Segmentation of individual fibres in a uni-directional composite from 3D X-ray computed tomography data

Emerson, Monica Jane; Jespersen, Kristine Munk; Dahl, Anders Bjorholm; Conradsen, Knut; Mikkelsen, Lars Pilgaard

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
MOTIVATION

Wind turbine blades are becoming longer to decrease the cost of energy. They need to stand higher stresses.

TASK

We segment individually uni-directional glass and carbon fibres from tomography data to study the fibre orientation and relate it to the compression strength, a key parameter when designing the blade’s load carrying parts. *

PIPEDLINE AND CHALLENGES

- Low quality scans to avoid a long acquisition time.
- Composite materials with high fibre volume fraction.
- Large data sets.

SEGMENTATION AND TRACKING

1. Glass Fibre Reinforced Polymer (GFRP)
2. Carbon Fibre Reinforced Polymer (CFRP)

Detected centres in red and reference centres in yellow.

Accuracy** 99.1%

Accuracy** 100%

**Accuracy measured as correctly found centres in a test image, of size half of a slice.

FIBRE ORIENTATION

1. GFRP
2. CFRP

For a more precise estimate...

...add the spatial distribution

Financial support from CINEMA: the allianCe for ImagNg of Energy MAterials, DSF-grant no. 1305-00032B under The Danish Council for Strategic Research is gratefully acknowledged.

Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials. Emerson et al., under submission.