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Adhesive tape exfoliation: why it works for Graphene
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Ørsteds Plads, Building 345B, DK-2800 Kongens Lyngby, Denmark

PACS 81.05.ue – Graphene

Abstract –Single crystal graphite can be cleaved by the use of an adhesive tape. This was also
the initial route for obtaining Graphene, a graphite slab one layer thick. In this note a few simple
and fun considerations are presented in an attempt to put some light on why this procedure is
successful. In particular on the nature of the surprisingly small number of repetitive steps that
are needed in order to obtain a single layer slab. Two frameworks for exfoliation are investigated,
parallel exfoliation involving repetitive simultaneous cleaving, the other, serial exfoliation, which
involves the repetitive cleaving of a single chunk of graphite. For both cases, parallel and serial
exfoliation, it is investigated how many generations of cleavages are needed. An approximate model
with the probability distribution expressed as a simple closed form is presented and compared with
the simulations.

Introduction. – Graphene holds significant promise
for elucidating lower dimensional phenomena as well as
being a key material that has the potential to unleash a
new avalanche of technological developments [1,2]. Hence,
not surprisingly graphene has attracted much attention as
is the case for emerging materials with similar properties
based on other elements, e.g. BN [3]. The initial isolation
of Graphene invoked fabrication through repetitive cleav-
ing with the use of an adhesive tape [4], and it enabled pi-
oneering studies relating to the conductivity of Graphene
[4], suspension of graphene [5], and nano particle channel-
ing [6].

The apparent astronomical size of Avogadro’s number
when compared with every day’s countable phenomena,
such as the number of apples in a tree is well know. Hence,
it might at first seem implausible that a single layer of
graphite can be obtained through indiscriminating repeti-
tive cleaving of a single graphite crystal or highly oriented
pyrolytic graphite. Nonetheless, we now know that this is
the case [4].

A typical slab of graphite, lets say 0.3 mm thick, con-
tains about 106 atomic layers. How many times does one
need to cleave the slab with the use of adhesive tape to
obtain a single layer [4] or to obtain a slab with 300 or
fewer layers being approximately 1000 Å thick [7]?
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Fig. 1: Schematic depiction of what is denoted parallel
exfoliation strategy here. The vertical bars indicate in-
dividual planes of honeycomb-ordered carbon atom. At
each generation of cleavages all the graphite slabs are sub-
divided into two new slabs. The procedure is repeated in
parallel until the first occurrence of a single layer.

The phenomenon that a thickness can grow with an in-
teger power of 2 is common knowledge and is often il-
lustrated with a sheet of paper repeatedly folded over it-
self. If this was the structure of graphite it would need
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to be unfolded about 20 times to obtain a one layer thick
sheet, and 13 times to obtain a slab being 300 layer thick.
For repetitive exfoliations, it will be shown below that yet
smaller number of cleaving attempts will be needed. Two
strategies will be presented: parallel exfoliation and serial
exfoliation.

Parallel Exfoliation. – The basic assumptions re-
garding the exfoliation is that the adhesion of the tape is
strong in the sense that cleavage is assumed never to take
place at the tape but always between two adjacent hon-
eycomb layers of graphite, and that a cleavage is equally
likely to take place between any set of adjacent graphite
planes. The principle of parallel exfoliation is depicted in
Figure 1. Each cleavages generation is preformed simulta-
neous.
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Fig. 2: The points (circles) on the solid line show the
result of a numerical simulation of parallel exfoliations.
In total, the simulation is averaged over 105 run. The
relative occurrence, i.e. the fraction of the simulations
which succeeded in n steps is shown as a function of the
cleavage generation. The dashed line most far to the left
indicates the resulting curve for obtaining a slab of 300
or less layers, rather than obtaining a single layer. The
blue dashed-dotted line is the result obtained under the
approximative assumption of stochastic independence, see
Equation (11). It should be compared to the solid line to
the right.

A numerical simulation with N = 106 layers parallel
exfoliated n times determined from the first occurrence
of a single layer. In the simulation for which the results
are shown in Figure 2 parallel exfoliation was initiated
105 times in order to obtain good statistics. Depicted is
frequencies of the needed number of cleaves generations to
obtain a single layer of graphite. Remarkable, with only 8
or less attempts of cleaving there is a 96 % probability for
having obtained a single layered slab.
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Fig. 3: The principle of serial exfoliation. After each con-
secutive cleaving of the graphite crystal only one slab is
maintained. This is done without use of intelligent choice,
e.g. by random, or always to the same side, or alternating
to the right and left. In the programmed algorithm the
selection is always to the same side.

Serial Exfoliation. – The parallel method discussed
the previous section is not as straightforwardly experimen-
tally as it might seems. Therefore here is considered a
simple serial cleavage strategy where, at random, just one
slab is maintained after each cleaves, see Figure 3 for a
schematic explanation. For serial exfoliation with an ini-
tial crystallite of graphite with N planes, the probability
P1 for obtaining a single layer after the first attempt of
cleaving is

P1 =
2

N − 1
. (1)

The probability P2 after the second attempt of cleaving is

P2 = (1− P1)
1

N − 3

(
1 +

N−3∑
i=2

2

i

)
. (2)

The sum can be expressed as

P2 =
2Ψ(N − 2) + 2γ − 1

N − 1
(3)

where Ψ(x), the Digamma function, is the logarithmic
derivative of the Gamma function Γ(x) and γ is Euler’s
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constant. With each cleavage generation, a summation of
the summation is added and the complexity of the term
is similarly increased. In this communication, the calcula-
tions are performed by a numerical simulation in a similar
manner to what was the case for parallel exfoliation. Fig-
ure 4 shows the frequency for the number of repeated at-
tempts of cleaving which is needed to obtain a single layer
thick slab. Here, it can be seen that with 18 or less at-
tempts of cleaving, there is 95 % chance to obtain a sheet
of graphene and the mean value is less than 14.

