Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein

Fock, Jeppe; Parmvi, Mattias; Strömberg, Mattias; Svedlindh, Peter; Donolato, Marco; Hansen, Mikkel Fougt

Publication date: 2016

Document Version
Early version, also known as pre-print

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Title:

Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein

Jeppe Fock,1 Mattias Parmvi,1 Mattias Strömberg,1 Peter Svedlindh,1 Marco Donolato,1 and Mikkel Foug Hansen1

1Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark
2Department of Engineering Sciences, Solid State Physics, Uppsala University

Abstract: (Your abstract must use Normal style and must fit in this box. Your abstract should be no longer than 300 words. The box will ‘expand’ over 2 pages as you add text/diagrams into it.)

Preparation of Your Abstract
1. The title should be as brief as possible but long enough to indicate clearly the nature of the study. Capitalise the first letter of the first word ONLY (place names excluded). No full stop at the end.
2. Abstracts should state briefly and clearly the purpose, methods, results and conclusions of the work.

Introduction: Clearly state the purpose of the abstract
Methods: Describe your selection of observations or experimental subjects clearly
Results: Present your results in a logical sequence in text, tables and illustrations
Discussion: Emphasize new and important aspects of the study and conclusions that are drawn from them

C-reactive protein (CRP) is an important marker for inflammation. Here, we use magnetic nanoparticles (MNPs) functionalized with CRP antibodies for an agglutination assay to measure the CRP concentration. The presence of CRP results in links between MNPs. In an oscillating magnetic field, clusters of MNPs are not able to rotate as fast as individual MNPs and thus they give a contribution to the measured signal at lower frequencies. Measurements of the response vs. frequency of the applied magnetic field can therefore be used to infer the clustering state of the MNPs and hence the concentration of the target.

Here, we present for the first time a comparison between readouts of the dynamic response of an MNP suspension vs. concentration of a CRP target using an AC susceptometer (magnetic signal) and a recently proposed optomagnetic technique (optical signal) [1].

The non-functionalized beads (black curve in Fig. 1a) only give an optomagnetic signal from single MNPs (negative peak at ~400 Hz). When functionalizing the beads and measuring in CRP free serum (<0.02 µg/ml) the single MNP signal decreases and a signal at lower frequency (~30 Hz) increases (red curve) indicating MNP agglomeration. Increasing the CRP concentration (green and blue curves) the agglomeration increases. However, for the highest CRP concentration (9 µg/ml) aggregation is reduced. This well-known hook effect arises when the target saturates the CRP binding sites and prevents agglomeration.

The out-of-phase magnetic susceptibility (fig. 1b) shows the same evolution of the single MNP signal (~300 Hz). Fig. 2 shows that excellent agreement is obtained between the decrease of the peaks heights due to free MNPs in the optomagnetic (V_1') and magnetic susceptibility (χ'') signals.

To conclude, we demonstrate detection of CRP using an agglutination assay and two different physical principles to measure the particle dynamics.

Important notes:

Do NOT write outside the grey boxes. Any text or images outside the boxes will be deleted.

Do NOT alter the structure of this form. Simply enter your information into the boxes. The form will be automatically processed – if you alter its structure your submission will not be processed correctly.

Do not include keywords – you can add them when you submit the abstract online.

Fig. 1. Data of agglutination assay for non-functionalized beads (black), functionalized beads in the presence of <0.02 µg/ml CRP (red), 1 µg/ml CRP (green), 3 µg/ml CRP (blue), 3 µg/ml CRP (cyan). (a) Real part of the second harmonic optomagnetic signal normalized with the total light intensity. (b) Imaginary part of the AC susceptibility normalized with the infinity frequency limit of the real part, χ'_{∞}.

Fig 2. Dose-response curve constructed using the reduction of the single MNP signal at ~300 Hz from optomagnetic data (blue) and AC susceptibility data (red). The dotted line is the value obtained for the CRP-free serum with a CRP concentration <0.02 µg/ml.