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Summary

In all rotating machines relative movements between the stationary parts and the

rotating parts imply energy loss and, in many critical cases, vibration problems. This

energy loss leads to higher overall energy consumption of the system. Research activ-

ities towards the reduction of friction, the enhancement of damping, the extension of

operating range and the minimisation of critical vibrations in machine elements are

of fundamental importance. The main component to tackle the energy-loss-related

problems is the bearing. The area of design of active bearings, while very promising,

is still in its early development mainly because of its high complexity and its multi-

physics nature. The state-of-the-art models derived from �rst principles and axioms

of mechanics are complex and often subject to signi�cant parameter uncertainties.

They are challenging to develop and not easily used for feedback control design. One

example is the controllable radial gas bearing, where the lubricant air is injected

through controllable injectors to levitate the rotor on an air �lm. Feedback control of

the injection can improve upon the poor damping to reduce the disturbance sensi-

tivity and vibrations near the critical speeds. The feedback control law is preferably

designed from a simple model, which captures the dominant dynamics of the machine

in the frequency range of interest.

This thesis offers two main original contributions in the �eld of active bearings.

First, an experimental technique is proposed for "in situ" identi�cation of low com-

plexity models of the entire rotor-bearing-actuator-sensor system. The approach

employs grey-box identi�cation techniques and is easily applied to industrial rotating

machinery with controllable bearings. The approach is applied for identi�cation of a

linear parameter-varying model of a rotor supported by an active gas bearing.

Second, is the application of model-based control techniques for controllable gas

bearings. The parameter-varying model is shown to suit the design of classical and

modern control including observer and state-feedback,H 1 , LPV and gain-scheduled

H 2 control designs to improve upon the dynamic properties of the gas bearing test
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rig. Experimental results using the control designs show that the controllers can

increase the damping signi�cantly. The damping enhancing controllers are shown

to extend the range of safe operation by a70% increase in shaft angular velocity,

thereby allowing safe operation in and above the regions of the �rst and second

critical speeds.



Resumé

I alle roterende maskiner giver relativ bevægelse mellem de stationære og de

roterende dele anledning til tab af energi og, i mange kritiske tilfælde, vibrationsprob-

lemer. Dette energitab fører til højere energiforbrug af det samlede system. Forskn-

ingsaktiviteter mod reduktion af friktionen, forøgelse af dæmpningen, udvidelse

af driftsområdet og minimering af de kritiske vibrationer i maskinelementer er

af fundamental betydning. Hovedkomponenten for at håndtere de energitabsre-

laterede problemer er lejet. Forskningsfeltet indenfor design af aktive lejer er meget

lovende, men det er stadig kun i begyndelsesfasen. Primært på grund af feltets høje

kompleksitet og multifysiske natur. State-of-the-art-modellerne udledt fra grund-

principperne og de mekaniske aksiomer er ofte komplekse og lider ofte under sig-

ni�kante parameterusikkerheder. De er vanskelige at udlede og svære at bruge til

design af feedback-regulering. Et eksempel er det regulerbare tvær-luftleje, hvor

smøringsluften indsprøjtes gennem regulerbare injektorer for at få rotoren til at svæve

på et luft�lm. Feedbackregulering af indsprøjtningen kan forbedre de ellers dårlige

dæmpningsegenskaber for at reducere forstyrrelsessensitiviteten og vibrationerne

nær de kritiske hastigheder. Feedbackreguleringen designes helst fra en simpel model,

der beskriver maskinens dominerende dynamik i det relevante frekvensområde.

Denne afhandling byder på to originale bidrag inden for forskningen i aktive

lejer. For det første foreslås en teknik til “in situ”-identi�kation af lav-kompleksitets-

modeller af hele rotor-leje-aktuator-sensor-systemet. Metoden anvender grey-box

identi�kationsteknikker og er let anvendelig på industrielle roterende maskiner med

regulerbare lejer. Metoden er anvendt til at iden�cere lineært parameter-varierende

modeller af en rotor understøttet af et aktivt luftleje.

For det andet anvendes modelbaseret reguleringsstrategier på regulerbare luftlejer.

Det påvises at de parameter-varierende modeller er vel-egnede til design af klassisk

og moderne regulering, herunder: observer og tilstandstilbagekobling, H 1 , LPV

og gain-skeduleretH 2 regulatordesign til at forbedre de dynamiske egenskaber af
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luftlejeopstillingen. Eksperimentelle resultater med de foreslåede regulatordesigns

beviser at reguleringen kan øge dæmpningen markant. De dæmpnings-forbedrende

regulatorer demonstrerer at det er muligt at øge det sikre driftsområde med 70%i

omdrejningshastighed. Det tillader dermed sikker drift i- og over de to første kritiske

hastigheder.
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A biologist, a physicist and a mathematician sit at a bench in a park. They see a

man walk into a shed. 10 minutes later, two people walk out. The biologist says “It

was reproduction”, the physicist says “It must be bad data”, but the mathematician

doesn't say anything.

A few minutes later, someone else walks in the shed.

The mathematician goes “Ok, now nobody is in the shed”

To the story, I would like to add, that there was a young system identi�cation

engineer who said “No, don't you see it? it all makes 100 % sense; the transfer

function of the shed is H (s) = 2 e� � s ; � = 10min, and in ten minutes, two people

more should come out.”
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Glossary

critical speed A natural frequency coinciding with the angular velocity of the rotor.

The mass imbalance can grow to critical levels in these regions. 1, 8, 55, 56,

58, 63

�uid �lm The �uid �lm in journal bearings is the thin layer of lubricant (oil, air or

others) that separate the rotor from the bearing housing. 6, 207

journal Part of the rotor in the housing of a journal bearing. 6, 207

journal bearing A bearing where a �uid lubrication results in a full-�lm or a bound-

ary condition lubrication mode. The journal bearing reduces friction by elim-

inating surface-to-surface contact between the journal and bearing. Journal

bearings can be hydrostatically or hydrodynamically or hydroactively lubricated.

In the hydrodynamically lubricated bearings, the pressure in the �uid �lm is

maintained by the rotation of the journal. In the hydrostatically lubricated bear-

ings, a pressurised �uid is injected to lubricate. In the hydroactively lubricated

bearings, the injection of �uid is actively controlled. 5, 6, 10, 20, 207

mass imbalance Vibrations induced in a rotating system from the rotor centre of

mass differing from its geometrical center. 1, 6, 8, 17, 20, 28, 45, 55, 56

rotor Combination of shaft, discs and impellers. 6, 9, 207

touchdown Impact between rotor and stator when the load exceeds the carrying

capacity. 2





Acronyms

AMB active magnetic bearing. 6, 8, 12, 13, 15, 17, 18, 19, 207

CFD computational �uid dynamics. 5, 11, 12
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PEM prediction error method. 25
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RMS root mean square. 40, 51





Chapter 1

Introduction

This chapter summarises previous work from the �eld of active bearing design to

provide a background and motivate this thesis. The experimental facilities are brie�y

revisited along with the state-of-the-art in modelling and control of controllable bearings.

In all rotating machines relative movements between the stationary parts and

the rotating parts imply energy loss and, in many critical cases, vibration problems.

The energy loss reduces the ef�ciency of the rotating machine. From the viewpoint

of sustainable technology, research activities towards the reduction of friction, the

minimisation of vibrations, the extension the operating range and the enhancement

of load capability in machine elements are of fundamental importance.

The research is in general focussed towards three main goals:

G1 reducing the rotor-bearing friction

G2 obtaining high damping levels

G3 increasing the load carrying capacity

Reduction of the friction (G1) diminishes energy losses and thereby the operational

cost; however such a reduction usually entails the overall worsening of the damping

properties. Damping (G2) aids to suppress whirl instability [8, 9] and reduces the

sensitivity of the rotating machine towards disturbances [10], which in turn reduces

the risk of rotor-stator rubbing to avoid wear & tear. The disturbances stem from

many sources. The main source is vibrations frommass imbalance, but vibrations

may also be induced from other rotating machines and from external sources, for

instance, mechanical shocks. The mass imbalance provides a force on the rotor, which
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is synchronous to its angular velocity. The induced vibrations may become critical

when the angular frequency is near the resonance frequencies of the rotor-bearing

system. Systems with low damping are especially sensitive to thesecritical speeds.

Various mechanical and mechatronic solutions have been proposed to attain the

goals G1-3. In order to tackle the energy loss related problems in one of the most

fundamental machine elements, namely the bearing, two main approaches can be

used: one based on traditional passive solutions and one based on active synergistic

solutions. Passive solutions might include approaches such as optimisation of the

geometries, the lubrication �uids, the lubrication mechanisms, the material compli-

ance and the surface roughness. Active solutions normally involve the synergistic

integration of three different domains, namely the mechanical, the electrical and the

control engineering, giving rise to the so-called mechatronic systems. The mecha-

tronics integrated design solutions can involve mechanical, magnetic, pneumatic,

hydraulic and piezoelectric operational principles.

The active solutions may address many of the technical challenges related to new

requirements for safety, quality, low vibrations and noise levels, where conventional

passive solutions are reaching their limits [11, 12]. The area of active synergistic

design in bearings, while very promising, is still in its early development mainly

because of its high complexity and its multi-physics nature; hence it needs further

research efforts.

Among the passive means are foil bearings [13, 14, 15] that exploit friction

between their bumps and foils (see Figure 1.1). Foil bearings are already common

in air cycle machines on commercial and military jets [16]. They are fairly cheap,

though the design of friction is a signi�cant challenge [17] and touchdownoccurs

during start-up and shut-down which wears the bearing surface.

The design of active bearings is still in its infancy. Solutions have been proposed

using different forms of actuation. A few examples are the piezo-electric pushers [18,

19], piezo-actuated tilting pad air bearings [20, 21] (see Figure 1.2 and Figure 1.4),

piezo-actuated aerodynamic bearings [22, 23] (see Figure 1.3), giant magnetostric-

tive materials [24], hydraulic actuators [25], shape memory alloys [26, 27] and

active inherent restrictors [28, 29].

The solution considered in this thesis is the controllable gas bearing [31], where

piezo-actuators control the lubricant air-injection as described further in Section 1.1.

The methods developed in the thesis are general, and they are demonstrated on a

laboratory test rig that resembles a typical industrial rotating machine employing

controllable gas bearings. Concerning the goals G1-3, gas bearings have very low
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Figure 1.1: Passive leaf foil bearing. For

suf�ciently high angular velocities, an air

�lm is formed between the journal and

the leaf foils to avoid direct rotor-stator

contact. (Source: [30]).

Figure 1.2: Aerodynamic piezo-actuated

air bearing. The piezo-actuators control

the position of the pad (Source: [20]).

Figure 1.3: Moveable hydrodynamic bush-

ing bearing. Piezo-actuators apply forces

to a moveable bushing. The bushing is

lubricated with oil (Source: [23]).

Figure 1.4: Aerodynamic tilting pad air

bearing. Piezo-actuators change the an-

gle of the pads to allow vibration control

(Source: [21]).
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rotor-bearing friction which makes them attractive with respect to G1. In their

passive (aerodynamic) form, gas bearings have a low load carrying capacity. The

load carrying capacity is increased by the injection of the pressurised lubricant, which

makes them attractive as well with respect to G3. This pressure increase typically

comes at the cost of reduced damping. It is therefore important to increase the

damping, which may be achieved by actively controlling the lubrication.

Concerning modelling, air-injection actuators have only received sparse attention.

In contrast, electromagnetic actuators have been well covered (see e.g. [32, 33] and

references therein). Gas bearings can be designed to be open loop stable and they are

capable of high speed operation at very wide temperature spans [16]. The friction

losses are extremely low, and clean and abundant air can act as lubricant, but the

damping properties are poor [34, 35, 36]. Though the active air bearings are not

yet employed in commercial applications, the air lubrication is advantageous for a

number of applications. Two promising applications are for compressors and turbine

rotors, which have better aerodynamic ef�ciency at higher speeds [16, 30]. Another

promising application is for turbo-chargers in diesel engines, where traditional oil

lubrication contaminates the product.

The development of active air bearings is still a �eld in early development as

shown from the following short historical overview.

1989-90 Horikawa et al. [37, 20] were among the �rst to design controllable air bearings,

where the stiffness could be controlled by adjusting the position of a pad.

Experimental results demonstrate the opportunity of controlling the rotor

position.

1994 Santos [38] proposed a controllable radial journal bearing design where oil

was injected through controllable servo-valves to allow control of the journal.

In the same work, the modi�ed Reynolds equation was derived to include the

effects of the controllable lubrication into the Reynolds equation.

1996 Mizumoto et al. [28] proposed the active inherent restrictors, where pressurised

air is injected through ori�ces with controllable diameter. The inherent restric-

tors are controlled by PI-algorithms and experimental results demonstrate the

feasibility of controlling the air injection to reduce vibrations for a constant low

angular velocity.

1998 The work of [38] was extended in Santos and Russo [39] where control of the

servo-valves modi�ed the injection pressures to in�uence the hydrodynamic
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forces.

2003 Santos and Scalabrin [40] proposed a solution scheme to the modi�ed Reynolds

equation where a decentralised controller was included in the modi�ed Reynolds

equation to tune the controller. Experimental results demonstrate that the con-

troller halves the mass imbalance for the considered operating condition.

2011 Morosi and Santos [41] propose a modi�ed Reynolds equation to model the

controllable gas bearing considered in this thesis where the radial injection of

pressurised air through piezo-actuated injectors allows control of the journal.

2016 Pierart and Santos [42] further developed the model from [41]. The solutions

obtained from the modi�ed Reynolds equation were compared to those obtained

by computational �uid dynamics (CFD) simulations, to show that a loss factor

is required to account for modelling errors of the complex air�ow in the

controllable injectors. Using the proposed model, a proportional controller is

designed and shown to provide a signi�cant damping enhancement for the

considered operating condition.

A challenge for controllable journal bearingsis the design of control systems.

The present state-of-the-art models [31, 43, 42, 41] rely on the modi�ed Reynolds

equation [38] coupled with a �nite element model (FE model) of the rotor. The

non-linear partial differential Reynolds equation can currently only be solved with

computationally heavy iterative schemes. These models are not easily developed, and

they often have forms which are not directly suited for the design of feedback control

due to unknown input-output relationships, very high model orders ( > 100non-linear

states) and considerable parameter uncertainties [43, 31, 44]. The controllers for

such systems could then be tuned experimentally with the uncertainty, lack of quality

assurance and limitations this method implies. Alternatively, they could be stringently

designed with documentable performance properties based on dynamic models of a

suitable complexity.

This motivates the need for models, which in a simple manner describe the

relation from actuator input to measured output, representing the dynamics of the

rotor-bearing system in the frequency range where control authority is needed [3].

Those models could well be obtained using system identi�cation [45, 46], where

collected input-output data sets allow estimation of the dynamics of interest. The

models should preferably capture the parameter-varying dynamics of the rotating
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machinery, but the identi�cation of parameter-varying models is still a research topic

with many open challenges.

Our literature survey shows that system identi�cation for modelling of controllable

gas bearings is a novel application. However, identi�cation has been widely applied

to active magnetic bearings (AMBs) [47, 48, 49, 50, 51], mainly for non-rotating

shafts that are to operate at low angular velocities, where linear time-invariant (LTI)

models suf�ce. The identi�ed models have been shown effective for the design of

modern and advanced control systems to reject the undesirable vibrations from mass

imbalance [52, 53, 54].

The aim of the thesis is to increase the damping of controllable radial gas bearings

using feedback control. The increase of damping reduces the vibrations near the

natural frequencies which in turn allows an increase of the angular velocity. The de-

sign of modern control systems requires control relevant models, which are different

from those considered the state-of-the-art. The thesis aims at developing such models

to avoid the need for complex models relying on solution schemes to the Reynolds

equation and FE models.

1.1 Experimental Facilities

The experimental setup considered throughout the project consists of arotor

supported in one end by a ball bearing, and in the other end by an active gas journal

bearing as shown in Figure 1.5.

The main machine components are the rotor with a �exible shaft (a) and rigid

disc (b). The rotor is supported in one end by a ball bearing (c) and in the other

end by the active gas bearing (d). The shaft rotation is generated by the injection of

pressurised air in the air turbine (e). The �exible coupling (f) transfers the rotational

energy from the turbine to the rotor.

In the controllable gas bearing, four piezo-actuated injectors are mounted as

shown in Figure 1.6 to push plastic pins. These pins control the injection �ow of

pressurised air into the bearing housing. If the injection pressure is suf�ciently high,

it levitates the rotor on a �uid �lm . The clearance (nominal distance between bearing

and journal) is only 25� m. When a voltage is applied to a piezo-actuator, it expands

and pushes the plastic pin to reduce the �ow and thereby the pushing force on the

rotor.

The disc position (horizontal and vertical) is measured with eddy current sen-

sors (g). A pressure transducer measures the pressure of the air injected in the gas
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Figure 1.5: The experimental controllable gas bearing setup.

a) b)

c)

Figure 1.6: CAD drawing of the test rig: a) the test rig with the controllable gas bearing cut in

half. Major dimensions are included in millimetres [mm ]. b) zoom of a piezoactuator. The

piezo-electric stack pushes a pin, which controls the injector opening. c) zoom of the injector

pin and journal. Pressurised air is supplied at the location of the upper left arrow. It then

�ows past the pin and into the journal to generate a force on the rotor. The air can �ow out

by the sides of the journal (in and out of the paper). The piezo-actuator can be elongated by

increasing the supply voltage to reduce the �ow and thereby the force on the rotor.
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bearing. In an industrial application, the injection pressure could be time-varying.

For the test rig considered, the pressure can be changed with a manual valve. The

pressure is measured before the air �ow is split to the four individual pipes that

supply the air to the gas bearing. The dynamics of the gas bearing is a function of

this injection pressure. The angular velocity is approximated in real time as the time

derivative of the angular rotor position, which is measured with a three channel

optical incremental encoder mounted behind the ball bearing (c). The interested

reader is referred to Appendix H for further description of the test rig.

1.1.1 Mass imbalance

Due to imperfections in the production process, the rotor's centre of mass will not

coincide with its geometrical centre. This causes mass imbalance, which is distributed

over the length of the shaft and the disc, and can be modelled as elements of mass

imbalance. Each elements has imbalance massmu positioned at a distanceeu from

the centre of mass. For an angular velocity
 , the mass imbalance force acting on the

rotor is then [9]:

fu (t) = 
 2mu eu

"
cos(
 t)

sin(
 t)

#

(1.1)

The mass imbalance therefore causes vibrations with a frequency equal to the angular

velocity denoted as synchronous vibrations.

This simple model (1.1) assumes a perfect alignment of the shaft and the bearing.

In practice, this is not the case and the shaft is always translated and rotated relative

to the bearing. The effects of misalignment become more pronounced in applications

including air bearings where the tolerances are low. The misalignment causes

vibrations with higher harmonics of the angular velocity ( 2
 ; 3
 ; 4
 ; :::) [9, 55, 56,

57]. The forces related to the higher harmonic components are usually much lower

than the �rst harmonic. These higher order harmonic oscillations are observable in

the previous work [31] for the test rig at hand and in [51, Fig. 3.1b] for a test rig

supported by two AMBs. Experimental mass imbalance responses during run-up for

the controllable gas bearing are included in Papers F and E

The mass imbalance becomes critical as the angular velocity approaches the

lowly-damped natural frequencies of the rotor-bearing system where the vibrations

are strongly ampli�ed. The coinciding angular velocities and natural frequencies are

denoted as the critical speeds. The large amplitude vibrations near the critical speeds

cause risk of rubbing where the rotor impacts the bearing housing and wears the
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bearing surfaces. To prevent rubbing, it is a standard guideline to avoid stationary

operation within � 15%of the critical speeds. The vibration build-up can be avoided

by accelerating or decelerating the angular velocity suf�ciently fast. The deceleration

of the controllable gas bearing is very slow due to the low viscosity of the air1. It is

therefore limited to operation below the �rst critical speed, which is a limiting factor

during operation.

1.2 State-of-the-Art in Modelling of Rotating Machinery

This section �rst covers modelling of rotordynamic systems based on �rst princi-

ples. It then proceeds to survey the usage of system identi�cation for control design

and �nally it surveys the use of active control of bearings.

1.2.1 First Principles Modelling

State-of-the-art models of rotating machinery commonly consist of interconnec-

tions of rotor and bearing models [31, 42, 11, 58, 32]. FE models are commonly

derived for the rotor [9, 32] whereas the modelling of the bearings may be more

challenging.

