Investigating Antivenom Function and Cross-Reactivity – a Study of Antibodies and Their Targets

Engmark, Mikael; De Masi, Federico; Andersen, Mikael Rørdam; Laustsen, Andreas Hougaard; Gutiérrez, José María; Lomonte, Bruno; Lund, Ole

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Snake Antivenom: an Essential Medicine – and a Black Box

Venomous snakebites are regarded as one of the World’s most neglected tropical diseases/conditions with up to 2.5 million victims every year.1 The best-practice treatment for a venomous snakebite consists of antivenom derived from the blood of large mammals (typically horses or sheep) immunized with venom of one or more snake species. The active toxin-neutralizing components in antivenom are complex mixtures of antibodies (or fragments thereof).2 The individual antibodies are adapted by the immune system of the production animal to bind specific to parts of each toxin used in the immunization procedure. In many cases antivenom is also able to neutralize some – or even all – toxic effects of snakebites from related snake species.2

Proteomics-based studies aiming at quantifying the extent of such cross-protection of antibodies against venoms from related snake species are referred to as antivenomics. The current state-of-the-art antivenomics protocol involves affinity chromatography of venoms with immobilized antibodies.3 Although proven effective in clinical applications antivenomics fail to explain how this cross-reactivity is working at the molecular level and must be performed for one snake venom-antivenom pair at a time.

Knowledge of interactions between the immuno-reactive parts (referred to as epitopes) of a toxin or macromolecule in general and the corresponding antibodies is a prerequisite to understand and predict neutralization potential of a given antivenom against any fully characterized snake venom. Although antivenom to snakebites is a highly complex mixture of antibodies (or fragments thereof), the number of antibodies needed to neutralize the critical toxins for any given snake venom was used in the immunization procedure and the SVMP in the upper plot is known to represent approx. 30 % of the total protein composition in venom from adult specimens.7 The SVMP from Crotalus atrox displayed the lower plot is not present in the immunization mixture but shares 60 % of the amino acids with the B. asper SVMP. The lower plot strongly indicates a cross-neutralization potential of the ICP antivenom.

Figure 2 – Signal plots for two snake venom metalloproteinases (SVMP) belonging to the P4 sub-family. Peaks in the signal plots result from binding events between consecutive peptides from the protein sequence of toxins and antibodies in ICP anti-B. asper antivenom. B. asper venom was used in the immunization procedure and the SVMP in the upper plot is known to represent approx. 30 % of the total protein composition in venom from adult specimens. The SVMP from Crotalus atrox displayed the lower plot is not present in the immunization mixture but shares 60 % of the amino acids with the B. asper SVMP. The lower plot strongly indicates a cross-neutralization potential of the ICP antivenom.

Figure 3 – Alignment of peptide 7 to 16 of the SVMPs from the signal plots in figure 2 including the running median signal score calculated as median of signals from peptide and the nearest neighbors on each side. The binding core is highlighted with red squares.

Figure 4 – Crystal structure of B. asper SVMP. P1 (PDB entry 2WI5). The α-helix highlighted in red correspond to the binding core of one or more antibody from the ICP antivenom.

IDEAS AND PERSPECTIVES

• Identity linear peptides from snake toxins that can bind antibodies in antivenom using custom designed high-density peptide microarray technology.8

• Predict cross-reactivity of antivenoms on a protein family level and thereby expand the clinical applications of existing antivenoms to other snake species or suggest changes in immunization mixture to improve the medicine.

• Learning from nature’s preferences for specific epitopes, it will be possible to estimate the number of antibodies needed to neutralize the critical toxins for any given snake species.

• In the long run this may result in recombinant immunization mixtures and even lead to the first fully recombinant antivenom.

References


5. Mikael Engmark, Federico De Masi, Mikael Rørdam Andersen, Andreas Laustsen, José María Gutiérrez, Bruno Lomonte, and Ole Lund

1. Department of Systems Biology, Technical University of Denmark, 2. Department of Drug Design and Pharmacochemistry, Faculty of Health and Medical Sciences, University of Copenhagen, 3. Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica.

Contact information

mik@mik.enmark.com
Financial support: The Novo Nordisk Foundation.