Segmentation of individual fibres in a uni-directional composite from 3D X-ray computed tomography data

Emerson, Monica Jane; Jespersen, Kristine Munk; Dahl, Anders Bjorholm; Conradsen, Knut; Mikkelsen, Lars Pilgaard

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Segmentation of individual fibres in a uni-directional composite from 3D X-ray computed tomography data

Emerson M. J., Jespersen K. M., Dahl A. B., Conradsen K., Mikkelsen L. P.
monj@dtu.dk

MOTIVATION

Wind turbine blades are becoming longer to decrease the cost of energy. They need to stand higher stresses.

PIPELINE AND CHALLENGES

- Low quality scans to avoid a long acquisition time.
- Composite materials with high fibre volume fraction.
- Large data sets.

SEGMENTATION AND TRACKING

1. Glass Fibre Reinforced Polymer (GFRP)
2. Carbon Fibre Reinforced Polymer (CFRP)

Detected centres in red and reference centres in yellow.

Accuracy** 99.1%
Accuracy** 100%

**Accuracy measured as correctly found centres in a test image, of size half of a slice.

FIBRE ORIENTATION

1. GFRP
2. CFRP

COMPRESSION STRENGTH

\[\sigma' = \frac{G}{1 + \theta / \gamma} \]

(Budiansky et al., 1993)

For a more precise estimate...

...add the spatial distribution

Financial support from CINEMA: the alliance for Imaging Energy Materials, DSF-grant no. 1305-00032B under The Danish Council for Strategic Research is gratefully acknowledged.

Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials. Emerson et al., under submission.