These models are originally derived to be useful tools to optimise the bearing

design without the need for constructing multiple bearings to optimise a given design.

The �eld of designing and modelling active journal bearings is very young. In recent

years, research has been focussed towards developing the models to also be useful

for control design. The state-of-the-art modelling approaches for the controllable gas

bearing are summarised in the following.

Finite Element Modelling of Flexible Shaft The �exible shaft is modelled using

a �nite element (FE) method, where the shaft is divided into a number of sections

connected in nodes. Each node has four degree of freedoms (DOFs) to model the

bend and rotation relative to its neighbours. The stiffness and mass of each section is

calculated from the geometry of the shaft and its material properties. The equations

of motion for each node is expressed as a four second order coupled differential

equations to describe the linear and angular positions, velocities and acceleration for

the horizontal and the vertical axis zF = [ z1; z2; : : : ; z4n ]T , where n is the number of

1Experiments in [31] showed that the controllable gas bearing was able to accelerate across the two

�rst critical speeds before the vibrations became critically large. However, the slow deceleration caused

rubbing during the coast-down.
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nodes. The model is formulated using the mass matrixM F , the stiffness matrix K F ,

the gyroscopic matrix G F and the damping matrix D F :

M F •zF (t)+( D F � 
 G F ) _zF (t)+ K F zF (t) = fF (t); zF = [ z1; z2; : : : ; z4n n ]T ; (1.2)

where 
 is the angular rotor velocity. fF (t) is the external forces acting on each node

of the FE model from the �uid �lm, external disturbances and other forces to be

included. The above equation (1.2) can be represented in state-space as:
"

_zF (t)

•zF (t)

#

=

"
0 I

~K F
~D F

# "
zF (t)

_zF (t)

#

+

"
0
~B

#

fF (t); (1.3)

where in the above the “stiffness equivalent” is de�ned ~K F = � M � 1
F K F , and

similarly the “damping equivalent” is ~D F = � M � 1
F (D F � 
 G F ) and ~B = M � 1

F .

FE models of the shaft for the �exible gas bearing have approximately 15-20

nodes resulting in state-space models with order 120-160.

Derivations of the FE model can be found in [59, 9, 31, 43].

Bearing Modelling The active gas bearing and the ball bearing supports the rotor.

The latter is modelled as being linear with a very high stiffness, whereas the journal

bearing is commonly modelled using the Reynolds equation. For controllable gas

bearings, Morosi and Santos [31] derived an extended Reynolds equation to include

the effects of the controllable air lubrication. The equation is derived from the

Navier-Stokes equations from a set of assumptions2 [60, 43, 31] and it is a non-linear

partial differential equation. It models the pressure in the �uid �lm p(x; y; z; h) as a

function of the �uid �lm thickness h(x; y; z; t). The �uid �lm thickness is a function

of the radial journal position in the bearing housing:

@
@y

�
ph3 @p

@y

�
+

@
@z

�
ph3 @p

@z

�
= 6 �U

@(ph)
@y

+ 12�
@(ph)

@t
+ 12pVI (1.4)

The �uid �lm coordinate frame (x; y; z) is: the shaft radial coordinate x oriented

towards the centre of the rotor, the circumferential coordinate y and the axial

coordinate z. The viscosity of the gas is denoted by� , the linear relative velocity of

2Required assumptions of the Reynolds equation: laminar Newtonian air�ow. The air is an ideal,

isothermal gas, whose inertia is neglected, there is no slip between boundary surfaces, the rotor is perfectly

aligned, does not move axially and has linear behaviour, the rotor is decoupled from the turbine. The

injection pressure at the entry of the piezo-actuated injectors is the same and equal to the measured

injection pressure. The surfaces are perfectly smooth and the gas bearing is perfectly cylindrical. Elastic

deformations of solid parts due to pressure changes are neglected.
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the rotating shaft is U and the velocity pro�le of the injected gas is VI . This velocity

pro�le is not easily modelled due to the compressibility of the injected air, and the

short length of the injector. In [31], it was assumed to have parabolic shape with

a linear pressure drop along the length of the injectors assuming Hagen–Poiseuille

�ow.

The modi�ed Reynolds equation has no analytical solution for bearings of �nite

dimensions. It must therefore be spatially discretised and solved iteratively for the

particular con�guration of the rotor using a quali�ed starting guess. The resulting

equations from the spatial gridding can thereby be reduced to a �nite order. The time

derivative terms
�

@p
@t and @h

@t

�
which emerge from expansion of (1.4) are included

by backwards �nite difference approximation. The discretised Reynolds equation

can then be solved to obtain the pressure pro�le. The integral of the pressure pro�le

over the area of the bearing provides the horizontal and vertical forces from the

�uid �lm acting on the shaft fbe(t) = [ f X;be (t); f Y;be(t)]T . The forces can then be

used in two ways: their non-linear form or their linearised form. For small harmonic

perturbations, the forces may be approximated as linear [61], in which case the

bearing dynamics is approximated by an equivalent stiffness and damping matrix.

In the general non-linear case, the Reynolds equation must be solved for every

time step, and the pressure pro�le must be integrated to calculate the forces at

the given time instant. The forces are then included in time simulations of the

FE model to act on the rotor. The differences between the non-linear and linear

model predictions may be signi�cant as demonstrated for an active tilting pad journal

bearing lubricated with oil[62]. The linearised models should therefore be used

alongside with the time simulations. For control design, it is a challenge that the

input-output relations are essentially unknown. It is dif�cult even to bound the

forces at a given time instant. The model is therefore not easily used for control

design. Two preliminary PD controllers were tuned [31] for the test rig, one from

computationally highly demanding time simulations [41], but this controller was

not validated experimentally. The other was tuned experimentally [11] and to

demonstrate the possibility of enhancing the damping to reduce the vibrations.

Parametric studies [31, 41] found that the stiffness and damping coef�cients of

the gas bearing are function of the operating condition de�ned by the combination

of the angular velocity of the rotor and the injection pressure of the lubricant air.

Thereby the rotor-bearing dynamics is also a function of the operating condition. The

same study concluded that the temperature-dependency is nearly insigni�cant due to

the low friction losses in the bearing.
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Recent works [43, 44] showed that the air injection mass �ows predicted by the

modi�ed Reynolds equation from [31] are approximately a factor 105 higher than

those predicted by CFD models. A loss factor was therefore proposed to account

for the compressibility of the air. The input-output relations could be obtained by

including the piezo-actuator position in the loss factor. This is shown to improve the

model predictions. The updated model including the linearised Reynolds equation

has been used successfully in [42] for design of a linear quadratic regulator (LQR)

with a state observer.

The adopted injection model requires a relatively high spatial grid resolution in

the regions near the injectors. The time required to solve the Reynolds equation is

therefore high. The backwards �nite difference approximation of the time derivative

terms is known to require a high temporal resolution (small time step size) to avoid

numerical instability and to reduce the numerical errors [30].

Summary of the �rst principles models The models derived from �rst principles

are not easily derived, and they are often in forms which are not directly suited for

the design of feedback control due to unknown input-output relationships, very high

orders (> 100 states) and parameter uncertainties. The pressure pro�le must be

solved for every con�guration, which leaves the non-linear model unable to describe

the relation from actuator input voltage to shaft displacement on a form suitable for

modern model based controller design. It may be possible to obtain input-output

relationships on a form suitable for control design [42], but the model predictions

from the Reynolds equation may differ signi�cantly from predictions using CFD

models and from experimental observations.

1.2.2 System Identi�cation for Control

Models suitable for controller design can be developed using system identi�cation.

Such models can have low complexity and can yet provide a convenient basis for

synthesising controllers [46]. Identi�cation-based modelling offers the �exibility

of de�ning model structures of the desired complexity to capture the phenomena

relevant for control design.

From thorough literature surveys, it appears that the application of system iden-

ti�cation techniques to derive models suitable for control system design applied to

gas bearings is novel. The literature is rich on identi�cation for control of AMBs and

the identi�ed models have shown fruitful results for the design of controllers. The
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identi�cation of AMBs has some overlap with the identi�cation of controllable bear-

ings, but certainly also a number of differences. For instance, AMBs have inherently

unstable dynamics [63, 64, 65] and therefore require stabilising controllers. The

identi�cation must therefore be performed from closed loop experiments, whereas

gas bearings can be designed to be open loop stable. For the non-rotating case, the

horizontal and vertical AMB dynamics are in general uncoupled, therefore a separate

model is developed for each of the two directions.

The authors of [64, 50] use sub-space based identi�cation approaches to develop

black-box models of rotors supported by AMBs. This allows development of high

order continuous time models for a rotor supported by AMBs. In [49], a frequency

based method is proposed for identi�cation of the transfer function matrix model of

a non-rotating shaft supported by AMBs. The method consisted of steps identifying

the submodels separately and �nally combining them together. In [63], a similar

approach is proposed where the controllers are chosen to improve the identi�cation

of the poles on the real axis.

In [48], a predictor-based subspace identi�cation algorithm is proposed to identify

the dynamics of a non-rotating AMB system to allow a subsequent robust control

design. In [47], an iterative frequency based joint identi�cation/controller de-

sign scheme for a non-rotating shaft supported by AMBs is applied using an linear

quadratic criterion. It is also possible to identify the models online using a simple

black-box model [66], but convergence of the model parameters is not easily ensured.

The above mentioned methods have only been used for identi�cation of non-

rotating shafts. This eliminates the need during identi�cation for methods to address

the harmonic vibrations from mass imbalance, which may be a signi�cant challenge.

One result has been found where system identi�cation has been applied for modelling

of a rotating rigid shaft supported by AMBs [67], but the model did not include the

effects of the parameter variation. The applications are then limited to systems with

negligible parameter dependencies.

Controllable gas bearings differ from AMBs in the sense that gas bearings can be

designed to be open loop stable. This allows the usage of open loop identi�cation

schemes and can eliminate the need for the backup bearings required for AMBs.

However, the lateral dynamics is coupled due to aero-static effects even in the non-

rotating case. Due to the gyroscopic forces, the dynamics of rotors supported by

AMBs is a function of angular velocity. The dynamics of rotors supported by bearings

with controllable lubrication is further a function of the injection pressure.
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1.2.3 Identi�cation of Linear Parameter-Varying Models

The identi�cation strategies mentioned in the previous section are developed

for identi�cation of systems, where the parameter dependency is negligible, which

restricts their usage. All rotordynamic systems are parameter dependent due to the

gyroscopic forces. Some rotordynamic systems are furthermore parameter-varying in

injection pressures [68, 43, 31] and in temperatures [27, 26].

The identi�cation of parameter-varying systems is a topic of broad interest to

obtain linear parameter-varying (LPV) models or to determine parameters in �rst

principles models.

The present LPV identi�cation methods can be divided in two classes: local and

global [69]. The global approaches directly identify the parameter-varying model

from experiments where the scheduling parameter and the controllable inputs are

excited simultaneously. In the local approaches, local LTI models are obtained of

the system for a number of constant scheduling parameters. These local models

can either be obtained from linearisation of a non-linear model or from LTI system

identi�cation. When the local models are in "suitable" representations, the LPV model

is obtained from interpolation of the parameters of the local models as function of

the scheduling parameters.

Both approaches have their advantages and disadvantages. The global method is

useful for systems with fast parameter variations since it can capture the effects rate of

change of the scheduling parameter, but the identi�cation of non-linear systems is not

as well-established as the identi�cation of LTI models. The local approach is unable to

capture the possible effects from the rate of change in the scheduling parameter [69].

For systems with suf�ciently fast changes in the scheduling parameters, these effects

may cause instability [70] even for systems which are stable when the scheduling

parameters are �xed.

The number of data points required for the global approach may quickly grow

to intractable amounts of data for systems with several scheduling parameters. In

the local approach, this problem is avoided since the local models may identi�ed

separately, though the number of local models required increases with the number of

scheduling parameters too.

The challenge in the local approaches is to �nd the suitable representation to

allow the interpolation. The state-space parameters must develop continuously with

the scheduling parameters. This suitable form can either be one where the poles and

zeros [71] or the state-space parameters [72, 69] can be approximated as functions
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of the scheduling parameters. Some works propose to identify the models without

requiring a speci�c state-space realisation, and then subsequently transform the

models to the suitable state-space representation [72, 71, 69]. This state-space

representation could emerge from a partitioning of the system into a number of

�rst and second order systems [71, 69]. These systems require a certain level of

manual sorting to allow interpolation of the poles and zeros. Another strategy which

is more suitable for MIMO systems, is to transform the local models to internally

balanced state-space realisations [72]. The state-space parameters will then usually

develop continuously, except for a number of sign changes that require manual

interaction. This approach can require signi�cant manual labour for high order

systems with a high number of local models since many sign changes may occur.

Another approach proposed for LPV identi�cation is to transform the local models

using their extended observability or controllability matrices to a coherent state-space

basis [73] to obtain a numerically well-balanced LPV model. This method requires

numerically well-conditioned models to avoid singular transformation matrices.

1.3 Active Control of Rotating Machinery

The design of feedback laws for controllable journal bearings is challenging due

to the multi-physics nature of rotating machinery. This is re�ected in literature where

many papers rely on experimentally tuned PID control designs typically to one simple

speci�c goal. The classical decentralised controllers are not easily tuned to ful�l

multiple control objectives or to work robustly in presence of parameter variations.

Results with model based control have mainly been limited to numerical studies

though with a few exceptions for systems actuated by electromagnetic actuators. A

probable cause is the challenges mentioned with the �rst principles models (model

deviations, high complexity, model structures unsuitable for control design).

The control designs for AMBs are more matured, probably because the modelling

of the electromagnetic forces is by now well covered in literature.

Rotordynamic systems are parameter-varying. The controllers for parameter-

varying systems can either be adaptive, robust or gain-scheduled. Robust control

designs must often sacri�ce performance to guarantee stability. Adaptive control

may be attractive if the plant dynamics is varying, but it may be dif�cult to guar-

antee performance and stability without an accurate model. Furthermore, it is

challenging to include multi-objective control requirements into the adaptive control

approaches. The control objectives can be included in gain-scheduled control synthe-
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sis. Gain-scheduled controllers are either designed from conventional gain-scheduling

approaches [74] which are often somewhat ad-hoc. Alternatively, they may be de-

signed systematically using LPV design techniques. The former is attractive for its

simplicity and is commonly employed in industry. The stability and performance

investigations often rely on exhaustive simulations with the risk that un-investigated

critical values or trajectories of the scheduling parameter can cause system failures.

The LPV gain-scheduling techniques [75] offer systematic design approaches for

guaranteeing stability and performance over the whole operating range, but they

still suffer from issues with numerical conditioning and conservatism [74]. The

conservatism can be reduced if the rate of variation of the scheduling-parameters

can be bounded. For non-af�ne parameter dependency, the linear matrix inequalities

(LMIs) for controller synthesis become in�nite dimensional. The LMIs may then be

evaluated over a grid of scheduling parameters [76], but the bound for the L 2 gain is

no longer guaranteed.

The following literature survey is divided into experimental results with experi-

mentally tuned controllers, numerical studies without experimental validation and

model based control designs, which have been validated experimentally.

1.3.1 Experimentally Tuned Control

The early results using piezo-actuated systems from Horikawa and Shimokohbe

consider control of a piezo-actuated aerodynamic air pad bearing [20]. Two control

designs are proposed, a PD and a squared derivative PDD controller along with a

repetitive controller to reduce repeatable rotation errors. The controllers are shown to

reduce the vibration amplitude. Later Qiu et al. [77] propose a system with tilting-pad

air bearings. The air is not injected through controllable injectors. Instead, piezo-

actuators are mounted to adjust the angle of the pads to allow active aerodynamic

lubrication. Experimentally tuned PID controllers reduced sub-synchronous vibrations

but the synchronous vibrations could not be reduced. The paper highlights the need

for control relevant models to understand the control object when multiple control

objectives should be addressed. In [23], a test rig is developed where piezoactuators

apply forces to a movable bushing. From experimental tests, a proportional controller

is shown to extend the onset of instability and thereby extend the operation range of

the machine. In [29], an active aerodynamic spindle design is proposed, where the

adjustment of piezo-actuated wedges provides aerodynamic damping. A repetitive

control design is proposed along with an experimentally tuned classical controller.
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Early PD control designs for the controllable gas bearing [78] have been tuned

experimentally from waterfall diagrams. The control design was able to reduce the

mass imbalance response for the investigated injection pressure.

1.3.2 Numerical Studies

This section covers the application of control in numerical studies where models

derived from �rst principles have been used for design.

Cai et al. [79] proposed an adaptive back-stepping control law for a tilting pad

oil bearing model to asymptotically regulate the rotor displacement despite the

uncertainties in the coef�cients of the lubricant �lm force. An implementation of

the Reynolds equation allowed simulations to be performed. The mass imbalance is

neglected, but the results show that the proposed adaptive controller signi�cantly

reduces the settling time of the rotor compared to the passive operation. Deckler

et al. [80] consider design of an LQR for a tilting pad oil bearing. A simpli�ed

one-dimensional Reynolds equation was proposed with a solution scheme, where the

linearised model may used for control design. Though the response of the non-linear

and the linearised model differed signi�cantly. A control design for a hydroactive

tilting pad oil bearing in [10] aimed at designing the controller using the Reynolds

equation. Here, the Reynolds equation was extended by a term to take the effects

of the controllable lubrication into account. The linearised stiffness and damping

coef�cients were calculated, and the system was assumed linear in the frequency

range of interest. A controller was designed to obtain a speci�ed change in damping

factor. Lihua et al. [21] considered control design for an aerodynamic tilting-pad

gas bearing using piezo-actuated active pads. Decentralised PD controllers were

designed to minimise the two-norm of weighted state and control output response.

The numerical study showed that the vibration amplitude was reduced signi�cantly

over a wide frequency range. Mason et al. [53] synthesised both an LPV controller

and a gain-scheduling control design betweenH 1 controllers to reduce the mass

imbalance response of a rotor supported by AMBs. Sawicki and Gawronski [81]

consider the challenge of obtaining reduced order controllers from the generally high

order controllers synthesised from models of �exible shafts. A �exible three-disk rotor

system supported on anisotropic bearings is considered and a balanced truncation

allows a reduction of the system model from 96 to 22 states. From this model, a

state observer and a linear quadratic gaussian controller were designed to reduce the

two-norm of the impulse response.



18 Chapter 1. Introduction

1.3.3 Experimental Model-Based Control

An early work in model-based control design consideredH 1 control design for

an AMB system [82]. A central controller was calculated and the Youla-parameter

was used to place controller poles on the imaginary axis to reject mass imbalance.

One of the early results in control design for a rigid rotor supported by a hydroactive

tilting pad oil bearing was developed in [40]. The Reynolds equation was formulated

and extended by a term to take the effects of the controllable lubrication into account.

A solution scheme is proposed and from the solutions, perturbation theory is used to

obtain the linearised stiffness and damping coef�cients. The model allowed tuning of

a PD-controller and the controller parameters were tuned using a proposed scheme.

In this scheme, the Reynolds equation was solved for a particular choice of gains. A

controller was designed and was validated experimentally to halve vibrations for the

investigated angular velocity. This design methodology may be applied if relatively

few controller parameters must be tuned, but it is not easily used for more advanced

controllers such as state-space based controllers. For a hydrodynamic tilting-pad oil

bearing with embedded electromagnetic actuators [83], the linearised coef�cients

were extracted from the Reynolds equation and used for control design. An external

shaker was mounted to excite the system with known forces to tune the model

parameters. The model obtained was used for PD control design that reduced the

peak vibration amplitude by up to 18%during run-up and by 11%for operation at

constant speed.

Very recent advances in [42, 43] improved the modelling of the controllable gas

bearing considered in this thesis. The improved model was shown to allow design of

model based control. Here, a method was developed to obtain linear models from

the Reynolds equation including the effects of the controllable lubrication. These

effects may be included into the rotor FE model. The resulting linear model was

then reduced signi�cantly to allow design of a PID controller and an LQR with a

Luenberger observer. The experimental results show that the controllers reduced the

mass imbalance response suf�ciently to allow operation across the two �rst critical

speeds.

In [84] and [67] H 1 controllers were designed for a rigid shaft supported by

AMBs. In [67], an analytical rigid body model derived from �rst principles was

compared to a �nite element model obtained from Ansys and an identi�ed LTI model.

