423, 2800 Kgs. Lyngby, Denmark

Hypothesis/aim: Treatment of glioblastoma remains a challenge due to inability of the drug to reach the intracellular target. Invasive glioblastoma is associated with high grade vascularization and break-down of the blood-brain barrier (BBB), which could aid in delivering drugs to the tumor site. However, once at the tumor site, the drug has to be internalized and transported to the specific target. The aim of the current project is to develop a drug delivery system (DDS) that crosses the permeable BBB to specifically target invasive glioblastoma cells and thereby facilitate uptake. Furthermore the DDS will be intracellularly activated to escape the endosome and drug efflux mechanism, thereby transporting the drug to the intracellular target. The DDS consists of a positively charged unsaturated liposome formulation, redox-sensitive lipopeptides with a PEG-linker that shields the positive charge, and a cell-penetrating or targeting moiety. Doxorubicin is encapsulated within the liposome lumen.

Methods: Redox-sensitive liposomes are prepared by post-insertion of lipopeptides containing a disulphide bridge into positively charged liposomes. Reduction of the disulphide is confirmed by HPLC and zeta-potential (charge-reversal) measurements. Uptake in U87 cells is confirmed by flow cytometry. Toxicity of the liposomes is investigated by MTS assay. Intracellular transport and distribution is investigated by confocal microscopy.

Results: Cleavage and charge-reversal has been confirmed for two different formulations. Uptake experiments show that the DDS is indeed taken up by glioblastoma cells when a cell penetrating moiety is included in the formulation. Furthermore, uptake is confirmed upon activation (charge-reversal) by cleavage of the disulphide bridge.