A high mobility two-dimensional electron gas at the CaZrO3/SrTiO3 heterointerface

Chen, Yunzhong; Trier, Felix; Christensen, Dennis Valbjørn; Linderoth, Søren; Pryds, Nini

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
A high mobility two-dimensional electron gas at the CaZrO\textsubscript{3}/SrTiO\textsubscript{3} heterointerface

Y.Z. Chen*, F. Trier, D. V. Christensen, S. Linderoth, and Nini Pryds

Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark
* yuc@dtu.dk

The discovery of two-dimensional electron gases (2DEGs) in SrTiO\textsubscript{3}-based heterostructures provides new opportunities for nanoelectronics1,2. Herein, we create a new type of oxide 2DEG by the epitaxial-strain-induced polarization at an otherwise nonpolar perovskite-type interface of CaZrO\textsubscript{3}/SrTiO\textsubscript{3}.3,4 Remarkably, this heterointerface is atomically sharp, and exhibits a high electron mobility exceeding 60,000 cm2 V-1 s-1 at low temperatures. The 2DEG carrier density exhibits a critical dependence on the film thickness, in good agreement with the polarization induced 2DEG scheme.

Figure 1. Atomically-flat epitaxially grown perovskite-type interface of CaZrO\textsubscript{3}/SrTiO\textsubscript{3} determined by STEM-EELS.

Reference:

2. Chen Y. Z. \textit{et al.} A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al\textsubscript{2}O\textsubscript{3}/SrTiO\textsubscript{3}. Nature Commun. 4, 1371 (2013).