The latter model was used for H 1 control design at the chosen rotor speed. The

controllers were designed to obtain a low output sensitivity at low frequency and
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minimise control activity at high frequency. The control performance deteriorated

as the rotor speed increased from the original design condition, which highlights

the need for models that may capture the parameter-varying nature of the rotating

machine. More recently an identi�ed LTI model has been used for robust control

design for an AMB in [48]. In [85] LPV and H 1 controllers were designed to reduce

the mass imbalance response signi�cantly at a particular angular velocity by placing

under-damped poles in the controller at that particular frequency. The H 1 controllers

quickly became ineffective for mass imbalance reduction as the angular velocity was

shifted away from the optimal condition. The LPV controller on the other hand

was able to shift the frequency of the under-damped poles continuously to allow a

continuous reduction of the mass imbalance. The work was extended in [52] by

using a �exible shaft model. A switching law was proposed using the Youla parameter

to gain-schedule between multiple unstable LPV controllers. Schlotter and Keogh

[86] considered a rotor supported by AMBs and included the gyroscopic effects

of the rotor to design controllers that minimised rotor displacements or bearing

transmitted forces. In [87] a rotor supported by passive oil journal bearings was

considered, where electromagnetic actuators were mounted to allow actuation of the

shaft. The non-linear effects from the oil journal bearing were included by letting the

corresponding stiffness and damping matrices be polynomials of the shaft angular

velocity. An LPV controller was designed to minimise output effects of the mass

imbalance inputs during run-ups and coast-downs.

The literature survey shows that applications of LPV control design have been

limited to applications actuated by AMBs [86, 52, 85, 87] where the shaft angular

velocity is the only scheduling parameter.

There have been few applications of adaptive control in rotordynamics [66, 88,

89] which propose various so-called open loop adaptive control strategies, but the

inclusion of the control objectives into the adaptive controllers is a challenge.

1.4 Summary of Literature Survey

The literature survey shows that active control of bearings promises great ad-

vances in terms of vibration reduction, damping enhancement and extension of the

operating range. While the modelling and control for rotating machinery supported

by AMB is well established, the control designs for active bearings actuated by non-

electromagnetic actuators is still in its early infancy. The control designs that have

been validated experimentally are governed by decentralised experimentally-tuned
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classical control. It is dif�cult to ensure that such control designs perform well across

the range of the scheduling parameters. This highlights the need for control relevant

models. The state-of-the-art models are often of too high complexity to be used

for control design and may still suffer from parameter uncertainties, which makes

them dif�cult to use for control system design. In this regard, system identi�cation

has proven itself a viable alternative for obtaining the models of rotating machinery

supported by AMBs. It is therefore an interesting modelling approach for controllable

gas bearings. The models should be able to capture the inherent parameter-varying

machine dynamics, but the identi�cation methods widely applied for AMBs have

focussed on identi�cation of LTI models. The identi�cation of parameter-varying

models is still a �eld with many open challenges, where the available solutions are

often somewhat ad-hoc often requiring manual interaction.

1.5 Contributions of the Appended Publications

This section highlights the contributions from the appended papers. The contribu-

tions are included in chronological order.

The thesis has two novel contributions. One is that the dynamics of hydroactive

gas bearings can be well-captured by LPV models and procedures have been proposed

to identify such models in Papers A, C and G. A novel application of the runout-�lter

has been developed to eliminate mass imbalance to obtain measurements of the active

response with micro-meter precision. The second contribution is the application of

model-based control design for controllable air journal bearings. Here, the models

identi�ed have been shown useful for model-based control design of state-feedback

control in Paper A, H 1 control in Papers B, E and F, decentralised classical control in

Papers C and D, LPV control in Paper E and gain-scheduledH 2 control design in Paper

G. The papers A-F include experimental validation from closed loop experiments.

1.5.1 Paper A - Experimental Grey Box Model Identi�cation of an

Active Gas Bearing

The conference paper [1] presents an identi�cation approach for controllable

journal bearings relying on grey-box modelling. To counteract the non-linear be-

haviour of the piezo-actuators, decentralised PID controllers are deployed and shown

to obtain a linear behaviour of the controlled piezo-actuators. It is shown that the

dynamics can be captured by linear time invariant models for a constant injection
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pressure and angular velocity of the rotor. The method is used for identi�cation of

the rotating shaft, where a novel application of the run-out �ltering is presented to

�lter out the mass imbalance response to obtain micro-meter precision measurements

of the active response. A grey-box identi�cation structure is proposed and shown to

allow identi�cation of the rotor-bearing dynamics of the controllable gas bearing.

The actuator's dynamics is approximated as static. Models are identi�ed over a small

range of angular velocities to model the dynamics development. The application

of a model-based state-feedback and observer-based control design for one angular

velocity validates the suitability of the model for control. The control design is

validated experimentally to increase the damping of the system by a factor nine,

which is higher than expected.

1.5.2 Paper B - Modelling of Rotor-gas bearings for Feedback

Controller Design

The conference paper [2] discusses challenges for control design using the state-

of-the-art models derived from �rst principles versus control design from models

obtained using system identi�cation. The previous model from Paper A is extended by

a dynamical actuator model of the closed-loop piezo-actuators. From experimentally-

collected data, a model is identi�ed and used for design of an H 1 controller to

increase the damping of the system using the mixed sensitivity approach. The

parameter-varying effects are included as parameter uncertainty to prove closed-loop

stability of the controller over the desired operating range. Experimental closed loop

results verify that the damping factor is increased by a factor three which is very

close to the expected increase.

1.5.3 Paper C - Modelling and identi�cation for control of gas bearings

The journal paper [3] presents an experimental technique for “in situ” identi�ca-

tion of low complexity models of a rotor–bearing–actuator system and demonstrates

identi�cation over relevant scheduling parameter ranges of angular velocity and gas

injection pressure. The paper can be seen as an extension of the modelling from

Papers A and B, where the previous models are improved signi�cantly by the inclusion

of time delays. The delays are included into the model as �rst order Padé approxima-

tions to allow identi�cation with readily available grey-box tools. Decentralised PD

controllers are employed for control of the piezo-actuators and are validated from ex-

periments to allow linear modelling of the closed-loop system. The identi�ed models
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are interpolated as functions of the scheduling parameters to obtain an LPV model

that captures the dominant dynamics. The approach is shown to be easily applied

and to suit subsequent control design. Based on the identi�ed models, decentralised

proportional control is designed and shown to obtain the required damping in theory

and in a laboratory test rig. The experimental open and closed-loop results are shown

to match very well with the ones from the model.

1.5.4 Paper D - Experimental Investigations of Decentralised Control

Design for The Stabilisation of Rotor-Gas Bearings

The conference paper [4] further explores control design using the models identi-

�ed from Paper C. The models are validated from experimentally collected impulse

responses. A decentralised strategy is pursued using classical controllers. The root

locus analysis shows that two different control solutions are feasible for the dampen-

ing the �rst two eigenfrequencies of the gas bearing in the horizontal and vertical

directions. The root locus analysis further shows that it is possible with a proportional

controller to obtain a critically damped system, which is validated experimentally in

Paper C. Hardening and softening P-lead controllers are designed based on the models

experimentally identi�ed, and salient features of both controllers are discussed. Both

controllers are implemented and validated on the physical test rig. Experimental

closed loop results con�rm the validity of the proposed approach and show good

agreement between the measurements and the model predictions.

1.5.5 Paper E - Enhancing Damping of Gas Bearings Using Linear

Parameter-Varying Control

The journal paper [5] addresses the enhancement of the damping properties of

active gas bearings over desired intervals of operating conditions. An LPV model of

the gas bearing test rig is identi�ed. The LPV model is used for design of an LPV

control that guarantees a high damping over the desired range of operation. An

H 1 controller is designed for comparison. Both controllers signi�cantly enhance the

damping of the gas bearing over the scheduling parameter range. The performance of

the controllers is compared both theoretically and experimentally. The LPV controller

in general shows a somewhat better performance and requires less control effort

than the H 1 controller. This improved performance should be compared to the

increased complexity in design and implementation which must be judged for the

speci�c application.
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1.5.6 Paper F - Gas Bearing Control for Safe Operation in Critical

Speed Regions - Experimental Veri�cation

The conference paper [6] further explores the capabilities of the controllers de-

signed in Paper E for extending the operating range of the rotating machine. The

damping enhancement provided by the controller reduces the disturbance ampli�ca-

tion near the natural frequencies. Using the LPV model from Paper C and theH 1

design methods as presented in Paper E, active lubrication techniques are proposed

to enhance the damping, which in turn reduces the vibrations to a desired safe level.

The control design is validated experimentally on a laboratory test rig, and shown to

allow safe operation for angular velocities up to, in and above the two �rst critical

speeds, which signi�cantly extends the operating range. The controller is found to

reduce vibrations suf�ciently to allow operation in the regions of the two �rst critical

speeds. This allows an extension of the operating range of angular velocity by70%.

1.5.7 Paper G - Gain-Scheduled Control Using State-Space

Interpolation - An Application to Hydroactive Gas Bearings

The conference paper [7] presents the design of gain-scheduled control for gas

bearings. Here, local H 2 controllers are synthesised and the continuously gain-

scheduled controller is obtained from subsequent state-space interpolation. The

paper presents a simpli�cation to the previous model identi�cation from Paper C

where the local models can be identi�ed in one step and with a sixth order state-space

model structure. The reduced order local models avoid the need for time delays

and are shown to obtain the same accuracy as the previous models. The model

parameters are shown to develop continuously with the scheduling parameters to

allow LPV modelling of the rotating machine. The paper uses the proposed LPV

model to design low-order controllers to reject the mass imbalance, regulate the disc

position and enhance the damping using a limited control effort. The state-space

interpolated controller is shown superior for rejection of mass imbalance compared

to controllers which schedule with the Youla parametrisation. Our proposed gain-

scheduling approach avoids the increase of state-space controller order associated to

the Youla parametrisation.
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1.6 Structure of the Thesis

The remainder of the thesis is structured as follows: Chapter 2 provides a short

summary of system identi�cation of linear models and the extension to identi�cation

of LPV models and presents the identi�cation of the controllable gas bearing. Chap-

ter 3 describes the control design for active bearings. The main methods that have

been applied for control design for the controllable bearings are brie�y revisited fol-

lowed by a description of the control objectives and challenges. Selected closed loop

experimental results with the proposed control designs are presented. In Chapter 4

conclusions are drawn and future aspects are given.
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Identi�cation of Controllable Bearings

This chapter provides a short summary of system identi�cation of linear models and

the extension to identi�cation of linear parameter-varying (LPV) models and presents

the identi�cation of the controllable gas bearing.

System identi�cation is the �eld of building mathematical models or estimating

model parameters of a system of interest from observed data [45]. Such models

can have low complexity and can yet provide a convenient basis for synthesising

controllers [46]. They can avoid the high order associated with mechanical models

based on �rst principles to include only the phenomena relevant for the control

design. System identi�cation is therefore an attractive means for obtaining control

relevant models of controllable bearings.

The chapter �rst summarises the well-established identi�cation of linear time-

invariant (LTI) models and shows an example of LTI model identi�cation of the

controllable gas bearing test rig. Then, the challenges of extending LTI identi�cation

to LPV systems are presented in Section 2.2 followed by the three gas bearing models

in Section 2.3 proposed in Papers A, C and G. Section 2.4 presents a brief discussion of

the method and some guidelines. Section 2.5 includes an example of the identi�cation

of one of the proposed parameter-varying models. Section 2.6 presents solutions to

counteract the non-linear behaviour of the piezo-actuators and the runout �ltering to

obtain only the active response from the piezo-actuators.

2.1 Summary of System Identi�cation

The aim of system identi�cation is to obtain a model M of a system with the

inputs u and d and the outputs y . The inputs u are commonly chosen as the set of
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Figure 2.1: Identi�cation overview. The model is chosen to minimise the simulation error e

between the measurementy and the estimate ŷ .

controllable inputs that can be manipulated, whereas the inputs d are commonly

denoted by disturbances. These disturbances may stem from uncontrollable forces

acting on the system from e.g. mass imbalance and measurement noise. The distur-

bances are often fully or partially unknown, and it is therefore of interest to obtain

measurements with a minimal effect from these disturbances. A common method is

the prediction error method (PEM) where parameters are estimated by minimising a

residual. The simulation error [45] is a suitable residual choice for the controllable

gas bearing since it is possible to reduce the disturbance effects in the measured data

signi�cantly. The simulation error is de�ned as the signal norm of the difference

between the measured outputy and the output of the model ŷ simulated with the

input u as shown in Figure 2.1.

Denote the input (vector) by uk and the measured output by y k at sampling

instant k at time t = kTs for k 2 f 1; :::; K g. Consider the modelM parametrised by

a parameter vector � . The model predicted output at time k is denoted by ŷ k . The

residual to be minimised is denoted bye and is chosen as the simulation error1

e = y � ŷ (2.1)

The residual is calculated by simulating the model given the input sequenceu. The

1Instead of choosing the residual as the simulation error, it is commonly chosen to be the one-step

prediction error de�ned as e = y k � ŷ k j k � 1 , where ŷ k j k � 1 denotes the estimated model output given all

measurements up to samplek � 1 [45]. A model that minimises the one-step prediction error is optimal

for one-step prediction. Such models may not be good for simulation and vice versa.
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optimal parameter is denoted by � � and minimises the residual:

� � = arg min
�

KX

k=0

kek k2
2

| {z }
J ( � )

(2.2)

The minimisation of the cost function J (� ) is a non-linear optimisation problem. It

is therefore necessary to use iterative methods to estimate the optimal parameter

set from a given initial estimate. The non-linear optimisation bears the risk that the

optimisation converges to a local minimum. This risk is reduced by providing a good

initial parameter estimate for the algorithm. The model quality must be assessed

subsequently (prediction capabilities on validation data, signi�cance of parameters,

pole-zero cancellations). The order of the system is commonly unknown, and the

selection of a model order can be an iterative process. The parameters are estimated

from �nite length data sequences which are affected by stochastic measurement

noise. The parameter estimate will therefore itself be stochastic [45].

2.1.1 Goodness of Fit

The model quality is commonly quanti�ed by the goodness of �t calculated as the

normalized root mean square error of the residuals. The models have a goodness of

�t value for each of the n output channels y k = [ y1;k ; :::; yn;k ]T . The goodness of �t

(or simply �t value) of channel n is calculated as

�t n = 1 �
P K

k=0 ken;k k2
P K

k=0 kyn;k � E (yn )k2

(2.3)

where E(yn ) denotes the mean value of the measurementsyn;k and en;k is the n-th

output channel of the simulation error as de�ned in (2.1) . The �t value is de�ned

on the interval ] � 1 ; 1]. If the residual is zero, the goodness of �t is 1 = 100%.

The �t value is a measure to be used with care. A high �t on one data set does not

guarantee a high �t on another data set collected from the same system near the

same linearisation point if the model over-�ts. To avoid such over-�tting to the data,

it is a standard guideline to evaluate the �t value on a validation data set to ensure

the �t values are similar. This validation data should be data that was not used for

the identi�cation.
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2.1.2 Input Excitation

The data sets for identi�cation should contain suf�cient excitation of the input

signals in the frequency range of interest. For control design it is important to

excite the system in the frequency range of the crossover frequency which is rarely

known prior to the control design. For the controllable gas bearing, this excitation

is ensured by changing the position references for the piezo-actuators. Excitation

signals such as pseudo-random binary signals (PRBSs) and chirp signals are effective

for designing the frequency interval of excitation. In general, all piezo-actuators are

excited simultaneously with independent signals for the horizontal and the vertical

actuators. The amplitude of these excitation signals is a tuning parameter and a

higher level can increase the quality of models by increasing the signal-to-noise ratio,

which can increase the �t values as seen from(2.3) . Too high levels however excite

the system further away from the equilibrium point where it no longer behaves

linearly or it could cause rotor-stator rub that damages the bearing surface.

2.1.3 Pre�ltering

It is often bene�cial to pre�lter the data before the identi�cation. This pre�ltering

can remove or reduce effects that the model is not able to predict. For the controllable

gas bearing, pre�ltering is applied to remove the mass imbalance response using the

extended runout �lter described in Section 2.6.2 and to remove biases from input

and output signals. These biases are estimated from a short initial time-span for the

identi�cation data sets where the piezo-actuators positions are not changed.

2.1.4 LTI Identi�cation of Controllable Gas Bearings

This section shows examples of identi�cation of LTI models of the controllable

gas bearing for two different operating conditions.

It has previously been shown for hydroactive oil �lm bearings [62] that the

differences between the non-linear and linear model predictions can be signi�cant.

Our initial analyses in Paper A showed that the gas bearing dynamics for a constant

operating condition can be approximated well by LTI models. This operating condition

is determined by the combination of angular velocity and injection pressure. The

paper further showed that the actuator dynamics can be captured with LTI models

when local controllers are deployed to counteract the inherent non-linearities in

the piezo-ceramics. The measurements collected for rotating operating conditions



2.1. Summary of System Identi�cation 29

include the response frommass imbalancethat poses a challenge for the identi�cation.

A runout �lter has been proposed in Paper A and C to remove the mass imbalance

response of�ine from the identi�cation measurements.

Two data sets collected for different operating conditions are included. The data

sequences have a duration of approximately 8-12 seconds, where the piezo-actuators

are commanded PRBS signals. The �rst is collected for the lowest injection pressure

and zero angular velocity. For these data sets, the runout �lter is not used, but

the biases are removed. A model on the form presented in Section 2.3.3 has been

identi�ed for the data set. A part of the sequence is shown in Figure 2.2 along with

the response of the identi�ed model. During this part of the sequence, two steps

are commanded to the vertical actuators (lowest plot). These steps mainly induce

vibrations in the vertical disc direction ( 2nd plot from above). Frequent steps are

commanded to the horizontal actuators (4th plot from above), which mainly cause

horizontal disc vibrations, but also vertical disc vibrations with lower amplitude. The

model is able to capture these cross-couplings and the �t values are[88:8; 86:3]%. The

�t values for a validation data set are [89:7; 84:1]%, which is close to the identi�cation

�t values indicating that the model is able to predict the response well. One �t value

is higher for the validation data than the identi�cation data. This indicates a better

signal to noise ratio in the validation data.

A similar data set has been collected for a higher angular velocity. Here, the

runout �lter has been applied to remove the mass imbalance response. Figure 2.13

shows a part of the data set before and after runout �ltering. The mass imbalance

vibrations have an amplitude of 9�m and have been reduced to0:5�m by runout

�ltering. A model is identi�ed from the data set and the model and measured

responses are shown in Figure 2.3. Again a zoom is shown where two steps are

commanded to the vertical actuators while frequent steps are commanded to the

horizontal actuators. At higher angular velocities the cross coupling gains increase

and it is evident that the vertical vibrations from the horizontal actuator steps are now

more signi�cant. The �t values are slightly lower ([79:4; 77:4]%) due to the residual

mass imbalance vibrations. The �t values for a validation data set are close to these

values([80:3; 76:5]%) indicating that the model is able to predict the response well.

The optimal parameter sets for the data collected at lower and at higher angular

velocities differ, which indicates the parameter-varying plant nature.

The following sections describe the LPV identi�cation methods proposed for

models that capture this parameter development.
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Figure 2.2: Identi�cation data for low pressure and non-rotating shaft q = [0 krpm; 0:3MPa].

Model goodness of �t: [88:8; 86:3]%.

2.2 Identi�cation of LPV Systems

The dynamics of the controllable gas bearing is a function of the operating

condition de�ned by the combination of angular velocity and injection pressure. This

project has developed methods for identi�cation of LPV models that capture the

dynamics well.

The LPV models are generally formulated in state-space descriptions where the

state-space matrices are functions of the scheduling parameters denoted byq(t):

G(q; t) =

"
A (q) B (q)

C(q) D (q)

#

; (2.4)

The matricesA ; B ; C and D can be structured or fully populated. For the controllable

gas bearing, the scheduling parameters are chosen as the operating condition de�ned

by the angular velocity and the injection pressure.
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Figure 2.3: Identi�cation data for low pressure and rotating shaft q = [5 :3krpm; 0:3MPa].

Model goodness of �ts: [79:4; 77:4]%.

2.2.1 Local and Global Approach

The approaches for identi�cation of LPV models of the form (2.4) from literature

can be divided into two main categories [69] namely the local and the global. The

global approaches aim to directly identify models on the form (2.4) from data sets

with simultaneous excitation of both the system inputs and the scheduling parameters.

The global approaches therefore require non-linear identi�cation methods. They are

therefore better suited for low order systems with only one or a few inputs, outputs

and scheduling parameters. For the gas bearing, the global approaches require

intractable amounts of data. Partly because the system has fast dynamics and the

scheduling parameter can only be changed slowly and partly because a big amount of

data is required to ensure suf�cient excitation of both scheduling parameters, inputs

and outputs.

