Spray Drying of Cubosomes for Oral Vaccine Delivery

von Halling Laier, Christoffer; Abid, Zarmeena; Weydahl, Ingrid Elise Konow; Rades, Thomas; Boisen, Anja; Nielsen, Line Hagner

Publication date:
2016

Document Version
Peer reviewed version

Citation (APA):
Spray Drying of Cubosomes for Oral Vaccine Delivery

Christoffer von Halling Laier1, Zarmeena Abid1, Ingrid E.K. Weydahl1, Thomas Rades2, Anja Boisen1, Line Hagner Nielsen1

1Department of Micro and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
2Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

PURPOSE
To prepare cubosomes carrying the model antigen ovalbumin and the adjuvant Quil A using spray drying as method, as well as to in vitro characterize these particles.

METHOD

Fig. 1: 5.33 w/v% Dimodan® MO 90/D (high monoolein content) in ethanol is diluted by adding it to aqueous solution of dextran, ovalbumin (OVA) and Quil A (2.67, 0.13 and 0.14 w/v% respectively). The dilution of the ethanol causes immediate precipitation of lipid particles giving a turbid mixture in 24 v/v % ethanol. The mixture is spray dried on a Büchi mini spray dryer.

The spray dried powder was heated to 90°C for 24h. This
- Reduced electrostatic charges in the powder
- Allowed easy reconstitution to a colloidal suspension
- Induced weight loss of 8%

The powder was rich in cubosomes after reconstitution (Fig. 2)

Table 1: Size and zeta-potential of cubosomes with and without adjuvant as measured by dynamic light scattering in Milli-Q water. Mass median aerodynamic diameter (MMAD) measured by time-of-flight mass spectroscopy.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
<th>MMAD (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubosomes with OVA</td>
<td>256±10</td>
<td>0.42</td>
<td>-31.7±1.4</td>
<td>4.1±0.4</td>
</tr>
<tr>
<td>Cubosomes with OVA and Quil A</td>
<td>233±13</td>
<td>0.24</td>
<td>-38.3±1.7</td>
<td>4.1±0.02</td>
</tr>
</tbody>
</table>

Fig. 2: Cubosomes produced from monoolein by a spray drying process. Representative cryo-TEM images of the cubosomes are shown immediately after reconstitution (a+b) and after 12 hours in suspension (c).

Ovalbumin release from cubosomes

![Graph showing ovalbumin release from cubosomes](image)

The developed cubosomes show properties suitable to be used for oral vaccine delivery in microcontainers.

ACKNOWLEDGEMENTS

The research is funded by the Danish National Research Foundation (DNRF122) and Villum Fonden (Grant No. 9301).
We acknowledge the Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen.

RESULTS

Particle Morphology
The spray dried powder was heated to 90°C for 24h. This
- Reduced electrostatic charges in the powder
- Allowed easy reconstitution to a colloidal suspension
- Induced weight loss of 8%

The powder was rich in cubosomes after reconstitution (Fig. 2)

Fig. 2: Cubosomes produced from monoolein by a spray drying process. Representative cryo-TEM images of the cubosomes are shown immediately after reconstitution (a+b) and after 12 hours in suspension (c).

Fig. 3: Release kinetics of FITC-OVA from the cubosomes expressed as percent of total loaded FITC-OVA.

<table>
<thead>
<tr>
<th>OVA release (% of loaded)</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

Particle Characterization

Table 1: Size and zeta-potential of cubosomes with and without adjuvant as measured by dynamic light scattering in Milli-Q water. Mass median aerodynamic diameter (MMAD) measured by time-of-flight mass spectroscopy.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
<th>MMAD (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubosomes with OVA</td>
<td>256±10</td>
<td>0.42</td>
<td>-31.7±1.4</td>
<td>4.1±0.4</td>
</tr>
<tr>
<td>Cubosomes with OVA and Quil A</td>
<td>233±13</td>
<td>0.24</td>
<td>-38.3±1.7</td>
<td>4.1±0.02</td>
</tr>
</tbody>
</table>

Table 2: OVA content in formulation

| OVA content in powder | 20.3±0.5 µg/mg |
| OVA load in particles | 5.1±0.1% wt |

Loading into microcontainers

Microcontainers were fully and homogenously filled with cubosome powder by an embossing method. The microcontainers offer the possibility to protect the formulation during passage through the stomach and provide release of the cubosomes in the intestine.

CONCLUSION

The developed cubosomes show properties suitable to be used for oral vaccine delivery in microcontainers.