Discovery of Peptide-Based Antitoxins against Neurotoxins from Green and Black Mamba (Dendroaspis Family)

Jappe, Emma Christine; Munk, Andreas; Laustsen, Andreas Hougaard; Engmark, Mikael

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Snakebite – A neglected threat to public health

Globally, more than 5.5 million people are bitten by venomous snakes every year, leading to an estimated 125,000 deaths and 3 times as many amputations [1,2,3]. The problem is most prevalent in Sub-Saharan Africa where affordability of antivenom is low, resulting in only 2% of snakebite victims receiving treatment [1,4]. Since the introduction of antivenoms in the 1890’s, only modest advances in antivenom technology and production have been made. Current antivenoms are, therefore, still being produced by immunisation of large ruminants, typically horses, with snake venoms and subsequently bleeding them to collect blood comprising venom-specific antibodies [4]. The incompatibility of these antivenoms with the human immune system can lead to serious adverse effects [1,5]. A novel approach is needed in order to introduce safer, cheaper and more efficacious antivenoms that are compatible with the human immune system to the market.

We attempt to discover cross-reactive, peptide-based antivenoms against the structurally similar dendrotoxins α-Dtx (α-Dtx, UniProtKB P00998), isolated from Dendroaspis angusticeps (Green mamba), and dendrotoxin I (Dtx I, UniProtKB P00979) from Dendroaspis polyophyllum (Black mamba) by phage display [5,6]. Cross-reactive antivenoms with the ability to neutralise several toxins are of interest to antivenom development, since only a few cross-reactive antivenoms would be needed to neutralise a complete snake venom [4].

Method – Identification of binders with phage display

Initially, sequence alignment using the protein Needleman-Wunsch algorithm from EMBL-EBI was performed (Figure 3). Additionally, 3D structural models of the two toxins were constructed and compared. The structure of α-Dtx was based upon the available X-ray crystallographic structure with PDBe entry 1DXT whilst the structure of Dtx I was estimated based on a model of the Kunitz-type serine protease inhibitor (PDBe entry 3BYB), isolated from Pseudotona textilis (brown snake) using the Bioinformatics Toolkit developed by the Max-Planck Institute, Tübingen (Figure 3).

Results – Cross-reactivity based on similarity

Based on ELISA, strong binding to Dtx I was observed for the polyclonal phage library after the third round of panning (Figure 4), yet randomly selected monodonal phages did not show strong binding to Dtx I (Figure 5). It was observed that the polyclonal phage library also bound to α-Dtx (data not shown), indicating a high degree of cross-reactivity. This was anticipated by the bioinformatics modeling of the dendrotoxins, illustrating a high degree of similarity in both their primary, secondary, and tertiary structures (Figure 3).

Outlook – Discovery of antitoxins for mamba toxins

Polyclonal phages with strong binding affinity, high specificity, yet displaying cross-reactivity, were discovered using phage display. However, due to time limitations, no individual monoclonal phage was found to have both high affinity and show selectivity towards the toxins.

Subsequent steps could include further analysis of other monoclonal phages or repetition of the fourth round of panning in order to attempt to amplify phages with high affinity and specificity. If a high-affinity toxin binder were to be identified, this binder could 1) be applied as a peptidase-based antitoxin, 2) be used to create a peptidomimetic antitoxin or 3) be grafted onto an antibody as a CDR region, paving the way for safer and more efficacious antivenoms.

References

[1] Munk, A., et al. (2011). Snakebite - A neglected threat to public health. Globally, more than 5.5 million people are bitten by venomous snakes every year, leading to an estimated 125,000 deaths and 3 times as many amputations [1,2,3]. The problem is most prevalent in Sub-Saharan Africa where affordability of antivenom is low, resulting in only 2% of snakebite victims receiving treatment [1,4]. Since the introduction of antivenoms in the 1890’s, only modest advances in antivenom technology and production have been made. Current antivenoms are, therefore, still being produced by immunisation of large ruminants, typically horses, with snake venoms and subsequently bleeding them to collect blood comprising venom-specific antibodies [4]. The incompatibility of these antivenoms with the human immune system can lead to serious adverse effects [1,5]. A novel approach is needed in order to introduce safer, cheaper and more efficacious antivenoms that are compatible with the human immune system to the market.

[2] We attempt to discover cross-reactive, peptide-based antivenoms against the structurally similar dendrotoxins α-Dtx (α-Dtx, UniProtKB P00998), isolated from Dendroaspis angusticeps (Green mamba), and dendrotoxin I (Dtx I, UniProtKB P00979) from Dendroaspis polyophyllum (Black mamba) by phage display [5,6]. Cross-reactive antivenoms with the ability to neutralise several toxins are of interest to antivenom development, since only a few cross-reactive antivenoms would be needed to neutralise a complete snake venom [4].

[3] We attempt to discover cross-reactive, peptide-based antivenoms against the structurally similar dendrotoxins α-Dtx (α-Dtx, UniProtKB P00998), isolated from Dendroaspis angusticeps (Green mamba), and dendrotoxin I (Dtx I, UniProtKB P00979) from Dendroaspis polyophyllum (Black mamba) by phage display [5,6]. Cross-reactive antivenoms with the ability to neutralise several toxins are of interest to antivenom development, since only a few cross-reactive antivenoms would be needed to neutralise a complete snake venom [4].

[4] Based on ELISA, strong binding to Dtx I was observed for the polyclonal phage library after the third round of panning (Figure 4), yet randomly selected monodonal phages did not show strong binding to Dtx I (Figure 5). It was observed that the polyclonal phage library also bound to α-Dtx (data not shown), indicating a high degree of cross-reactivity. This was anticipated by the bioinformatics modeling of the dendrotoxins, illustrating a high degree of similarity in both their primary, secondary, and tertiary structures (Figure 3).

[5] Figures illustrating the presentation of phage display for the discovery of antitoxins against mamba toxins. The phage display was applied to discover binders to Dtx I and α-Dtx (Figure 2). Phage display is a screening technique, where a library of peptides is engineered to be expressed on the surface of bacteriophages by genetic fusion with a phage coat protein [7]. In order to identify specific binders, the mamba snake venom toxins are attached to plate wells (R&D) for plate) and, subsequently, the phage library is added to the wells. Phages that display a relevant peptide on their coat will be retained whilst unbound phages will be washed away. Iterative rounds of binding result in amplification of the phages expressing high-affinity peptides [7].

[6] Figure illustrating the presentation of phage display for the discovery of antitoxins against mamba toxins. The phage display was applied to discover binders to Dtx I and α-Dtx (Figure 2). Phage display is a screening technique, where a library of peptides is engineered to be expressed on the surface of bacteriophages by genetic fusion with a phage coat protein [7]. In order to identify specific binders, the mamba snake venom toxins are attached to plate wells (R&D) for plate) and, subsequently, the phage library is added to the wells. Phages that display a relevant peptide on their coat will be retained whilst unbound phages will be washed away. Iterative rounds of binding result in amplification of the phages expressing high-affinity peptides [7].

Contact information

emaj@bio.dtu.dk / (45) 5561 6755, antoinep@email.com / (45) 2227 0414

Acknowledgement

Collaborators: Jonas Johannsen (KU), Greta Sørgensen (KU), Malin Ravn (KU), Alexandra Bak Jakobsen (CBS).

Financial support: Department of Drug Design and Pharmacology, University of Copenhagen