The local approaches instead rely on identifying models of the system for multiple
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constant values of the scheduling parameterq i 2 Q, in which case the model

identi�cation becomes LTI and the local model is:

G(q i ; t) =

"
A (q i ) B (q i )

C(q i ) D (q i )

#

(2.5)

From the local models, the LPV model can then be obtained. The local approaches can

therefore divide the identi�cation into multiple LTI identi�cation tasks. A discussion

of the method and its limitations is given in Section 2.4.

Local modelling approaches have shown fruitful results for modelling of the

controllable gas bearing.

2.2.2 Model Order and Structure

It is standard knowledge from identi�cation of LTI models that the order of the

model must not be too high or low. Too low order models are not able to capture

the dominant dynamics and too high order models over-�t in the sense that they

will perform poorly for prediction on a validation data set. This challenge is multi-

dimensional for LPV identi�cation because the multiple local models to be identi�ed

must cohere, e.g. the number of poles and zeros must be constant, which is ensured

by imposing a structure. The model structure must capture the dynamics in the

desired scheduling parameter range. Furthermore, the model parameters develop

adequately allow interpolation to develop an LPV model that captures the dynamics

of the gas bearing.

Standard black-box identi�cation methods are often not suitable for LPV identi�-

cation. Matrix transfer function-based models such as ARX and ARMAX models tend

to provide high order models for MIMO systems, and they tend to underestimate the

damping due to their unrealistic noise models. The black-box state-space models

can provide good local models with low order, but the models are usually obtained

in different state-space realisations, and they are therefore not easily interpolated.

The available techniques from literature [72, 71, 69, 73] have used black box iden-

ti�cation methods and propose methods for transforming the models to suitable

state-space representations to allow interpolation. They suffer from challenges with

numerical conditioning [73] or low level of automation [71, 72, 69]. The methods

are shown feasible for fairly small scale examples, but not much attention has been

devoted to the the model structures to allow interpolation. Our experiences with

locally identi�ed black box models of the gas bearing show that the model parameters

to not develop adequately over the scheduling parameter to provide LPV models
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that capture the behaviour of the gas bearing. This project has therefore sought an

alternative strategy for the development of LPV models.

2.3 Grey-Box LPV Identi�cation

This project contributes with a local grey-box LPV identi�cation method, where

the local models are identi�ed directly on a desired state-space form, such that certain

model parameters can be interpolated to obtain the LPV model.

There are no analytical approaches for the selection of model structures for

LPV identi�cation described in literature. The modelling is therefore an iterative

procedure, which is re�ected in this work by the different models proposed. When

an analytical model is available, it can be linearised to obtain these local models on a

suitable structure, but this is generally not the case.

The models can capture the dominant dynamics of the controllable gas bearing in

the frequency range of the two �rst natural frequencies, which are captured with mass-

spring-damper like systems similar to(1.3) . The model parameters can be identi�ed

with standard LTI grey-box identi�cation tools using functions written as part of

this project as shown in Section 2.1.4. The models avoid an over-parametrisation.

The model parameters can therefore be identi�ed for multiple different constant

values of the scheduling parametersq j for j = f 1; :::; J g. Each of the n model

parameters � = [ � 1; :::; � n ]T have then been approximated as polynomials of the

scheduling parameters. The varying parameters can be chosen as the unknown

parameters of the grey-box model or a subset thereof. The method is not restricted to

polynomials but the experimental results show that second order polynomials are

well suited to avoid over- and under-�tting. The parameter-varying matrices then

have the form:

� 1(q) = � 1;0 + � 1;1q1 + � 1;2q2 + � 1;3q2
1 + � 1;4q2

2 + � 1;5q1q2

...

� n (q) = � 1;0 + � n; 1q1 + � n; 2q2 + � n; 3q2
1 + � n; 4q2

2 + � n; 5q1q2

(2.6)

These polynomials are approximated with standard regression tools from thej =

f 1; :::; J g estimates of each of the parameter� n;j . The parameters� n; 1; :::; � n; 1 are

chosen such that they minimise the cost function:

J � (q) =
NX

n =1

JX

j =1

k� n (q j ) � � n;j k2
2 (2.7)
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The optimisation can be divided into linear N independent least squares problems,

which can be solved analytically:

J � (q) =
NX

n =1

J � n (q); J � n (q) =
JX

j =1

k� n (q j ) � � n;j k2
2 (2.8)

The LPV modelG(q; t) on the form (2.5) is then derived from the estimated functions

� n (q j ). The following is an example for a �rst order system.

Example with First order System To exemplify the grey-box LPV identi�cation

approach, consider a �rst order system scheduled in one parameterq in the interval

q 2 [qmin ; qmax ] with a parameter-varying gain and -pole. This system has a minimal

state-space representation: "
a(q) b(q)

1 0

#

(2.9)

The process is summarised in Figure 2.4 and is as follows.

The interval is gridded to cover the interval Q = f q1; q2; :::; qj ; :::; qJ g and local

LTI models on the form

M j =

"
aj bj

1 0

#

(2.10)

are identi�ed for a set of �xed values of the scheduling parameter q 2 Q to cover

the desired interval. The varying parameters area and b, which are interpolated

from the estimates f a1; a2:::; aJ g and f b1; b2:::; bJ g using standard linear least squares

regression tools, that minimise cost functions:

Ja(q) =
JX

j =1

ka(qj ) � aj k2
2 (2.11)

where a similar function Jb(q) is minimised for b from which the LPV model (2.9) is

derived.

Controllable Gas Bearing Models Three different continuous time models for

grey-box LPV identi�cation have been developed throughout the project and are

denoted as Model 1,2 and 3.

� Model 1 includes a dynamical fourth order model of the rotor-bearing system

and the actuator dynamics are approximated as static gains.
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Figure 2.4: Summary of the state-space interpolation algorithm. Different data setsD j are

collected for constant values of the scheduling parameterqj . From the data sets, modelsM j

are identi�ed in a desired state-space realisation. the time-varying parameters (in this casea

and b) are interpolated as functions of the scheduling parameter to obtain the LPV model.
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� Model 2 includes both a fourth order model of the actuator dynamics and a sixth

order model of the rotor-bearing dynamics, which are identi�ed separately.

� Model 3 includes all the dynamics into one sixth order model to avoids the

need of separating the identi�cation in two.

The following sections describe the three models. Section 2.5 includes an example of

the identi�cation of model 3 on LPV form and a comparison of models 2 and 3.

2.3.1 Model 1

This section summarises model 1 presented in Paper A, which models the rotor-

bearing system as a second order mass-spring-damper equivalent system:

G rb (t) =

2

6
4

0 I 0 0

K D B B d

I 0 0 I

3

7
5 (2.12)

where in the above the matrices to be identi�ed are K , D , B, Bd, each fully populated

and of dimension 2� 2 and the initial state x0. The four inputs are the two controllable

inputs u and the two disturbance inputs d.

In this model, the actuator dynamics is neglected and approximated with a static

gain G act (s) = 2 I .

The parameters to be interpolated are the elements of the stiffness and damping

equivalents K , D and the input gains B. A parameter-varying model was developed

for a small range of angular velocities. The model was used for design of a state-

feedback controller, with a Luenberger state observer in Paper A. The experimental

closed loop results showed some deviation from the results expected from this model.

The model was therefore improved in Paper C.

2.3.2 Model 2

This section summarises model 2 presented in Paper C, which is a cascading of the

actuator model G act and the rotor-bearing model G rb . These models are identi�ed

separately as shown in Figure 2.5. The rotor-bearing model is a 2 degree of freedom

(DOF) mass-spring-damper system actuated through �rst order delays� x and � y . The

two time delays are represented with �rst order Padé approximations to allow linear
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Figure 2.5: Overview of the system identi�cation process. A perturbation of the commanded

piezo-actuator positions perturbs both the piezo-actuators and the shaft and disc. An actuator

model can the be identi�ed from the f u; v g data sets, and a rotor-bearing model from

the f v ; pg data sets.

modelling. The �nal rotor-bearing model has the structure:

G rb (t) =

2

6
6
6
6
4

0 I 0 0

K D 2BT � B

0 0 � T I

I 0 0 0

3

7
7
7
7
5

; (2.13)

in which K ; D and B are fully populated matrices that represent the equivalent

stiffness, damping and input gain. The time delay approximations are included in

the matrix T = diag(2=�x ; 2=�y ), where the delays have the following state-space

realisations:

G� j (t) =

"
� 2=� j 1

4=� j � 1

#

; j 2 f x; yg (2.14)

and can therefore be written

G � (t) =

"
G� x (t) 0

0 G� y (t)

#

=

"
� T I 2

2T � I 2

#

; (2.15)

A similar model can be set up for the PD-controlled piezo-actuator pairs. Each

pair of piezo-actuators can be modelled as a second order low-pass �lter. The

piezo-actuator dynamics is written as transfer functions with gains � a;j and two

poles p1;j , and p2;j , where the subscript j refers to the pair of horizontal ( x) or

vertical ( y) piezo-actuators. Considering the commanded reference position as input,
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the piezo-actuator dynamicsG act then reads:

"
vx (s)

vy (s)

#

=

"
Ga;x (s) 0

0 Ga;y (s)

#

| {z }
= G act

"
r x (s)

r y (s)

#

; Ga;j (s) =
� a;j�

1
p1;j

s + 1
� �

1
p2;j

s + 1
�

(2.16)

in which Ga;j (s) is the second order �lter of the speci�ed form (2.16).

In this model, the parameters to be interpolated as function of the scheduling

parameters are the time delaysf � x ; � y g and the mass-spring-damper parameters

f vec(K ); vec(D ); vec(B)g. The actuator model is approximated as LTI.

Model 2 is obtained by cascading the actuator model(2.16) and the rotor-bearing

model (2.13) . This model can capture the dynamics very well but has a fairly high

order.

2.3.3 Model 3

The simpli�ed but yet accurate Model 3 was developed as part of the work related

to Paper G. The work is summarised in Section 2.5 which shows that the local models

can be identi�ed directly in one step and that a sixth order model can provide a

similar accuracy as Model 2.

The reduced model structure consists a parameter-varying mass-spring-damper

system actuated through �rst order low-pass �lters hj (s); j 2 f 1; 2g with unit static

gain to avoid over-parametrisation:

hj (s) =
pj

s + pj
=

"
� pj pj

1 0

#

; j 2 f 1; 2g (2.17)

The chosen model structure can then be written

G =

2

6
6
6
6
4

0 I 0 0

K D B 0

0 0 � P P

I 0 0 0

3

7
7
7
7
5

; P = diag(p1; p2) (2.18)

in which the parameters to be identi�ed are � = [ vec(K ); vec(D ); :::; vec(B); p1; p2].

These are also the parameters to be interpolated.



2.4. Discussion 39

2.4 Discussion

This section presents a discussion of the proposed grey-box identi�cation method.

The discussion is divided in topics.

Model range The method relies on regression for data collected in some interval

of q, and the model is not expected to be valid outside this interval. The identi�ed

models are therefore not able to replace the �rst principles models during the machine

design phase, where it is necessary to evaluate the effects of changing parameters

such as the bearing geometry. Care should be taken to avoid over-�tting to ensure that

the model captures the parameter-variation inside the desired interval. High order

polynomials should be avoided since they are usually poor for prediction between

the investigated values used for interpolation.

Local approach limitations The proposed grey-box identi�cation method be-

longs to the class of local LPV identi�cation methods, and it is therefore limited to

applications with slow parameter-variations. The method is not able to capture the

effects from rate of change in the scheduling parameters.

Choice of q grid The grid of the scheduling parameter interval must not nec-

essarily be evenly distributed, but a high density in one region of the scheduling

parameter interval increase the accuracy of the interpolation in that region at the cost

of accuracy in other regions. For the present project, it has generally been chosen to

collect models in equidistantly gridded sets, and to collect at least two data sets at

each scheduling parameter value to allow cross-validation of the models on similar

data sets.

Model validation It is common to assess identi�ed LTI models using tools such as

autocorrelation analysis, spectral analysis of the residuals and parameter signi�cance

tests to assess whether the chosen model structure is too simple or too complicated.

It may be that certain model parameters are insigni�cant or a higher order model is

required to obtain a white residual.

These model changes are not easily assessed for LPV model identi�cation since the

model order is constrained to be the same for all models, and certain parameters may

change sign over the scheduling parameter interval. The choice of model structure

for LPV identi�cation is a �eld that requires further treatment in research.

An increase of model order increases the order of the controller when modern

control design techniques are applied. It is therefore of interest to obtain low order

models. Correlation analyses of the residuals show that the model residuals are not

white, but it has been chosen to avoid a further increase of the model orders.
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2.5 Identi�cation of Model 3 and Model Comparison

This section shows an example of identi�cation of the parameter-varying Model

3 proposed in Paper G. The focus of the paper is on the design of gain-scheduled

control, and the paper uses Model 3 from Section 2.3.3.

Model 3 is able to reduce the complexity compared to Model 2. The state-space

order is reduced from 10 to 6, the new model avoids the need for parameter-varying

time-delays, and the local models could be identi�ed in one step. The optimal model

order was assessed by identifying black-box state-space models using Matlab'sssest

of different orders for three data sets collected at different values of the scheduling

parameter. For each data set, a validation data set was available, from which we

evaluated the goodness of �t. For the same data sets we identi�ed a model on the

form of Model 2. Table 2.1 summarises the goodness of �t-values for the different

models in validation. The table shows that the validation �t increases signi�cantly

up to model order 6, from which the change is negligible. We then identi�ed local

black-box models from the same data sets used in Paper E collected in the grid points

q1 2 f 0; 1; 2; 3; 4; 5; 6g krpm, q2 2 f 0:3; 0:4; 0:5; 0:6; 0:7g MPa. The parameters of the

black-box model did not develop adequately to be interpolated2. We therefore began

to investigate grey-box models of order 6 that were adequate for interpolation. These

analyses led to Model 3. The corresponding validation �ts for Model 3 are included

in Table 2.1 and demonstrate that it obtains �t values similar to Model 2 indicating

that no accuracy is lost. Models on the form of Model 3 were therefore identi�ed for

the collected data sets.

For the interpolation we only use 35 of the identi�ed models. The remaining 34

models are used for model validation to ensure that the models predict well in these

remaining points. The parameters to be interpolated are the four stiffness equivalents

and similarly the four damping and input gain equivalents and the two poles:

� = f kxx ; kxy ; kyx ; kyy ; dxx ; :::; dyy ; bxx ; :::; byy ; p1; p2g (2.19)

2Without any model transformations, the parameters did not appear to develop continuously. The

methods proposed for transforming the models proposed in [73] were not applicable as the transformation

matrices became singular. Attempts were also made to identify the models in discrete time, which improved

the numerical conditioning suf�ciently to obtain regular transformation matrices that allow usage of the

SMILE technique [73]. The subsequent interpolation however revealed that the local models' behaviour

was signi�cantly different from the LPV model's behaviour in the same points. We contribute this to a high

numerical parameter sensitivity in the sense that a small error in parameter-estimate signi�cantly changes

the input-output behaviour of the model.
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Model order ssest 4 ssest 5 ssest 6 ssest 7 ssest 8 Model 2 Model 3

Data sets collected atq1 = 0 krpm, q2 = 0 :3MPa:

Horz. �t ( %) 78.85 79.57 86.70 86.72 86.77 86.27 86.42

Vert. �t ( %) 75.17 86.98 87.17 87.25 87.28 86.69 85.50

Data sets collected atq1 = 4 :05krpm, q2 = 0 :5MPa:

Horz. �t ( %) 70.41 74.20 86.40 86.49 86.40 85.57 86.01

Vert. �t ( %) 73.03 87.08 87.50 87.50 87.54 85.91 86.87

Data sets collected atq1 = 4 :2krpm, q2 = 0 :7MPa:

Horz. �t ( %) 71.04 73.28 85.03 84.55 84.88 82.75 84.70

Vert. �t ( %) 75.99 80.02 87.50 87.35 87.16 83.35 84.34

Table 2.1: Validation for n th order black box models and two of the proposed grey-box models

for selected local data sets.

The parameters are approximated with polynomials of q, and it is found that a

second order polynomial on the following form is suitable to identify the elements of

� = [ � 1; :::; � i ; � I ] on the form (2.6) . The estimated model parameters as functions of

q are shown in Figures 2.6, 2.7, 2.8 and 2.9. The �gures show the points used for

identi�cation ( � ) and the ones used for validation (� ) and their polynomial surfaces

along with the root mean square (RMS) error for the identi�cation and the validation

points. The difference between the RMS error for the identi�cation data and the

validation data is low, indicating that the models do not over-�t.

As shown from the �gures, the second order polynomial surfaces capture the pa-

rameter development well. It may be possible to use a linear (�rst order polynomial)

model in q to obtain an af�ne LPV model. Such a model could avoid the need for

gridding in the LPV synthesis. In Paper G we used the SMILE technique [73] to obtain

the LPV model, where the local models are transformed to coherent state-space

bases. In the transformation, the structure of the model state-space matrices is lost.

Polynomial surface estimates of the Model 1 are available in Paper A and for Model 2

in Paper C.

2.6 Practical Challenges

This section presents the solutions to practical challenges in the identi�cation of

the gas bearing dynamics. First is the inherent non-linearities of the piezo-actuators.

These non-linearities are counteracted by decentralised controllers for each piezo-

actuator. Second is the runout compensation to �lter out the mass imbalance response
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Figure 2.6: Stiffness equivalents[N=(kg �m )] estimated as polynomial surfaces of the schedul-

ing parameter. The RMS errors for identi�cation and the validation data are written with the

legend.

from the identi�cation data.

2.6.1 Piezo-Actuators

The piezo-actuators are subject to hysteresis and creep. The hysteresis can be

modelled with the Preisach model [90]. The creep and hysteresis can be compensated

with iterative algorithms [91], but these methods are not easily applied and the re-

sulting models are complex. To avoid the signi�cant increase of complexity associated

to the modelling of these non-linearities, it is of interest to counteract them using

high-gain feedback controllers. This is treated in Paper C through the deployment of

decentralised PD-controllers. The controllers are tuned experimentally and allow the

piezo-actuators to track reference positions. The closed loop piezo-actuator dynamics
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Figure 2.7: Damping equivalents [Ns=(kg �m )] estimated as polynomial surfaces of the

scheduling parameter. The RMS errors for identi�cation and the validation data are written

with the legend.

can then be captured by linear models. Figure 2.10 shows step responses of an open

and closed loop piezo-actuator. The static equilibrium positions shown in Figure 2.11

reveal the hysteresis.

2.6.2 Runout Compensation

This section �rst summarises the standard runout compensation for rotating

machinery and then presents the novel application of runout compensation for

removing mass imbalance response to obtain the active response.

The disc movement is measured with eddy current sensors that induce electrical

currents in the disc surface by a coil. This in turn induces currents in a second
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Figure 2.8: Input gain equivalents [N=(kg V)] estimated as polynomial surfaces of the schedul-

ing parameter. The RMS errors for identi�cation and the validation data are written with the

legend.

coil, from which the distance from the sensor to the disc is measured. These mea-

surements are very accurate, but to obtain the required precision it is necessary to

take imperfections in the disc into account. The imperfections include small scale

electrical property variations and small scale deviations in the radius of the disc [92]

and cause erroneous observations in the disc position denoted by runout. The runout

is not caused by disc movement, therefore it is of interest to �lter it out.

The runout is estimated from measurements collected at low angular velocity

where the vibration amplitude is negligible ( < 200rpm) and an example of measured

response is shown in Figure 2.12. The runout estimate is a look-up table of the

angular position and can be subtracted online to remove runout errors from the disc

movement measurements. Figure 2.12 shows the uncompensated measurements
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Figure 2.9: Real poles[rad=s] estimated as polynomial surfaces of the scheduling parameter.

The RMS errors for identi�cation and the validation data are written with the legend..

for the two angular velocities 
 = 0 rpm and 
 = 5 krpm and the black lines are

the corresponding estimated runouts. The estimate is obtained as the mean of the

measurements collected at a particular angular position. This runout �ltering is

standard for rotating machinery.

As a novel application, we propose to use the same runout �ltering method to

partition the disc movement measurements into mass imbalance vibrations, runout

errors and active response. This partitioning is particularly useful to obtain only the

active response, i.e. the disc movement stemming from the actuation.

This requires estimation of the mass imbalance response. For a constant angular

velocity, the disc movement signals enter a limit cycle induced by the mass imbalance.

