Spray Drying of Cubosomes for Oral Vaccine Delivery

von Halling Laier, Christoffer; Abid, Zarmeena; Weydahl, Ingrid Elise Konow; Rades, Thomas; Boisen, Anja; Nielsen, Line Hagner

Publication date:
2016

Document Version
Peer reviewed version

Citation (APA):
Spray Drying of Cubosomes for Oral Vaccine Delivery

Christoffer von Halling Laier¹, Zarmeena Abid¹, Ingrid E.K. Weydahl¹, Thomas Rades², Anja Boisen¹, Line Hagner Nielsen¹

¹Department of Micro and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
²Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

PURPOSE
To prepare cubosomes carrying the model antigen ovalbumin and the adjuvant Quil A using spray drying as method, as well as to in vitro characterize these particles.

METHOD

RESULTS

Particle Morphology

The spray dried powder was heated to 90°C for 24h. This reduced electrostatic charges in the powder, allowed easy reconstitution to a colloidally stable suspension, and induced weight loss of 8%. The powder was rich in cubosomes after reconstitution (Fig. 2).

Particle Characterization

Table 1: Size and zeta-potential of cubosomes with and without adjuvant as measured by dynamic light scattering in Milli-Q water. Mass median aerodynamic diameter (MMAD) measured by time-of-flight mass spectroscopy.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
<th>MMAD (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubosomes with OVA</td>
<td>256±10</td>
<td>0.42</td>
<td>-31.7±1.4</td>
<td>4.1±0.4</td>
</tr>
<tr>
<td>Cubosomes with OVA and Quil A</td>
<td>233±13</td>
<td>0.24</td>
<td>-38.3±1.7</td>
<td>4.1±0.02</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

The research is funded by the Danish National Research Foundation (DNRF122) and Villum Fonden (Grant No. 9301). We acknowledge the Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen.

CONCLUSION

The developed cubosomes show properties suitable to be used for oral vaccine delivery in microcontainers.