Carbonic Anhydrase Enhanced Carbon Capture: Kinetic Measurements and Pilot Plant Trials

Gladis, Arne Berthold; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup; Woodley, John; von Solms, Nicolas

Publication date:
2016

Document Version
Peer reviewed version

Citation (APA):
Carbonic Anhydrase Enhanced Carbon Capture: Kinetic Measurements and Pilot Plant Trials

Arne Gladis¹*, Maria T. Gundersen², Philip L. Fosbøl¹, John M. Woodley², Nicolas von Solms¹

1) Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University Denmark, Kgs. Lynby 2800
2) CAPEC-PROCESS Center, Department of Chemical and Biochemical Engineering, Technical University Denmark, Kgs. Lynby 2800

Keywords:
Wetted wall column, carbonic anhydrase, carbon capture, enzyme kinetics, amine, carbonate, absorption, carbon dioxide

Abstract:

In this study the effect of carbonic anhydrase addition on the absorption of CO₂ was investigated in a wetted wall column apparatus. Four different solvents: MEA (a primary amine), AMP (a sterically hindered primary amine), MDEA (a tertiary amine) and K₂CO₃ a carbonate salt solution were tested in concentrations from 5 to 50 wt%. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined in a temperature range from 298 to 328 K and benchmarked to a 30 wt% MEA solution.

The study reveals that the addition of the enzyme carbonic anhydrase (CA) dramatically increases the liquid side mass transfer coefficient for 30 wt% MDEA and 15 wt% K₂CO₃, 30 wt% AMP has a moderate increase whereas 30 wt% MEA was unchanged. The results confirm that bicarbonate forming solvent which do not produce carbamate benefit from CA. The results reveal the impact of temperature in relation to CA. A temperature increase resulted in lower liquid side mass transfer rate for 30 wt% MDEA and 15 wt% K₂CO₃ but in higher rate for 30 wt% AMP. The overall first order enzyme reaction rate (s⁻¹) was linearly dependent on enzyme concentration for 30 wt% MDEA and 15 wt% K₂CO₃ at 313 K. The derived enzymatic reaction rate constant kₚₐ₇ (m³ kg⁻¹ s⁻¹) for 15 wt% K₂CO₃ at 313 K was about 9 times higher than for 30 wt% MDEA and 10 times higher than for 30 wt% AMP. Temperature and concentration did not observably influence the enzymatic
rate constant in the concentration range of 5 to 15 wt% K$_2$CO$_3$. The higher solvent concentration only led to a slightly higher reaction rate. A solution with 20 wt% K$_2$CO$_3$ had almost 3 times higher enzyme reaction rate compared to 15 wt% at 298 K and increased with temperature to almost 5 times faster at 328 K. The enzymatic reaction rate for MDEA decreased with both temperature and solvent concentration from 15 to 30 wt%. An increase to 50 wt% resulted in a decrease in reaction rate due to less water present.

Pilot plant campaigns were carried out for different solvents and conditions and the results were successfully modelled using intrinsic data obtained from the wetted-wall column experiments.