This limit cycle can be estimated from a data set collected at a desired constant

angular velocity where the rotor is only excited by the mass imbalance. From the

measurements the extended runout is estimated in the same way as the ordinary

runout �lter and generates a look-up table of the angular position. An example

of identi�cation data before and after runout compensation of the mass imbalance

response is shown in Figure 2.13. The runout compensation of the mass imbalance

�lters out the mass imbalance and only the active response remains.

This �ltering is described in Paper A and Paper C and can also be used for removing

the mass imbalance for the closed-loop system as described in Paper E.

The compensation for run-out and mass imbalance signi�cantly improves the

signal quality and allows micrometer precision measurement of the response from

perturbing the piezo-actuators.
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Figure 2.10: Open loop and PD-controlled piezo-

actuator staircase responses. b) The piezo-

actuator position during the staircase response.

a) The individual steps without offsets in time

and position. The PD-control reduces both hys-

teresis and creep effects that cause the open loop

step responses to vary.

Figure 2.11: Hysteresis curves for

piezo-actuator four for the open loop

case and the closed loop case. The re-

sponses are collected for a staircase in-

put shown in b). The PD-controller ef�-

ciently eliminates the hysteresis.

An alternative to the extended runout �ltering is to use notch �lters, but such

�lters remove both the mass imbalance and the active response within the range of the

notch. Multiple notch �lters would be required to �lter out the synchronous vibrations

and their higher order harmonic components. The extended runout �ltering approach

avoids the phase-shifts related to the frequency-based notch �ltering approaches.

The runout signals may change over time due to slow changes for example from

magnetisation and small scratches in the disc surface, hence the runout estimate is

updated occasionally.
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Figure 2.12: Runout estimation of disc movement signals. Position sensor signals seen both

as an XY-plot and as functions of the angular position.
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Figure 2.13: Identi�cation data collected at q1 = 5 krpm, q2 = 0 :3MPa before and after mass

imbalance runout compensation. The runout compensation of the mass imbalance can �lter

out the mass imbalance such that only the active response remains. Before timet = 1 :045s,

the piezo-actuator positions are held constant. After this time the piezo-actuator positions are

changed and cause disc vibrations.



Chapter 3

Control of Active Bearings

This chapter describes the control design for active bearings. The main methods that

have been applied for control design for the controllable bearings are brie�y revisited

followed by a description of the control objectives and challenges. Finally, selected closed

loop experimental results with the proposed control designs are presented.

The chapter �rst summarises the main methods employed for control design in

Section 3.1. Then the control objectives for controllable gas bearings are presented

in Section 3.2. Section 3.3 presents examples of control of the gas bearing test rig.

3.1 Control Design Methods

This section revisits the main methods that have been applied for control design

during the project.

3.1.1 H 1 =H 2 Control Design

The H 1 =H 2 synthesis methods are attractive for their �exibility in control design,

where many control objectives can be imposed by weighting functions. These weights

can shape the frequency responses of the closed loop system, and the synthesis tools

are readily available in standard numerical computing software such as Matlab.

Figure 3.1: Stable LTI systemN .
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Figure 3.2: Block diagram of the closed loop system.

The methods minimise norms, where for a stable LTI systemN (s), where z(s) =

N (s)w(s) as in Figure 3.1, the H 1 norm is de�ned:

kN k1 = sup
0< kw k2 < 1

kz(t)k2

kw(t)k2
(3.1)

The synthesis ofH 1 and H 2 controllers relies on the general control problem

formulation from Figure 3.2 [93, Sec. 9.3] where a controller K is synthesised to

have u = Ky . The controller may then guarantee that the gain (either H 1 or H 2

norm) from the exogenous inputs w to the exogenous outputsz is bounded by some

value  .

This generalised plant can emerge from weighting the plantG appropriately to

form the generalised plant P with inputs w; u and outputs z; y , where the exogenous

inputs are w and the exogenous outputs arez. The generalised plant can be written

in state-space as:

P =

2

6
4

A B 1 B 2

C1 D 11 D 12

C2 D 21 D 22

3

7
5 (3.2)

The closed loop dynamicsN can be written as a lower linear fractional transfor-

mation (LFT):

z = Nw ; N = Fl (P ; K ) (3.3)

The controller K is commonly found as the solution to two Riccati equations [94,

95]. Both synthesis methods (H 1 and H 2) result in full order controllers, where the

state-dimension of the controller is equal to the state-dimension of the generalised

plant.

The H 1 synthesis seeks to minimisekN k1 ; hence the optimal controller K � is

K � = arg min
K stabilisesP

kN k1 ;  = kN k1 (3.4)
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Figure 3.3: LPV control of parameter-varying plant.

The common optimisers use interior point methods to approximate the minimum  �

iteratively, therefore a suboptimal value  is found ( >  � ).

The H 2 synthesis seeks to minimise the two-normkN k2. This is equal to min-

imising the RMS value of z for the exogenous signalw being white noise with unit

intensity. The H 2 norm is de�ned:

kN k2 =

s
1

2�

Z 1

�1
tr (N (j! ))H N (j! ))) d! (3.5)

Unlike the H 1 synthesis, the optimal H 2 controller can be found uniquely from the

solution to two Riccati equations.

3.1.2 LPV Control

The notion of H 2 and H 1 control can be extended to the class of LPV systems,

where the state-space parameters of the plantP are function of the scheduling

parameter q as in Figure 3.3. The scheduling parameter is assumed measurable in

real time. The controller synthesis conditions will then be based on parametrised

linear matrix inequalities (LMIs) [96, 97]. The plant in consideration has inputs
�
w T ; uT

� T
and outputs

�
zT ; y T

� T
:

P(q) =

2

6
4

A (q) B 1(q) B 2(q)

C1(q) D 11(q) D 12(q)

C2(q) D 21(q) 0

3

7
5 ; (3.6)

such that the external output z is z = LFT(P; K )w, and kzk2 �  kwk2.

The goal is to synthesise a gain-scheduled controllerK (q) with state-space reali-
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sation

K (q) =

"
A K (q) B K (q)

CK (q) D K (q)

#

; (3.7)

In the basic characterisation [75], a full-order LPV controller for the system (3.6)

is found from the solution to the following two matrix inequalities for the decision

variables Â K (q),B̂ K (q),ĈK (q),D K (q), X (q),Y (q);  of appropriate dimensions:

"
X I n a

I n a Y

#

� 0

2

6
6
6
6
6
4

_X + XA + B̂ K C2 + ( ?) ? ? ?

Â T
K + A + B 2DK C2 AY + B 2ĈK + ( ?) ? ?

�
XB 1 + B̂ K D 21

� T
(B 1 + B 2D K D 21)T �  I n w ?

C1 + D 12D K C2 C1Y + D 12ĈK D 11 + D 12D K D 21 �  I n z

3

7
7
7
7
7
5

� 0

(3.8)

In the above, the dependency of the scheduling parameterq is omitted for simplicity.

The star notation denotesZ + ( ?) = Z + ZT [75] and Z � 0 requires that all eigen-

values of Z have positive real parts. This problem is an LMI with in�nite dimension,

which can only be reduced to an LMI with �nite dimension under certain conditions.

For systems with af�ne parameter-dependency it is suf�cient to evaluate the LMI over

a polytope. For systems with polynomial parameter-dependency, a set of conditions

are presented in [98], but this method is not easily applied. Alternatively when this

is not the case, the LMIs(3.8) become tractable by the following propositions from

[75]: 1) the matrix inequalities are evaluated over a �nite grid q 2 Qd of scheduling

parameters covering the operating range; 2) the decision variables are constrained to

functions of the scheduling parameter, e.g. a copy of the plant function dependency.

The resulting LMI is then solved over the design gridq 2 Qd. The solution is not

guaranteed to be valid over the original set. It is therefore validated on a �ner grid

q 2 Qv .

The LMIs have been entered with YALMIP [99] and are solved over the design

grid Qd using MOSEK. A standard challenge in this regard is that MOSEK only solves

nonstrict LMIs (Z � 0 and Z � 0). The LMIs (3.8) are required to be strict (Z � 0

and Z � 0) which is ensured by including a small positive scalar term� > 0 such that

Z � � and Z � � � .

Once the LMIs have been solved, the factorisation problemI � XY = NM T must
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be solved for someN (q) and M (q), and the controller parameters are then:

K (q) =

"
A K (q) B K (q)

CK (q) D K (q)

#

; (3.9)

in which:

A K = N � 1
�

X _Y + N _M T + Â K � X (A � B 2D K C2) Y

� B̂ K C2Y � XB 2ĈK

�
M � T

B K = N � 1
�

B̂ K � XB 2D K

�

CK =
�

ĈK � D K C2Y
�

M � T ;

(3.10)

and D K is given from (3.8) . The parameters are functions of the scheduling parame-

ter q, though the dependency is not stated explicitly. The evaluation of the matrices

Â K ; B̂ K ; ĈK ; D K and X ; Y , and calculations of the controller matrices (3.10) have

to be performed online for each scheduling sampling step, which is computationally

heavy due to the two matrix inversions.

LPV synthesised controllers can be discretised systematically to allow implemen-

tation in standard computer control systems. Apkarian [100] proposed a trapezoidal

LPV discretisation method for a general LPV state-space controller. The controller

law at time kTs de�ned by the controller state gk and control signal uk reads:

gk+1 =
�
I � Ts

2 A K (qk )
� � 1 �

I + Ts
2 A K (qk )

�
gk +

p
Ts

�
I � Ts

2 A K (qk )
� � 1

B K (qk )y k

uk =
p

TsCK (qk )
�
I � Ts

2 A K (qk )
� � 1

gk +
�

Ts
2 CK (qk )

�
I � Ts

2 A K (qk )
� � 1

B K (qk ) + D K (qk )
�

y k

(3.11)

The calculation of the controller matrix updates require the inversion of N ; M and

the term
�
I � Ts

2 A K (qk )
�
. This is time consuming, and it may therefore be necessary

to update the controller parameters with lower sampling period than the control

signal update.

3.1.3 Gain-Scheduled H 2 Control Design

The LPV synthesis methods provide a systematic approach for synthesising gain-

scheduled controllers to address plant parameter variations, but they require a

numerically well-conditioned low order generalised plant. The mentioned LPV syn-

thesis techniques suf�ced for the control design in Paper E, but it has not been
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possible to synthesise an LPV controller for the more complex generalised plant

proposed in Paper G. As an alternative approach for such systems, we proposed a

gain-schedulling strategy in Paper G to obtain controllers with an LPV form. The

method relies on synthesising a set of local linearH 2 controllers for a generalised

plant in LPV form over a grid of scheduling parameters in a desired range. The

H 2 controllers are synthesised from the solution of two Riccati equations and are

therefore determined uniquely. Though it is not guaranteed, the state-space parame-

ters of the controllers will often develop adequately to allow interpolation of these

parameters. The synthesised controllers can then be interpolated using state-space

interpolation to obtain an LPV controller. This is generally not the case for H 1

controllers which are solved iteratively as discussed in Section 3.1.1. Instead,H 1

controllers can be converted to a unique observer and state-feedback structure to

allow interpolation of the state-feedback and observer feedback gains [101, 102]. The

proposed interpolated H 2 control design does not guarantee closed loop stability of

the closed loop system, but the stability can be proven subsequently using Lyapunov

theory. The technique resembles the interpolation method of the grey-box models

described in Sec. 2.3 and may be summarised as follows:

� Set up the generalised plant P(q; t) in LPV form such that the state-space

parameters ofP develops continuously in the scheduling parameters.

� For a grid of i 2 f 1; :::; I g scheduling parametersq i 2 f q1; :::; qI g, synthesise

local H 2 LTI controllers K i (t).

� Use state-space interpolation to obtainK (q; t)

� Investigate closed loop stability

For the interpolation of the state-space parameters, standard regression tools

such as linear least squares �tting is applicable. The standard guidelines to avoid

over-parametrisation should be followed. We advice to use a fraction of the systems to

estimate the interpolated parameters and the remaining to validate that the behaviour

of the interpolated controller matches the one of the local linear controllers in the

interpolation regions.

The proposed approach is very �exible since it is applicable for both continuous

and discrete time systems and the generalised plant can be cast to include multiple

control objectives. The resulting interpolated controllers have an LPV form and

may readily be converted to discrete time using available methods from [100]. The
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gain-scheduling proposed is limited to systems with slow parameter-variation. which

can be quanti�ed using the approach from [103]. As discussed in [102], the approach

is limited to an appropriate interpolation of the control weights.

3.2 Control Objectives

The control objectives have generally focussed on the reduction of vibrations and

the enhancement of damping.

The main control objective for rotating machinery is to avoid rub (rotor-stator

contact). This simple objective becomes a challenge of disturbance rejection of

mass imbalance and forces induced from other machines, especially in presence of

time-varying system parameters. It is furthermore of interest to extend the operating

range of the rotating machine to allow operation at higher angular velocities using

control. These challenges are treated in the following sections.

3.2.1 Damping Enhancement

Suf�cient damping levels are important for bearings [78, 83, 10, 40] to avoid

the big disturbance ampli�cations associated to low-damped natural frequencies. A

common guideline for rotating machinery is to avoid operation to within � 15%of

the critical speeds. This restricts the operation, and we have sought to reduce the

disturbance sensitivity in these critical speeds regions to extend the operating range

of the controllable gas bearing.

To clarify the increase of damping from a control design perspective, consider the

general linear control system shown in Figure 3.4. The system plant is denoted by

G(s) and has controllable inputs u(s), and measured outputsy (s) affected by the

unknown disturbance d(s). The disturbance enters the output through the unknown

dynamics G d(s). A feedback controller K (s) closes the loop. This disturbance

description encompasses many situations, for instance, for an input disturbance

G d = G and for an output disturbance G d = I .

The output sensitivity is de�ned

So(s) = ( I � GK ) � 1 ; (3.12)

and the input sensitivity is Si (s) = ( I � KG ) � 1. These sensitivity functions are

limited for stable closed loop systems by Bode's sensitivity integrals [104, 93] as

discussed in Paper D, and a reduction of sensitivity in one frequency range comes at

the cost of an increase of sensitivity in another range.
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For the controllable gas bearing, the disturbancesd(s) may stem from the mass

imbalance and general forces from mechanical shocks. The models and experimental

results [31] show that the disturbance forces are strongly ampli�ed in the frequency

range of the low-damped natural frequencies, and it is of interest to attenuate these

disturbances.

The transfer function from the disturbance d(s) to the output y (s) is

y (s) = SoG dd(s)

= ( I � GK ) � 1 G d(s)d(s)
(3.13)

This rather simple analysis shows that the effects of the disturbances on the output

are diminished by a controller K that obtains a low sensitivity (jSo(j! )j low for

frequencies ! near the natural frequencies). Similarly, high sensitivities imply a

disturbance ampli�cation, which should be avoided.

The proposed control designs have focussed on enhancing the damping properties.

In Papers B, E and F we proposeH 1 controllers designed from the mixed sensitivity

setup, where the sensitivity S is weighted by W p. The weight W p has a high

amplitude in the regions of the natural frequencies to ensure a low disturbance

sensitivity. In Paper E we propose an LPV controller for the gas bearing for enhancing

the damping of the parameter-varying gas bearing. The controller is synthesised

with the gridding procedure. Experimentally collected closed loop results con�rm a

strong enhancement of damping and a reduction of the mass imbalance vibration

amplitude.

In Paper F we explored the capabilities of such damping enhancing controllers

and showed that they signi�cantly increase the allowed angular velocity and allow

safe operation in the regions of the two �rst critical speeds.

Previous works [105, 52, 53, 54] have proposed controllers to attenuate the mass

imbalance by placing zeros on the closed loop sensitivity at the angular frequency. In

Paper G we proposed such a gain-scheduled control design which also enhances the

damping. Here, the damping was enhanced by weighting the transfer function from

an input disturbance to the system output So (s)G(s).

3.2.2 Induced Vibrations

Many bearing applications are subject to externally induced vibrations. The nature

of these disturbances is wide-spread. The disturbances could be sinusoidal vibrations

induced from mass imbalance of other rotating machines connected mechanically to
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Figure 3.4: General Control diagram.

the rotating machine to be controlled. They may also stem from mechanical impacts

with impulse or step-like nature in mobile applications (automotive, aeronautic

or maritime). When the disturbances excite the system over a wide frequency

range, they excite the under-damped natural frequencies of the rotating machine.

Disturbances that periodically excite the system in these frequency ranges can cause

catastrophically large ampli�cations.

3.2.3 Operating Mode and Parameter-Variations

Rotating machinery must be able to operate in different modes. During standard

operation, the machine typically operates near a constant angular velocity and/or

injection pressure. This operating condition is often not controlled and it may drift

slowly. These parameter-variations change the gain and natural frequencies of the

system. Bode diagrams of the gas bearing in Figure 3.5 characterise the effects of

variation for the extrema of the open loop operating interval. Other modes are the

transients during start-up, shut-down and set point changes. During these transients,

the operating condition is increased or decreased from one set point to another.

These changes in operating condition change the dynamics and the equilibrium

position of the rotor. The changes may cause the machine to operate in regions near

the critical speeds.

A controller can then either be designed to work for a particular operating

condition or for an interval of operating conditions. The early control designs in

Papers A, C and D were designed for constant operating conditions without focus on

robustness, and it was shown that the control performance deteriorated when the

operating condition was changed. The control design in Paper B was proven robustly

stable over an operating range. In the Paper F we used the controller to extend the

operation interval of angular velocities of the gas bearing. Here, extrapolation of the
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Figure 3.5: Bode diagrams of the gas bearing system for the scheduling parameter extrema.

LPV model predicted that the controller could operate safely in the regions of the

mass imbalance. This prediction was validated experimentally.

3.2.4 Controllability and Observability Considerations

Placement of sensors and actuators is a challenge for rotating machinery with

�exible rotors such as the controllable gas bearing test rig. If a sensor is placed in a

node along the shaft for a given natural frequency, it becomes unobservable, similarly

certain natural frequencies may become uncontrollable.

In the controllable gas bearing test rig considered, the position sensors are placed

at the location of the disc, whereas it is critical to reduce the vibrations at the location

of the gas bearing. A modeshape analysis shows that attenuation of vibrations at

the disc corresponds to attenuation of vibrations at the bearing for the bending

modes associated to the two �rst natural frequencies. This assumption has been

validated from the experiments in Paper F, where the control reduced vibrations to

allow crossing of and operation in the two �rst critical speeds. No sign of wear was

found in subsequent analyses of the bearing surface. The topic of sensor and actuator

placement has been treated in [32] and has not been investigated further in this

project.
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3.2.5 Equilibrium Position

The equilibrium position of the rotor is a function of the scheduling parameter.

The measured disc positionp can then be decomposed into a constant offsetp0

and a time varying measurement� p: p(t) = p0 + � p(t). This offset is generally no

problem for controllers that are to operate at a constant value of the scheduling

parameter since the bias termp0 is easily estimated. It may become a challenge for

controllers that are to operate at changing scheduling parameter values since the

feedback control can change the equilibrium.

There are multiple controller strategies to tackle the parameter-varying bias term.

When the scheduling parameter only varies little, the position offset can be estimated

manually from of�ine data and subtracted online from the measurements to avoid

a change of equilibrium position. This strategy was pursued in Papers A, B, C and

D. Another solution is to design the controller with integral action to guarantee

asymptotic regulation of the equilibrium position of the rotor. Such a solution usually

comes at the cost of increased control complexity from an increase in controller order

and from the implementation of an anti-windup scheme. The integral action comes

at the cost of an increase in sensitivity in another frequency interval due to Bode's

sensitivity integrals [104, 93]. A controller with integral action was proposed in

Paper G, where the bandwidth of the integral action was chosen suf�ciently low to

avoid a signi�cant sensitivity increase.

An alternative solution when the rotor equilibrium position is already far from

the bearing is to design controllers with zero DC gain. Such a controller avoids to

affect the rotor equilibrium position at the cost of poor disturbance rejection below a

certain frequency.

In Paper F the controller was used to operate in the critical speed regions. Here,

the rotor came close to the bearing housing due to the combination of changing

equilibrium position and large amplitude vibrations. The rotor was moved away

from the bearing housing by adding a bias signal to the control signal. This bias was

chosen manually to steer the equilibrium position.

3.3 Examples of Damping Enhancing Control

This section shows a few control design results for damping enhancing control.

First a short summary of the early results decentralised classical control designs, then

the results obtained with modern control are summarised.
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Figure 3.6: Sensitivity functions for the horizontal subsystem So = S(s), the system gainG(s)

and input disturbance gain GS(s) using a proportional controller.