4 8 12 16 20 24 28

0

0.05

0.1

Cleavage generation

Fr
eq

ue
nc

y

Serial Exfoliation

Fig. 4: The result of a numerical simulation of serial ex-
foliations is plotted as points (circles). The frequencies
are calculated from the result of 105 simulations as the
fraction of the simulations which succeeded in n steps (y-
axis). Here, n indicates the number of attempts of cleav-
ing which in this case is equally to the cleavage generation.
The dashed line indicates the resulting curve for obtaining
a slab of 300 or less layers, rather than obtaining a single
layer. The blue dashed-dotted line shows the result of the
approximative modeling, see Equation (8).

An approximate model. – Let us consider a con-
tinuous form of the problem, one where a real number x1

is chosen indiscriminately in the interval [0, L] at the first
iteration. At the second iteration a real number x2 is cho-
sen in the interval [0, x1] and so on. Henceforward, this
determines the sequence {xi}.

The probability density function f1(s) for x1 to have
the value s is

f1(s) =
1

L
(4)

where s ∈ [0, L]. The probability density function fn(s)
can be iteratively expressed with the use of the function
fn−1(s). For f2(s), the probability that x2 is equal to s is

f2(s) =

∫ L

s

1

u
f1(u)du =

1

L
[ln(L)− ln(s)] . (5)

By induction we obtain the following probability distribu-
tion for the possible values of xn:

fn(s) =
[ln(L)− ln(s)]n−1

L(n− 1)!
. (6)

The probability that xn ∈ [0,∆] and that all of the pre-
ceding values x1, x2, .., xn−1 ∈ [∆, L] can be calculated as

Pn =

∫ ∆

0

fn(s)ds ·

[
1−

∫ ∆

0

fn−1(s)ds

]
(7)

We are now ready to make a comparison to the simula-
tion results presented earlier. A comparison of results from
a model with real valued xi to the results of a simulation
which allowed only for a discrete set of integer numbers
will be approximative and requires some choices. We will
proceed by setting L = N and using the approximation
of evaluating the integrals at the discrete point ∆ = 2.
Here, the choice of two, rather than one, is made in or-
der to address for the fact that in the simulation study
graphene was allowed to form at both ends of the current
slab of graphite layers and not just at one end. The set of
probabilities are

Pn ' 2
[ln(L)− ln(2)]n−1

L(n− 1)!
· [1− 2

[ln(L)− ln(2)]n−2

L(n− 2)!
] . (8)

With this set of derived approximative probabilities
{Pi} a normalization factor of 1.08 is needed for their sum
to proper add to unity. The results are depicted on Figure
4 as the blue dashed-dotted curve. The average number
of generations is 13.6 for the simulation and 14.1 for blue
dash-dotted curve. If the curve had been calculated from
the ∆ = 1 values the average number of generations for
the model would have been 14.8 and the curve would be
correspondingly sifted.

From the above calculated Pn we can estimate the prob-
ability Qn for not obtaining graphene after n or fewer at-
tempts.

Qn = 1−
n∑

i=1

Pi . (9)

Let us briefly revisit the case of parallel exfoliation and
make an estimate of the probability Wn for not obtaining
graphene after n or fewer attempts. Assuming stochastic
independence which in this case is an approximation we
have

Wn = Q(2n−1)
n . (10)

Hence, for parallel exfoliation we have the approxima-
tive probabilities Zn for obtaining graphene after n at-
tempts

Zn = Wn−1 −Wn (11)
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with Z1 = P1. They estimated probabilities are depicted
in Figure 2 as the blue dashed-dotted line. The mean num-
ber of generations for the simulation is 7.2, while for the
Zi distribution it is 6.9 generations.The relative small shift
towards lower numbers reflects that the assumed stochas-
tic independence is not strictly obeyed.

Conclusion. – Provided that we could guide the po-
sitions of a cleavage we would need only one of them and
in practice probable work with just two. The remarkable
result in this note is that only about 7 or 13 indiscrim-
inate positioned attempts of cleaving are needed in or-
der to obtain a layer of graphene, where the number of
cleaves depends on the chosen strategy. This is despite
the fact that a typical small crystal of graphite contains
about 106 layers of carbon atoms. The results of the sim-
ulation are approximatively described by a simple contin-
uous model. The relative small number of cleavage gener-
ations needed to obtain graphene can be understood from
the rapid change of the functional form of the successive
probability density functions, see Equation (6).

For real physical crystals, a cleavage can jump between
layers, e.g. by involving a step [8, 9]. In such cases even
shorter exfoliation sequences will lead to fractions of sheets
which is only one atomic layer thick and refined selection
methods have been developed [10]. There are many open
questions associated with the cleaving of graphite. For
example, how does the strength of the Van der Waals in-
teractions distribute themselves on an atomic scale during
the dynamical process of cleaving? Is there an analogy
to fingering [11] and cavitation [12] which are both seen
in debonding [13–15] when a viscous fluid is involved?
Are the presented results relevant for other dimensions
than two, such as one dimensional random cleaving of
biomolecules, e.g. the decay of DNA. This could perhaps
contribute to our understanding of the distribution be-
tween shorter and longer fragments in old DNA [16].
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