The early control designs we proposed for the gas bearing were classical decen-

tralised proportional controllers. Model 2 was used for the control design for a

constant scheduling parameter value. The cross couplings were assumed negligible,

in which case the model reduces to two independent LTI models:

G �

"
Gxx (s) 0

0 Gyy (s)

#

; (3.14)

in which Gxx (s) represents the horizontal sub-system andGyy (s) represents the

vertical one. Root locus analysis using the model showed that simple decentralised

proportional control was able to critically damp the closed loop system. Such a con-

troller was designed for both the horizontal and the vertical subsystem. The controller

obtains a low output sensitivity near the natural frequencies as shown in Figure 3.6

and avoids high sensitivities in general. These controllers were implemented on

the test rig. Experimentally collected closed loop impulse responses for varying

proportional gains are shown in Figure 3.7. Comparisons with model simulations in

Figure 3.8 validate that the experimental responses are in good agreement with the

model predictions. These control designs are described further in Papers C and D.

The root locus analysis further revealed that the critically damping controllers are

very sensitive. A small change of the proportional control gain or a small modelling

error of the static gain of the system signi�cantly changes the damping factor in
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Figure 3.7: Horizontal impulse responses using proportional control. The controllers signi�-

cantly enhance the damping.

these regions. The controllers are therefore not very robust towards changes in the

scheduling parameter.

The Papers B, E and F focused on design of more robust damping enhancing

controllers synthesised with robust control synthesis techniques. Here, the damping

requirements were included in the mixed sensitivity setup [93] shown in Figure 3.9

where the H 1 controllers were synthesised to minimise:

K � = arg min
K

kN k1 ; N =

"
W pS

W u KS

#

; (3.15)

The damping was enhanced by choosing the performance weightW p as inverse

notch like �lters. For the SISO case, the �lter is W p(s) = wp(s) on the form:

wp(s) =
s2 + 2 � 1! ps + ! 2

pk0

s2 + 2 � 2! ps + ! 2
p

; (3.16)

The frequency of the notch ! p is chosen as the under-damped natural frequencies of

the gas bearing to obtain a high weight around these. The static gain �lter is tuned by

the constant k0. The damping factors � 1 and � 2 are tuning parameters in the interval

0 to 1. The control sensitivity weight W u is used to limit the control activity and is
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Figure 3.8: Impulse response of the model and measured impulse response for the horizontal

shaft direction using proportional control.

Figure 3.9: The augmented plant with controller for LPV controller design with performance

weights W p and controller sensitivity weight W u .
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Figure 3.10: System gain and example of performance weightwp (s). The weight has a high

amplitude near the resonance frequency of the system.

chosen as a �rst order high-pass �lter from [93, Sec. 2, Eq. (2.72)]:

W u (s) = wu (s); wu (s) =
s=Mb + ! b

s + ! bAb
; (3.17)

where the low frequency gain is 1=Ab, the high frequency gain is 1=Mb, and the

approximate crossover frequency is! b.

An example of performance weight is shown in Figure 3.10.

The control design is proposed in Paper E, where further details are provided.

Here, the controller was shown very robust towards variations in the scheduling

parameters, and the damping enhancing controller provided a strong increase in

damping of the closed loop system across the operating range and was shown to

reduce the mass imbalance signi�cantly. In the same paper, we proposed an extension

of the design using the LPV system to obtain an LPV controller. The LPV controller was

synthesised using the gridding approach [76] and is able to schedule the controller

parameters according to the scheduling parameter values. Though not included in

the paper, we also considered a proportional controller. The proportional controller

was tuned to minimise the norm of impulse responses to achieve a dampening

of the system. Impulse responses for the open loop and the closed loop system

using different controllers are shown in Figure 3.11 for the scheduling parameter

extrema. The open loop responses vary due to the difference in scheduling parameters.

The proportional control is only able to increase the damping for some values of

the scheduling parameter. TheH 1 controller enhances the damping well for the

investigated scheduling parameter values, though the LPV controller provides the

best damping enhancement across the scheduling parameter values.

In Paper F we further explored the capabilities of the proposedH 1 controller
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Figure 3.11: Simulated horizontal impact responses for the scheduling parameter extrema in

the three cases: a) open loop, b) Proportional control, c) H 1 control, d) LPV control. Figures

to the right show corresponding control signals.

to extend the angular velocity range of safe operation. In these regions, open loop

operation is not possible, and there was therefore no model available. The LPV model

was therefore used in extrapolation beyond the range where it was expected to be

valid. Such extrapolation provides no guarantees, but the resulting estimates of the

expected vibration levels indicated the controller would allow signi�cant extension.

The experimental results con�rmed that the controller reduced vibrations suf�ciently

to operate safely in the regions below, in, and above the two �rst critical speeds of

the controllable gas bearing. A slow run-up of the open and closed loop system are

shown Figure 3.12. The open loop experiment was stopped when the disc vibrations

grew above a threshold to prevent damage to the test rig. The closed loop experiment

was stopped when the actuators came close to saturation. The controller allowed

a 70% increase of the angular velocity compared to open loop. Later simulations
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Figure 3.12: Slow run-up of the open and closed loop system with damping enhancingH 1

controller. Around 94Hz , the vibrations in the open loop case exceed the threshold for safe

open loop operation. The controller allows signi�cant extension of the interval of angular

velocities where the machine can be operated.

indicate that it is possible to increase the angular velocity even further, since the

actuator saturation should not cause instability.
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Conclusion

Controllable gas bearings with radial injection offer a very low rotor-bearing

friction and a suf�cient load carrying capacity. In their passive form, they suffer

from poor damping properties. This project investigated the possibility of increasing

the damping of controllable bearings using model-based control. A challenge in

this regard is the design of control systems. High-speed rotating machines with

�exible shaft and controllable journal bearings are complex systems, whose dynamics

is generally modelled by means of partial differential equations naturally arising

from the physics governing the system behaviour. Those models are not easily made

suitable for the design of control systems, which is instead preferably based on low

order models that capture the essential dynamics in focus of the control objectives.

The project has demonstrated that low-order linear parameter-varying models are

able to capture the dominant dynamics of a rotating machine with controllable

journal bearings. The project has contributed with a linear parameter-varying (LPV)

identi�cation approach for rotating machinery. The project has shown fruitful results

in using model-based control to enhance characteristics of the rotating machine:

� The experimental results from the active gas bearing test rig prove that the

methods developed are easily applicable to rotating machines supported by

controllable bearings. For design of feedback control, the proposed LPV identi-

�cation approach bypasses the necessity of developing the complicated models

derived from �rst principles and axioms of mechanics. The models were

identi�ed "in situ" without knowing the exact geometry of the machine to be

modelled.

� The proposed LPV identi�cation method relies on grey-box modelling and has
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been used to successfully develop accurate linear models of an entire rotor-

bearing-actuator-sensor system from experimental data. The identi�ed models

had a suitable complexity to capture the essential dynamics and to suit the

subsequent control design.

� The models were formulated in state-space parametrisations that avoided over-

parametrisation. Multiple local models could therefore be interpolated to derive

LPV models. These LPV models described the behaviour of the rotor-bearing

system over the desired operating range de�ned by the combination of injection

pressure and angular velocity. The LPV model preserved important system

characteristics in terms of eigenvalues, static gains and damping factors.

� A novel application of the runout �lter was shown to improve the quality

of the position measurements by �ltering out mass unbalance and runout to

allow micrometer precision measurement of the active response to improve the

identi�cation.

Several model-based controllers have been designed from the developed LPV

models to improve the dynamics of the controllable gas bearing. Experimental closed

loop results with the proposed control designs con�rmed that the models are well able

to predict the closed loop behaviour of the controllable gas bearing. The model-based

control designs included:

� Classical controllers designed from root loci . The proportional controllers

were able to critically damp the two �rst natural frequencies of the gas bearing.

� LPV and H 1 control . The LPV andH 1 controllers were designed with the

mixed sensitivity setup, where a suitable choice of weights was shown to

provide the desired level of damping, and shown to perform well over a

desired operating range. The project has showed that damping enhancingH 1

controllers could extend the operating range of angular velocity by 70%at the

investigated injection pressure. The machine could therefore operate safely in

and above the regions of the two �rst critical speeds.

� Gain-scheduled H 2 control A gain-scheduling approach was proposed using

state-space interpolation of local H 2 controllers. The method was shown

to avoid the increase of state-space order and preserve a high performance

in the interpolation region for mass imbalance rejection for controllable gas

bearings. A suitable choice of state-space representation allowed synthesising
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H 2 controllers whose parameters developed continuously in the scheduling

parameter to allow interpolation.

4.1 Future Perspectives

� Further increase of angular velocity The project has proven that it was possi-

ble to signi�cantly increase the angular velocity. It is of interest to increase it

even further to allow operation in the range where the gas bearing becomes

open loop unstable. In this regard it will be necessary to further investigate

sub-synchronous whirl and instability

� Sub-synchronous whirl and instability For higher angular velocities 
 , the

shaft begins to whirl with a frequency of approximately 0:42
 . These oscilla-

tions are denoted as sub-synchronous whirl and are known to set on when the

angular velocity approaches the double of the �rst critical speed. For an even

further increase of the angular velocity, the rotor-bearing dynamics becomes

unstable. Postponing the onset of whirl and instability is of major interest to

further extend the range of safe operation. The non-linear whirl oscillations

require further modelling to understand the phenomenon. The proposed con-

trollers are expected to work well since they obtain a low sensitivity in the

frequency range of the whirl oscillations. Further experimental investigations

are needed.

� Modelling The modelling of controllable journal bearings is still a �eld with

challenges to be solved. The proposed LPV identi�cation is only able to model

the system for slow time-variation of the parameters. The global identi�cation

approaches currently require too large amounts of data.

� Control This thesis has investigated a few model-based control designs. The

grey-box models developed provide a strong foundation for future testing of

the vast literature of control. Our initial investigations in Paper F allowed a

safe crossing of and operation in the two �rst critical speeds. The test rig has

been further developed in the mean time and controller is expected to allow an

even further increase of the angular velocity.

� LPV control The methods for synthesising LPV controllers still suffers from

challenges with numerical conditioning and the guaranteed performance is
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lost with the gridded design procedure. Further development of the synthesis

methods is required to overcome these limitations.

� Grey-box identi�cation of other bearings The grey-box models and control

designs proposed have potentials to also be used for other controllable bearings.

Controllable bearings lubricated with oil [106] have similar challenges for

modelling and they are subject to similar parameter-variations with oil injection

pressure, angular velocity and temperature. Similarly controllable foil bearing

designs are emerging where piezoactuators can change the geometrical shape

of the foils.

� Test rig sensitivity It is currently dif�cult to ensure the test rig is reassembled

in the exact same manner after maintenance disassembly. Small changes in

gains and natural frequencies are observed after those dis-assemblies and

reassemblies. The mechanical re-design of the test rig is beyond the scope of

this thesis. Instead the model has been re-identi�ed after these reassemblies.

This sensitivity is probably a consequence of the low tolerances, and is a topic

to be addressed in the further development.

� Improving the state-space interpolation The proposed state-space interpola-

tion seeks to minimise the norm between the model parameters of the local

models and the LPV model. An alternative approach that could improve the

modelling, it may be possible to obtain better LPV models by minimising the

norm of the frequency responses or time response of the difference between

the local models and the LPV model evaluated in the corresponding scheduling

parameters.

� Parameter sensitivity for discrete time LPV For LPV identi�cation of discrete

time models, we have generally observed a high "numerical sensitivity", in the

sense that a small error in a parameter estimate signi�cantly changes the input-

output behaviour of the system. This numerical sensitivity might in particular

be a challenge for systems sampled with high frequency. This phenomenon

requires further research.
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Abstract:

Gas bearings have inherent dynamics that gives rise to low damping and potential

instability at certain rotational speeds. Required damping and stabilization properties

can be achieved by active �ow control if bearing parameters are known. This paper

deals with identi�cation of parameters in a dynamic model of an active gas bearing

and subsequent control loop design. A grey box model is determined based on

experiments where piezo actuated valves are used to perturb the journal and hence

excite the rotor-bearing system. Such modelling from actuator to output is shown

to ef�ciently support controller design, in contrast to impact models that focus on

resonance dynamics. The identi�ed model is able to accurately reproduce the lateral

dynamics of the rotor-bearing system in a desired operating range, in this case around

the �rst two natural frequencies. The identi�ed models are validated and used to

design a model-based controller capable of improving the damping of the gas bearing.

Experimental impact responses show an increase in damping by a factor nine for the

investigated conditions.
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A.1 Introduction

Passive and active gas bearings are receiving growing attention for their high

speed operation capabilities. Passive gas bearings offer advantages of high speed

operation, low friction, and clean and abundant air as lubricant; however they suffer

from low damping and vibration instabilities [34, 35, 78].

There are two main approaches to increase damping and stability; one is through

foil bearings [17, 13, 107, 108, 14, 15] that rely on friction between bumps and foil.

Such a solution is relatively cheap, but the friction coef�cient is a design challenge

[17]. The other approach is via mechatronic solutions, which offer robustness and

adaptability. Actively controlled gas bearings using piezo actuation [78] and active

inherent restrictors [28, 29] is a promising mechatronic machine element approach to

support clean and high speed solutions. An example of adjustable hybrid lubrication

given in [109], proposes a rule based control strategy, where changing conditions

caused changed critical speeds, which allowed them to cross the �rst critical speed.

The design of model based controllers for gas bearings requires models that catch the

dynamic behavior of the journal in the frequency range where control is needed. A

model for control design should in a suf�ciently simple manner describe the relation

from piezo actuator electrical input to journal position.

The design of actively lubricated gas bearings relies on usage of the Reynolds

equation, which models the behaviour of the compressible lubricant between the

journal and the housing. The rotating journal in the gas bearing is then modelled

as a mass subject to the force from the compressed air in the bearing. The Reynolds

equation is solved to obtain a pressure distribution, which is integrated to obtain the

aerodynamic forces. An input-output-model (IO model) was developed in [41] using

a �rst order principles model to incorporate the behaviour of the piezo-electric valves

into the Reynolds equation. This model catches well the behaviour of the bearing

over a wide range of parameters but has too high complexity to be directly used for

model based control. Another common approach is using a 2 DOF coupled mass-

spring-damper system where parameters are experimentally identi�ed from impacts.

This model however does not properly describe the interaction of the pressurized

air actively lubricating the journal, which is required for a model based controller
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design.

The present contribution adopts a systematic data based method for modelling of

a gas bearing with external inputs and identi�es low-order dynamical models that

are shown to be adequate for model based controller design. The models are shown

to describe the behaviour of the rotor-gas bearing system with high accuracy.

The paper is structured as follows; A brief description of the controllable gas

bearing setup is �rst described. Section A.3 presents the grey box model chosen and

identi�cation of its parameters is carried out based on experiments that cover the

operational range of the bearing. The identi�ed models are used for design of a

model based controller to enhance damping properties. Special techniques to handle

actuator hysteresis is discussed. Finally, an experimental characterization is done of

the piezo actuated valves and the high closed loop damping is validated.

A.2 Experimental Setup of Gas Bearing

The experimental setup at hand is shown in Fig. A.1: A �exible journal (a) is

supported by both a ball bearing (d) and the controllable gas bearing (b). A disc (c)

is mounted in one end to preload the journal. The horizontal and vertical journal

positions (� x ; � y ) are measured at the disc location(�)d using eddy current sensors (e).

Disc de�ections (�)d are easily mapped to bearing de�ections (�)b under assumption of

a rigid shaft, and the transformation then reads � xb = �� xd , in which � = 0 :625[m=m]

is the fractional position of the gas bearing along the length of the journal relative to

the disc. The angular position of the journal � is measured by an optical encoder. A

more thorough description of the setup is available in [78].

The gas bearing is controllable by injection of pressurized air through the opening

and closing of four piezo actuated valves positioned as shown in Fig. A.1. Each

valve is controlled by a voltage up;i 2 [up;min ; up;max ]; i 2 f 1; 2; 3; 4g, with limits

up;min = 0 V; up;max = 10 V , where up;min corresponds to a fully opened valve

and up;max fully closed. The position of the valves is measurable in the interval

yp;i 2 [yp;min ; yp;max ] = [0; 10] V; i 2 f 1; 2; 3; 4g, and the expansion of the piezo

actuator is proportional to the measured position with maximum expansion at up;max

is ymax = 45 �m which is approximately 10V , but it is not known exactly. Hence

all piezo positions are listed in Volts. Piezo ceramics are subject to nonlinearities in

form of hysteresis [110], which gives a nonlinear input output relationship. This

nonlinearity is addressed in Sec. A.4.1.
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Figure A.1: The experimental bearing setup. A �exible shaft (a) is supported by both a ball

bearing (d) and the controllable gas bearing (b) with four piezo actuated valves. A disc (c) is

mounted in one end to preload the journal and displacement sensors (e) measure the lateral

movement of the disc.

A.3 Experimental Identi�cation of Gas Bearing Parameters

Modelling of controllable gas bearings still represents an open challenge. The

approach pursued in this work is to some extent considered model free, as the

developed models are found experimentally based on excitation of the rotor-gas

bearing system by changing valve positions thereby perturbing the �uid �lm. A

model is assumed with known structure, though unknown parameters. Identi�cation

of the parameters is then sought through grey box modelling. Standard means of

model validation (sign test, residual analysis) are then used to assess over/ under

parametrization of the model. The identi�ed linear rotor-gas bearing models are

found to have speed dependent parameters, hence polynomials parametrized in

speed are �tted to allow a speed dependent model to be stated describing the gas

bearing with the range of interest.

A common approach for modelling gas bearings is the linear mass-spring-damper-

model. Using positions p = [ � x ; � y ]T , with respective time derivatives d
dt (�) = _(�)

M •p(t) + ( D + 
 G) _p(t) + K p(t) = f (t); p = [ � x ; � y ]T (A.1)
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Mass Matrix Stiffness matrix Damping Matrix

M =

"
m 0

0 m

#

K =

"
kxx kxy

kyx kyy

#

D =

"
dxx dxy

dyx dyy

#

Input gain Gyroscopic

Bd =

"
bd;xx bd;xy

bd;yx bd;yy

#

Bp =

"
bxx bxy

byx byy

#

G =

"
0 gxy

� gxy 0

#

Table A.1: Structure of system matrices.

where f (t) is the force, 
 is the rotation speed and the matrices have structures as

listed in Tab. A.1. This models the gas bearing behaviour in a neighbourhood of the

1st and 2nd critical speeds and suggests a model structure.

The force f (t) is the sum of external forces from disturbances, residual mass

unbalance f u (t) and forces from the piezo actuatorsf p(t).

The modelling of equivalent applied force from the piezo valves is no trivial

task. An approach presented in [41] uses a nonlinear state space model with states

being position, and velocity of the piezo ceramic, and pressure in the chamber

between the journal and bearing housing. The mentioned model however contains a

coupling to the pressure of the lubricant, which in this case is not measured, making

it challenging to use. Instead the approach pursued in the present work is taken

from electromagnetically actuated bearings, in which opposing actuators are coupled

pairwise (i.e. valves f 1; 3g; f 2; 4g move oppositely). The gain from this approach is

twofold: The coupled valves counteract possible nonlinear gains, and transforms the

system from an overactuated (more control inputs than controlled outputs) to a fully

actuated (equal number of control inputs and controlled outputs).

Due to piezo valves hysteresis which is shown later in Sec.A.4.1 to be approximately

15%, the valve input voltage is not suitable input for identi�cation of linear models.

Instead the piezo valve positions are used as model inputs for identi�cation; more

precisely the IO model input vector is chosen to be the difference of horizontal and

vertical valve positions:

u(t) , [ux (t); uy (t)]T = [ yp;2(t) � yp;4(t); yp;1(t) � yp;3(t)]T (A.2)

The equivalent force acting on the journal is assumed linear i.e. f p(t) = Bpu(t),

where the structure of the input gain Bp is listed in Tab. A.1.

Considering only the active forcesf (t) = f p(t), and reformulating to a unit mass
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equation, the model reads:

•p(t) + D _p(t) + Kp(t) = Bu(t) (A.3)

where D , M � 1(D + 
 G) , K , M � 1K, and B , M � 1Bp. Since a model structure

is known (though the parameters are not), identi�cation of the rotor bearing system

parameters is sought through grey box modelling, which (using a suitable model

structure and given reasonable initial parameter estimates) catches well both the

stationary and dynamical behaviour of the bearing. The grey box modelling is eased

by reformulation of the dynamics Eq.(A.3) to state space form, where a suitable

choice of states isx = [ � x ; � y ; _� x ; _� y ]T . The measurement noise and errors from

simpli�ed model are modelled as additive noise d(t) entering both output and states

with a disturbance input gain Bd and the chosen state space formulation of Eq.(A.1)

then reads:

_x(t) = Ax(t) + Bu(t) + Bdd(t); x(0) = x0

p(t) = Cx(t) + d(t)
(A.4)

where the system-, input gain-, and output matrix are

A =

"
0 I

� K � D

#

; B =

"
0

B

#

; Bd =

"
0

Bd

#

; C =
h
I 0

i
; (A.5)

where in the above the matrices to be identi�ed are K̂ , D̂ , and B̂ , B̂d x̂0 with

structure as listed in Tab. A.1.

The parameters of (A.5) are identi�ed by recasting the problem to a model

parametrized in �̂ , f D̂; K̂; B̂; x̂0; B̂dg asM (� ), where the parameters to be identi�ed

are:

Â (� ) =

2

6
6
6
6
4

0 0 1 0

0 0 0 1

� K̂ xx � K̂ xy � D̂ xx � D̂ xy

� K̂ yx � K̂ yy � D̂ yx � D̂ yy

3

7
7
7
7
5

; B̂(� ) =

2

6
6
6
6
4

0 0

0 0

B̂xx B̂xy

B̂yx B̂yy

3

7
7
7
7
5

; (A.6)

B̂d(� ) =

2

6
6
6
6
4

0 0

0 0

B̂d;xx B̂d;xy

B̂d;yx B̂d;yy

3

7
7
7
7
5

; C =

"
1 0 0 0

0 1 0 0

#

; x(0) = x̂0(� ) (A.7)

The model then reads

M (� ) :

8
<

:
_x(t) = Â (� )x(t) + B̂(� )u(t) + B̂d(� )d(t); x̂(0) = x̂0(� )

p(t) = Cx(t) + d(t)
(A.8)
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A.3.1 Description of Experiments

The choice of input signal for system identi�cation is an open challenge, but

should certainly excite the system dynamics suf�ciently in the frequency range of

interest, i.e. up to 200 Hz covering the �rst two natural frequencies. For identi�cation

of the above model, control signals are designed manually to excite simultaneously

both the horizontal and vertical lateral rotor dynamics. Such input sequences are

applied to the bearing, during 15 data sequences of10s duration, with four different

journal rotational velocities in the interval [2:9; 6:0]krpm. During the experiments the

gas injection pressure is kept constant atPinj = 8 :0bar and sampling is made with

f s = 5kHz . The horizontal and vertical valves are excited horizontally by a square

input signal, while the vertical dynamics are excited by pseudo-random stepwise

motion. Figure A.2 shows measured input and output sequence of one of the 15

experiments.

A.3.2 Pre�ltering

Before system identi�cation, the measured journal positions are preprocessed

(�ltered) in two steps: First step is to remove the stationary run-out and mass

unbalance response. For this purpose a10s data sequence is collected without any

system excitation. This allows generation of a compensator functionF (� ) mapping

positions as a function of encoder angle� . The direct measurement(�)r can then be

converted to smoothed position (�)s using the �ltering (�)s = ( �)r � F (� ). The �ltered

positions can then be seen as deviations from the mass unbalance response. Second

step consists of a low pass �ltering is applied using a second order Butterworth �lter,

with cutoff frequency f 0 = 1000Hz being approximately �ve times faster than the

bearing poles to be identi�ed.

A.3.3 Parameter Identi�cation using Prediction Error Method

The optimal model M (� ?) is chosen as the minimum of the cost functionW (� ) ,
P N

t =1 e(t)T e(t), where the prediction error e is de�ned as the difference between the

measured and the estimated outpute(t) , y(t) � ŷ(t). The minimum is sought using

the prediction error method (PEM) [45], such that the optimal parameter set reads:

� ? = min
�

W (� ) (A.9)

The optimization is nonlinear and to ensure convergence to the optimal parameter

set, good initial parameter estimates are required for K̂ xx ; K̂ yy ; D̂ xx ; D̂ yy , B̂xx ; B̂yy .



78
Appendix A. Experimental Grey Box Model Identi�cation and Control of an Active

Gas Bearing

These initial estimates are found as preidenti�ed parameters describing the horizontal

and vertical dynamics as 1-DOF mass-spring-damper systems individually. The

estimates for all parameters (incl. the cross coupling gains) are then iteratively

re�ned and identi�cation is terminated when the improvement of error norm is less

than bound Q = 0 :01 indicating the optimization has reached a minimum. Figure A.3

shows the identi�ed equivalents of stiffness, damping and input gains for each of the

15 data sets along with a function �tted to the estimates. The identi�ed parameters

are very consistent for measurements made at the same rotational speed.

Figure A.2 shows that the linear models, to a very high extent, catch the behaviour

of the journal. A sign test is performed to assess over parametrization of the model.

This test proves that identi�ed parameters within 1 standard deviation � of the esti-

mate � 1� are sign consistent (i.e. 0 is not in the interval, and the parameter estimate

is therefore sign consistent). Analysis of the residuals between the measurements

and the identi�ed model " , y � ŷ shown in Fig. A.2 shows the residuals are not

white noise as they should optimally be, and indicates presence of nonlinearities

or higher order dynamics not caught by the linear model. The residual however is

bounded by j" j� 1:4 �m , which indicates low magnitude of the neglected dynamics.

Higher operation speeds will most likely require higher order models, though for the

considered operation range the identi�ed models are deemed suf�cient.

The identi�ed parameters D̂; K̂; B̂ are used to �t speed varying quadratic polyno-

mials to parameters (�) jk of the form:

(�) jk (
) = � ( �) ;jk 
 2 + � ( �) ;jk 
 +  ( �) ;jk ; (A.10)

with coef�cients as listed in tab. A.3. The identi�ed equivalent model then reads:
"

1 0

0 1

# "
•� x (t)

•� y (t)

#

+

"
D̂ xx (
) D̂ xy (
)

D̂ yx (
) D̂ yy (
)

# "
_� x (t)

_� y (t)

#

+

"
K̂ xx (
) K̂ xy (
)

K̂ yx (
) K̂ yy (
)

# "
� x (t)

� y (t)

#

=

"
B̂xx (
) B̂xy (
)

B̂yx (
) B̂yy (
)

# "
ux (t)

uy (t)

# (A.11)

From each experiment, an estimate of the �rst and second critical speeds are

directly calculable from the identi�ed parameters as the system poles (the eigen-

values of A(� )). Figure A.4 shows the obtained estimates of the two complex pole

pairs p1;2; p3;4 listed in the form p1;2 = � ! 1;2

�
� 1;2 � j

q
� 2

1;2 � 1
�

, having natural

frequencies ! and damping factors � . The standard deviation of estimate of nat-

ural frequencies are � !; 1;2 = 1 :22 Hz; � !; 3;4 = 0 :51 Hz; and of damping factors

� �; 1 = 2 :8 � 10� 3[� ]; � �; 3 = 5 :1 � 10� 3[� ].
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Figure A.2: (a),(c) and (b),(d) show an entire sequence and a time zoom of preprocessed

measured and identi�ed lateral journal positions pmeas = [ � x ; � y ], pid = [ �̂ x ; �̂ y ] used for

system identi�cation, excited by the valve positions ux ; uy shown in (e) and (d). (g) and (h)

show the residual e = pmeas � pid .

The identi�ed parameters are shown for a unit mass bearing, but could be

converted to real stiffness, damping and input gains on the assumption that the

known mass of the journal m is equal to the equivalent mass.

A.4 Observer Based Controller Design

The undesirably low damping characteristics of the gas bearing can be addressed

by model based control. This section shows design of a discrete time state feedback

controller designed to increase closed loop damping of the gas bearing. The controller

is to be implemented on a computer, hence the identi�ed dynamics Eq. A.4 from an

experiment at 6:0 krpm are converted to discrete time using zero order hold with

sampling time Ts = 0 :2ms to obtain the discrete time system, sampled atxk , x(kTs)
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Figure A.3: Identi�ed equivalent stiffness K̂ : f k̂xx ; k̂xy ; k̂yx ; k̂yy g,damping Ĉ :

f ĉxx ; ĉxy ; ĉyx ; ĉyy g, and input gain B̂ : f b̂xx ; b̂xy ; b̂yx ; b̂yy g. � ^(�)xx � ^(�)xy � ^(�)yx , � ^(�)yy

. Identi�ed equivalents are shown for a unit mass. Speed varying quadratic polynomials (solid

lines) have been �tted to measurements.

:

xk+1 = Fxk + Guk + Gddk

yk = Cxk + dk ;
(A.12)

where the discrete time system matricesF; G are listed in Tab. A.2. Increasing the

damping is pursued using a pole placement controller, which requires state feedback.

Alternatively an LQR or other optimal controller could have been used. Since only

position is measured, a discrete time full order observer is designed to estimate the

statesx̂ given the control input uk and the position measurementpk . Designing the

state feedback gainK sb and the observer gainL can be done independently. The

latter is chosen to have suf�ciently fast observer poles.
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Figure A.4: Identi�ed natural frequencies � ! 1;2 , } ! 3;4 (1st and 2nd critical speeds) and

associated damping factors� 1;2 ; � 3;4 . Speed varying quadratic polynomials (solid lines) have

been �tted to measurements.

The state feedback gainK sb is designed by pole placement [111] to increase

the damping of the closed loop system by placing the discrete time closed loop

poles pd;cl related to the discrete time open loop poles pd;ol according to pd;cl =

Re(pd;cl ) + j 1
2 Im (pd;cl ). This ensures a decent increase of damping. The control law

then reads:

uf;k = � K sb x̂k jk (A.13)

A.4.1 Experimental Piezo Actuator Characterization

The piezo ceramic hysteresis poses a challenge in controller design. A character-

ization of the hysteresis is developed by applying a stairwise increasing and then

decreasing input voltage to a piezo valve. Figure A.6 shows measured equilibrium

positions as function of applied input voltage. Unfortunately the position exceeds the

saturation limit of the measurement equipment ( 10V), thus some of the hysteresis

curve cannot be recovered. It is evident though, that the equilibrium position can

change � 15% due to the hysteresis. Seeking to counteract valve hysteresis and

increase performance, local PD controllers are designed with discrete time gains

K P = 18:2[V=V]; K D = � 0:187[V s=V]. The valve positions are controlled towards
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reference positionsr p;i . Applying a similar staircase input as position reference to the

controlled valve, the equilibrium positions from Fig. A.6 are obtained. The PD control

both counteracts the hysteresis and gives a desirable valve DC-gain close to unity. For

control purposes, the PD controlled valves also make it reasonable to neglect valve

dynamics. A block diagram of the closed loop system is shown in Fig. A.5.

Figure A.5: Block diagram of the closed

loop system.

Figure A.6: Hysteresis plot of meas. valve

pos. yp; 3 vs inp. voltage in open loop (ol)

up; 3 , and PD-contr. closed loop reference

r p; 3 (cl).

A.4.2 Experimental Impact Response using Damping Increasing

Controller

The designed controller is implemented and an impulse impact is applied both

to the controlled and uncontrolled gas bearing. Figure A.7 shows the comparison

of the open and closed loop system subject to manually induced impulse impacts

with the journal rotating at 
 t = 4 :1 krpm. The position measurements have been

post-�ltered to remove stationary run-out and mass unbalance response to allow

visualization of the impact response, hence the control input variation. Quantitatively

the response magnitudes are not directly comparable as the impacts were forced

manually, but qualitatively the increased damping is certainly clear. The logarithmic

decrement method gives from� y (t) the damping to be increased from0:0159to 0:139

- almost a factor nine.
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Figure A.7: Open and closed loop impact responses at rotation speed
 i = 4 :1 krpm . Shown

positions are smoothed to highlight transient response. The controller increases the damping

by almost a factor 9.

A.5 Conclusion & Future Aspects

Grey box modelling was used successfully to develop accurate linear models of

a rotor-gas bearing system based on experimental measurements. It was shown

that it is possible to perturb the �uid �lm via active lubrication and extract relevant

rotor-gas bearing model parameters based on input output relationships. The typical

low damping properties of gas bearings could be signi�cantly improved using the

active lubrication principle. For a constant angular velocity of 4.1 krpm the damping

was improved by a factor nine. Additional tests will be carried out in higher angular

velocities in the near future. Future effort will focus on controller design addressing

the speed dependent parameter variation.
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Parameter Parameter

L =

2

6
6
6
6
4

0:0605 � 0:0006

� 0:0015 0:0720

39:9112 2:1157

� 3:9433 49:9684

3

7
7
7
7
5

K sb =

2

6
6
6
6
4

� 0:7584 � 0:0131

0:0480 � 0:7212

0:0001 � 0:0001

0:0000 0:0001

3

7
7
7
7
5

T

F =

2

6
6
6
6
4

0:9863 0:0003 0:0002 0:0000

0:0003 0:9842 � 0:0000 0:0002

� 136:5 2:7635 0:966 0:0089

2:960 � 156:7 � 0:0184 0:9606

3

7
7
7
7
5

G =

2

6
6
6
6
4

0:0132 0:0007

� 0:0003 0:0161

130:96 7:4100

� 3:8668 159:96

3

7
7
7
7
5

Table A.2: Discrete time system, observer and controller parameters.

K̂ � � 

K̂ xx (
) 9 :78 � 10� 4 � 12:9 7:4 � 105

K̂ xy (
) � 2:66 � 10� 3 21:97 � 5:743� 104

K̂ yx (
) � 2:511� 10� 3 23:72 � 5:94 � 104

K̂ yy (
) � 7:821� 10� 4 3:607 7:814� 105

D̂ � � 

D̂ xx (
) � 3:37 � 10� 7 4:3 � 10� 3 38:56

D̂ xy (
) � 4:26 � 10� 6 0:026 � 68:84

D̂ yx (
) � 2:77 � 10� 6 0:03324 � 41:09

D̂ yy (
) 5 :418� 10� 6 � 0:04158 102:6

B̂ � � 

B̂ xx (
) � 0:017 165:6 2:91 � 105

B̂ xy (
) � 0:019 192:4 � 4:3 � 105

B̂ yx (
) 8 :5 � 10� 3 � 91:46 2:31 � 105

B̂ yy (
) � 4:0 � 10� 3 29:98 7:57 � 105

Table A.3: Polynomial coef�cients for �tted estimates Acc. to Eq. (A.10).

A.6 Appendix

The appendix lists system parameters in Tables A.3, A.2.
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Abstract:

Controllable rotor-gas bearings are popular offering adaptability, high speed opera-

tion, low friction and clean operation. Rotor-gas bearings are however highly sensitive

to disturbances due to the low friction of the injected gas. These undesirable damping

properties call for controllers, which can be designed from suitable models describing

the relation from actuator input to measured shaft position. Current state of the art

models of controllable gas bearings however do not provide such relation, which

calls for alternative strategies. The present contribution discusses the challenges for

feedback controller design using the state of the art method, and an alternative data

driven modelling approach is pursued based on Grey-Box system identi�cation. The

method allows development of models of the rotor-gas bearing suitable for controller

design, which can be identi�ed from data over the range of operation and are shown

to accurately describe the dynamical behaviour of the rotor-gas bearing. Design

of a controller using the identi�ed models is treated and experiments verify the

improvement of the damping properties of the rotor-gas bearing.
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B.1 Introduction

Controllable gas bearings are popular for offering high speed operation at low

friction using clean and abundant air as a lubricant. Design of such rotor-gas bearing

systems has been the topic of a previous PhD project [31] from the Mechanical

Engineering department at the Technical University of Denmark (DTU). A result

of the work is a piezo actuated rotor-gas bearing test rig. A controller is however

required to improve the poor damping properties, and a collaborative PhD has begun

between the department of Mechanical Engineering and the Electrical Engineering

control engineering group to further explore the design of such controllers. This

paper provides an overview of the work so far of the collaborative PhD.

State of the art models of rotor-gas bearings [78, 31] rely on solving the Reynolds

equation to model the pressure distribution of the �uid �lm. Morosi [31] included

the effect of the piezo actuated valves into the Reynolds equation, and used it to

develop a model of a short rigid rotor-gas bearing actuated by piezo valves based on

this modi�ed Reynolds equation (MRE). This model was used to manually tune the

parameters of a decentralised controller. Recent work in print has however shown

that alternative models of the �ow in the valves are required to make the model re�ect

reality. The MRE requires iteratively solving causing an unknown analytical relation

from input to the valves to displacement of the rotating shaft, which leaves the model

unsuitable for design of model based controllers. This PhD project has therefore

investigated development of such suitable models using system identi�cation, e.g.

in [1], which showed that linear models identi�ed from experimental data could

describe the gas bearing behaviour. Models were identi�ed over a range of rotational

velocities, where the parameters were found using Grey-Box system identi�cation.

The present contribution makes use of the same bearing model and extends the

results by also modelling the actuator dynamics.

The present contribution provides an overview of the progress in developing

models and their usage for feedback controller design of the rotor-gas bearing from

experimental data over the desired operational range determined by rotational

velocity and injection pressure. The paper is structured as follows: A brief overview

of the experimental test rig is given in Sec. B.2, followed by an overview of the

current state of the art model and its challenges. Section B.4 shows formulation of the

Grey-box model and its parameters are identi�ed from experiments. The identi�ed

model is used in Sec. B.5 to design a controller capable of increasing the damping

properties of the rotor-gas bearing and experiments in Sec. E.5 verify the capabilities
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of the designed controller.

B.2 Experimental Setup of Rotor-Gas Bearing

The experimental setup at hand is shown in Fig. B.1: a turbine driven �exible

shaft (a) is supported by both a ball bearing (d) and the controllable gas bearing (b),

in which pressurised air is injected through four piezo actuated valves numbered as

shown. The manometric injection pressurePI of the pressurised air is measured by a

mechanical gauge before splitting up to the four actuators. The absolute pressure

in the valves Pabs is assumed to be the sum of the measured pressurePI and the

atmospheric pressurePatm . A disc (c) is mounted in one end to pre-load the journal.

The horizontal and vertical shaft de�ections ( ex ; ey ) are measured at the disc location

using eddy current sensors (e) in the coordinate frame speci�ed in the �gure. The

angular position of the shaft � is measured by an optical encoder. The pressurised

air generates a thin layer of �uid �lm in the 25�m thin gap between the shaft and

the bearing housing. For a range of conditions, the �uid �lm generates restoring

forces and thereby keeps the shaft levitating in a stable equilibrium. A more thorough

description of the setup is available in [78].

The piezo-electric valves are subject to hysteresis and creep effect [91]. To

counteract the hysteresis, decentralised PD-controllers are deployed, effectively

reducing the position uncertainty by counteracting the hysteresis. The controlled

valves are commanded reference positionsr p;i 2 [0; 10]V , and the corresponding

valve positions yp;i 2 [0; 10]V are measured ranging from open valve (0V ) to closed

valve (10V ). The valves are controlled pairwise as if there was just a single horizontal

and a vertical valve commanded position referencer (t) , [r x (t); r y (t)]T , which is

mapped as a reference to the individual valves according to the law fromr (t) !

r p(t), similarly the lumped valve position vector u(t) is de�ned as a function of the

individual valve positions:

r p(r x (t); r y (t)) =

2

6
6
6
6
4

r p;1(t)

r p;2(t)

r p;3(t)

r p;4(t)

3

7
7
7
7
5

=

2

6
6
6
6
4

r 0 + r y (t)

r 0 + r x (t)

r 0 � r y (t)

r 0 � r x (t)

3

7
7
7
7
5

; u(t) ,

"
ux (t)

uy (t)

#

=

"
yp;2(t) � yp;4(t)

yp;1(t) � yp;3(t)

#

(B.1)

This makes the valves cooperate and reduces the system from an over-actuated to a

fully actuated. In addition the constant offset r 0 = 5V ensures the largest dynamical

range.
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Figure B.1: The experimental bearing setup. A �exible shaft (a) is supported by both a ball

bearing (d) and the controllable gas bearing (b) with four piezo actuated valves. A disc (c) is

mounted in one end to pre-load the journal and displacement sensors (e) measure the lateral

movement of the disc.

B.3 Rotor-gas Bearing Modelling Using Finite Element Models

and the Modi�ed Reynolds Equation

Current state of the art models of the rotor-gas bearing [41, 31] consist of two

sub-models: A Finite Element model of the �exible shaft and a model of the thin

layer of �uid �lm. This section provides an overview of these two models and their

challenges.

B.3.1 The Modi�ed Reynolds Equation

The Modi�ed Reynolds equation [31] is used for modelling the behaviour of the

thin layer of �uid �lm in the rotor-gas bearing. By a set of assumptions, a partial

differential equation can be made, modelling the pressurep as a function of the �uid

�lm thickness h, which varies along with the shaft position in the bearing and time t

can then be set up:

@
@y

�
ph3 @p

@y

�
+ @

@z

�
ph3 @p

@z

�
= 6 �U

@(ph)
@y

+ 12�
@(ph)

@t
+ 12pVI (B.2)
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where the �uid �lm coordinate frame (x; y; z) chosen is: x the radial coordinate

directed towards the centre of the shaft, y the circumferential coordinate and z being

the axial coordinate. � is the viscosity of the gas,U is the linear velocity of the

rotating shaft at the bearing housing, VI is the velocity pro�le of the injected gas

assumed to be parabola shaped with a linear pressure drop along the length of the

valves; Work in print however shows this does not model the �ow well. The �ow

is assumed laminar, which is reasonable given the small thickness of the �uid �lm.

The MRE has no known analytical solution, but discretisation in a �ne grid allows an

iterative solution to be found from a good initial solution guess. This provides the

pressure pro�le, which upon integration provides the horizontal and vertical forces

from the �uid �lm acting on the �exible shaft Fbe = [ FX;be ; FY;be]T .

B.3.2 Finite Element Modelling of Flexible Shaft

The �exible shaft can then be modelled using a �nite element (FE) method, where

the shaft is divided into ne sections, which can bend and rotate relative to each

other around the nn = ne + 1 nodes connecting the sections giving four degrees of

freedom (DOFs) per node. Given the geometry of the shaft and its material properties,

the stiffness of each section can be approximated, the mass of each section can be

calculated and the forces from each section acting on the other sections can then

be expressed as ann � 4 coupled differential equations with the linear and angular

displacements from a horizontal and a vertical axis qF = [ q1; q2; : : : ; q4n n ]T with

corresponding time derivatives _qF . The model is formulated using the mass matrix

M F , the stiffness matrix K F , the gyroscopic matrix GF and the damping matrix DF :

M F •qF (t) + ( DF � 
 GF ) _qF (t) + K F qF (t) = f F (t); qF = [ q1; q2; : : : ; q4n n ]T (B.3)

where in the above f F (t) is the external forces acting on each node of the FE model

from the �uid �lm, external disturbances etc.. Using the linearised stiffness and

damping forces from the MRE bearing model, the FE model predicts the eigenfre-

quencies within � 5% in the stationary case over a wide range of injection pressures

and rotational velocities.

The requirement of this iteratively solved pressure pro�le for every con�guration

however leaves the model unable to describe the relation from actuator input voltage

to shaft displacement on a form suitable for controller design. The time dependent

MRE still remains to be coupled to the FE shaft model and validated experimentally,

before the relation from input voltage to shaft displacement can be approximated
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and put on an analytical form. This shows the need for alternative approaches to

develop models for feedback controller design, which do not depend on the solution

of the MRE.

B.4 A System Identi�cation Approach - Data Driven Modelling

The modelling of rotor gas bearings still represents an open challenge. This

section shows a heuristics based model approach, where basic knowledge from rotor-

dynamics provides the basis for formulation of a model. The model parameters are

then identi�ed from experimental data, where the piezo-valves perturb the rotor-gas

bearing. The method allows development of accurate models able to describe the

rotor-gas bearing dynamics.

The measurement of the valve positions allows dividing the modelling in two: an

actuator sub-model to model the valve dynamics from commanded valve reference

position to valve position, and a bearing sub-model to model the relation from

valve position to shaft de�ection. The parameters of the identi�ed models allow

formulation of a global model.

B.4.1 Grey-Box Model of Gas Bearing

In a rotational range around the �rst two eigenfrequencies, the rotor gas bearing

system consisting of the �exible shaft and the gas-bearing can be modelled as a 2

DOF coupled mass-spring damper system. Letp = [ ex ; ey ]T be the position vector

consisting of horizontal and vertical shaft displacements, and denote time derivatives
d
dt (�) = _(�). The model then reads

M •p(t) + ( D � 
 G) _p(t) + K p(t) = Bpu(t); p = [ ex ; ey ]T ; (B.4)

in which 
 is the rotation speed, M is the diagonal mass matrix,D is the damping

matrix, G is the antisymmetric gyroscopic matrix, and K is the stiffness matrix, all

with dimension 2 � 2. The right hand side should include external forcesf (t) acting

on the rotor-gas bearing, which include: forces from mass unbalance, forces from the

piezo valves and forces from external impacts. Section B.4.4 shows how the mass

unbalance response is �ltered out. In [1] it was shown reasonable to assume the

actuator force proportional to the valve position with gain Bp, of dimension 2 � 2

and the model therefore reduces to Eq. B.4. The model is reformulated to state space

form to ease the Grey-Box modelling. A suitable choice of states is the de�ection and
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velocity of the shaft x , [ex ; ey ; _ex ; _ey ]T . The measurement noise and errors from

simpli�ed model are modelled as additive noise d(t) entering both output and states

with a disturbance input gain Bd and the chosen state space formulation of Eq.(B.4)

then reads:

_x(t) = Ax(t) + Bu(t) + Bdd(t); x(0) = x0

p(t) = Cx(t) + d(t)
(B.5)

where the system-, input gain-, and output matrix are

A =

"
0 I

� K � D

#

; B =

"
0

B

#

; Bd =

"
0

Bd

#

; C =
h
I 0

i
; (B.6)

where D , M � 1(D � 
 G) , K , M � 1K, and B , M � 1Bp are the matrices to

be identi�ed along with disturbance gain Bd, and initial value x0, each with four

parameters giving 20 unknowns in total. The parameters of (B.6) are identi�ed by

recasting the problem to a model parametrized in �̂ b , f D̂; K̂; B̂; x̂0; B̂dg asM b(� )b.

Each matrix D̂; K̂; B̂; B̂d has four elements denoted by small letters and subscripts

xx; xy; yx; yy . The model then reads

M b(� b) :

8
<

:
_x(t) = A(� b)x(t) + B(� b)u(t) + Bd(� b)d(t); x(0) = x0(� b)

p(t) = Cx(t) + d(t)
(B.7)

B.4.2 Grey-Box Model of Lumped Actuators

This section formulates a similar model of the lumped PD-controlled piezo valves.

The closed loop horizontal and vertical lumped valve can each be modelled as a

second order low-pass �lter. The valve dynamics can be seen as transfer functions

with two poles p1;j , and p2;j , where j refers to the horizontal valve x or vertical valve

y and gain � a;j . Considering only the commanded reference position as input, the

dynamics then read:

"
ux (s)

uy (s)

#

=

"
Ha;x (s) 0

0 Ha;y (s)

# "
r x (s)

r y (s)

#

; Ha;j (s) =
� a;j�

1
p1;j

s + 1
� �

1
p2;j

s + 1
�

(B.8)

in which Ha;j (s) is the second order �lter of the speci�ed form. The model can

be formulated in the same structure as Eq. B.7, exploiting that cross coupling

terms kxy ; kyx ; dyx ; dxy ; byx ; bxy ; bp;yx ; bp;xy are zero. Reformulating this to a Grey-box
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model and estimating the initial valve states xa and a similar disturbance gain da ,

the model then reads

M a(� a) :

8
<

:
_xa(t) = A(� a)xa(t) + B(� a)r (t) + Bd;a (� a)da(t); xa(0) = xa0(� a)

u(t) = Caxa(t) + da(t)

(B.9)

Estimating the gains, poles, initial state and disturbance gain, the actuator model

thus only has 12 parameters being:

� a , [ka;xx ; ka;yy ; ba;xx ; ba;yy ; da;xx ; da;yy| {z }
valve coef�cients

; bda;xx ; bda;yy| {z }
disturbance gains

;

xa1;x 0; xa2;x 0; xa3;x 0; xa4;x 0| {z }
initial state

]T ;
(B.10)

and a similar actuator model M a(� a) has been formulated.

B.4.3 Description of Experiments

The model should represent the rotor-gas bearing over the range of operational

conditions, which are de�ned by two main characteristics: rotational speed 
 and

injection pressure PI , which can vary within 
 2 [0; 6]krpm and PI 2 [3; 7]bar

respectively. This identi�cation over the whole operational range will be available

in [3], where the coef�cients are estimated from data sets collected from a grid of

injection pressures and rotational velocities representing the range of interest. Here

a selected example is chosen�
 = 0 rpm and �PI = 4 :0bar. During data collection all

variables were sampled atf s=5kHz. A pseudo random binary sequence commanded

as reference for the lumped valvesr (t) ensured excitation of the system and hence

identi�ability of the parameters. The input stepped from � 1 to 1 at random sampling

instants. The lumped valve referencesr (t) and measured lumped valve positionsu(t)

were logged as input and output for the actuator sub-model and the lumped valve

positions u(t) and the shaft displacementp(t) as input and outputs for the bearing

model.

B.4.4 Pre�ltering

Before identi�cation, the data sets are pre�ltered using a run-out �lter F r , which

�lters out the response from surface unsmoothness and mass unbalance response.

This is calculated from a data set collected at each operational condition, where the
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shaft is not excited, which allows generation of the response as function of encoder

angle F r (� ). The offset of both inputs and outputs estimated as mean of the �rst

2000 samples are subtracted from the data sets. A median �lter of size 3 is used to

smooth out noise from the shaft position measurements.

B.4.5 Identi�cation

The parameters of both the actuator sub-model and the bearing sub-model are

identi�ed using the prediction error method [45], and initial guesses of the param-

eters are obtained from previous identi�ed models. The model update iterations

were stopped when the relative improvement norm was less than10� 4 indicating

convergence.

Both the actuator model M a and the bearing model M b are then identi�ed from

the respective data sets. The actuator sub-models are found to be fairly constant over

the investigated range of interest, and a nominal actuator model Gact is chosen. The

bearing model parameters however vary with both injection pressure and rotational

velocity as expected from [31]. The model residuals are expected to be white noise,

which is not the case as shown in Fig. B.2 (d) and (h). The norm of the residual

however is small indicating low importance of the residual dynamics.

Cascading of the bearing model and the actuator model provides the total rotor-

gas bearing model: Gp(s) = Gbear (s)Gact (s).

B.5 H1 Control

A suitable control strategy such as the mixed sensitivity-approach can improve

the poor damping characteristics of the rotor-gas bearing. The identi�ed model is

used for design of such a controller.

The H1 controller K 1 (s) has been designed using the stacked requirements

jjN jj1 = max ! �� (N (j! )) < 1;, where N = [ WpS; Wu K 1 S]T . The controller is

designed for a model identi�ed at PI = 7bar; 
 = 4000 rpm. The chosen weights

Wp and Wu shown in Fig. B.3 ensure an increase in damping without counteracting

low frequency disturbances such as changes in equilibrium position due to changing

operational condition. The controller obtained using the speci�ed weights is reduced

from 24 states to a fourth order controller K 1 (s) using Gramian-based input/output

balancing. The reduction factor in sensitivity towards disturbances is determined
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Figure B.2: Example of an identi�cation of data set collected at PI = 4 bar; 
 = 0 rpm . The

valve positions [ux ; uy ] exciting the bearing shown in c) excite the bearing dynamics causing

de�ection of the shaft. a) and b) show this measured de�ection pmeas = [ ex ; ey ] and the

predicted using the identi�ed model pid = [ êx ; êy ] subject to valve excitation. d) shows the

residual between identi�ed and measured response" = pmeas � pid . Subplots e, f, g and h

show corresponding time zooms.
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from the output sensitivity calculated as:

So(s) , (I2 + Gp(s)K 1 (s)) � 1 (B.11)

The reassembled bearing model [3] is used to assess performance of the controller

over the range of operation. This model is developed from identi�ed models from

data collected over a range of injection pressures(PI 2 [3; 7]bar) and rotational

speeds(
 2 [0; 6]krpm) and describes the rotor-gas bearing behaviour over the wide

range of operational conditions. Figure B.4 shows the output sensitivity of the closed

loop system for different randomly chosen operational points models within the

operational range. The sensitivity is reduced in the desired frequency range from

[70 : 190]Hz by a factor three to nine, though at the cost of an increased sensitivity

of a factor 1:2 at low frequencies, and a peak sensitivity around280Hz of a factor

1.8, which is affordable.

Discretisation of the controller to K 1 (z) using a Tustin-approximation allows

implementation on the rotor-gas bearing test-rig, and the frequency response in

Fig. B.5 shows the desirable capabilities of the controller: at low frequencies and DC

the controller is not active, only in an interval around the critical frequencies is the

controller active.

Figure B.3: Weights Wp (s) and Wu (s) for mixed sensitivity controller design
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Figure B.4: Output sensitivity So(s) for N r = 30 realizations of the rotor-gas bearing within

the operational. The black arrow and lines mark the frequency interval where the sensitivity is

reduced.

Figure B.5: Frequency response of controllerK (z)
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Figure B.6: Horizontal impact response without and with the designed controller at �PI = 4 bar,
�
 = 0 rpm . Impact occurs close to timet = 0 :01s. a and c show measured de�ections, b and d

show commanded valve positions and e shows the measured impact force.

B.6 Experimental Results

The controller is implemented on the rotor-gas bearing system, and impacts are

applied to the rotor-gas bearing both with the controller on and off. Figure B.6 shows

a horizontal impact response at �PI = 4bar, �
 = 0 rpm: using the robust controller,

the horizontal damping is found increased from 0:0567to 0:173- a factor three. A

vertical impact in Fig. B.7 shows similar increase in damping. Horizontal and vertical

impacts at higher pressure �PI = 7bar show a damping increase by a factor six from

0:0282to 0:1668, which is within the expected range of damping increase predicted

by the sensitivity function. Equivalent results can be obtained for non zero rotational

velocities.
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Figure B.7: Vertical impact response without and with the designed controller at �PI = 4 bar,
�
 = 0 rpm . Impact occurs close to timet = 0 :01s. a and c show measured de�ections, b and d

show commanded valve positions and e shows the measured impact force.

B.7 Conclusion

Two Grey-box models were developed modelling the actuators and bearing dy-

namics for a rotor-gas bearing, and successfully used to identify model parameters

describing the relation from commanded to measured valve position, and from valve

position to shaft displacement of the rotor-gas bearing. A mixed sensitivity controller

was designed to stabilise the rotor-gas, and its increase in damping was validated

experimentally for chosen conditions.
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Abstract:

Gas bearings are popular for their high speed capabilities, low friction and clean

operation, but suffer from poor damping, which poses challenges for safe operation

in presence of disturbances. Enhanced damping can be achieved through active

lubrication techniques using feedback control laws. Such control design requires

models with low complexity, able to describe the dominant dynamics from actuator

input to sensor output over the relevant range of operation. The mathematical

models based on �rst principles are not easy to obtain, and in many cases, they

cannot be directly used for control design due to their complexity and parameter

uncertainties. As an alternative, this paper presents an experimental technique for

"in situ" identi�cation of low complexity models of the entire rotor-bearing-actuator

system. Using grey-box identi�cation techniques, the approach is shown to be easily

applied to industrial rotating machinery with gas bearings and to allow for subsequent

control design. The paper shows how piezoelectric actuators in a gas bearing are

ef�ciently used to perturb the gas �lm for identi�cation over relevant ranges of

rotational speed and gas injection pressure. Parameter-varying linear models are

found to capture the dominant dynamics of the system over the range of operation.
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Based on the identi�ed models, decentralised proportional control is designed and is

shown to obtain the required damping in theory as well as in a laboratory test rig.

C.1 Introduction

Passive and active gas bearings are receiving growing attention for their high

speed operation capabilities. While passive gas bearings offer advantages of high

speed operation, low friction, and clean and abundant air as lubricant, they suffer

from low damping and vibration instabilities [34, 35, 36]. The damping and stability

properties can be improved by two methods. One is through foil bearings [13,

14, 15] that exploit friction between bumps and foil. Such solutions are relatively

cheap, but friction is a signi�cant design challenge [17]. An alternative is to use a

mechatronic approach in the form of active control of the gas bearing using piezo

actuation [78] or active inherent restrictors [28]. The controllers for such systems

could be tuned experimentally, with the uncertainty and lack of quality assurance this

method implies, or they could be stringently designed based on dynamic models with

documentable performance properties. The latter requires a suitable model, which

in a simple manner describes the relation from actuator input to measured output,

representing the dynamics of the journal in the frequency range where control is

needed. Concerning modelling, air-injection actuators have only received sparse

attention. In contrast, electromagnetical actuators and oil bearings have been well

covered. Modelling and a linear parameter varying control design were presented

for a rotor supported by an oil bearing and an electromagnetically actuated bearing

in [87], which showed ability to reduce vibrations and to allow rub-free crossing

of the �rst resonance frequency. Current state of the art models of controllable gas

bearings rely on solving the modi�ed Reynolds equation [36], which emerges from

including the external controllable lubricant injection into the Reynolds equation.

No general closed analytical solutions exist for the equation considering bearings

with �nite dimension. Solutions are therefore found iteratively over time, and the

input-output relationship between piezoactuator and rotor lateral displacement is

not easily derived. Literature has therefore generally presented experimentally tuned

controllers, e.g. in [78]. Some authors have proposed on-off control rules [109],

where the opening of the valves changed the journal pressure, which in turn changed

the critical speeds, allowing the rotor to cross them safely. Such approach, however,

does not improve the damping characteristics of the gas bearing.

Models suitable for controller design can be developed using system identi�cation.
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Such models can have low complexity and can yet provide a convenient basis for

synthesising controllers [46]. Such models can leave out the details and high order

associated with mechanical models based on �rst principles. Only few results exist for

controllable gas bearings, whereas the literature is rich on active magnetic bearings

(AMB). AMBs have inherently unstable dynamics [63, 64, 65] and therefore require

stabilising controllers. For the non-rotating case, the horizontal and vertical AMB

dynamics are uncoupled, therefore a model is developed for each of the two directions.

In [50] and [64], a frequency based identi�cation approach was used to develop

black-box models of a rotor supported by AMBs. This allowed development of high

order continuous time models for a non-rotating shaft supported by AMBs, which

suf�ced for controller design. In [49], a frequency based method was proposed for

identi�cation of the transfer function matrix model of a non-rotating shaft supported

by AMBs. The method consisted of steps identifying the submodels separately and

�nally combining them together. In [63], a similar approach was proposed and

deliberately poor controllers were used to allow identi�cation of the poles on the real

axis, which are in general not easily identi�ed. In [48], a predictor-based subspace

identi�cation algorithm was proposed to identify the dynamics of a non-rotating

AMB system, and the obtained model was used to design robust controllers. In [66]

a simple black-box model was proposed to represent the vertical displacement of a

simple non-rotating rigid shaft supported by AMBs, where the model parameters were

estimated online. In [47], an iterative frequency based joint identi�cation/controller

design scheme for a non-rotating shaft supported by AMBs was applied using an LQ

criterion.

Controllable gas bearings differ from AMBs in the sense that gas bearings can

be designed to be open loop stable, hence open loop identi�cation schemes can be

used. The lateral dynamics is though coupled due to aero-static effects even in the

non-rotating case. Recent work [1] showed that grey-box system identi�cation could

be a means to develop such models. The main contribution of this work relies on: a)

grey-box identi�cation to develop low complexity models of the entire rotor-bearing-

actuator system and b) extension of the early results from [1] by investigating the

system dynamics as function of both gas injection pressure and rotational speed,

which are the two main variables that in�uence system dynamic behaviour when the

static load and the bearing geometry are kept constant [41]. The earlier models from

[1] need to be extended to include the dynamics of the piezoelectric actuators and

to capture the delay between the displacement of the piezoelectric actuator and the

pressure build-up in the journal. The experimental procedure is developed aiming at
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industrial applications to complex rotating systems supported by gas bearings, where

�rst principles modelling is rarely simple and accurate enough for controller design.

The paper is structured as follows: a brief overview of the experimental test rig

is given in Sec. C.2. The piezoelectric actuators are then characterised. The static

gain from piezoactuator position to disc position is experimentally characterised.

Section C.3 presents an experimentally-based model of the rotor-bearing system

obtained for a set of operational conditions through grey-box identi�cation techniques.

Regression techniques are used in Sec. C.4 to �t polynomial surfaces to experimental

data and build a linear parameter varying model of the entire controllable rotor-

bearing system, which captures the essential behaviour across the operational range.

Section C.5 presents the design of a decentralised proportional controller to con�rm

the suitability of the identi�ed models for controller design and the results are

experimentally veri�ed. Sections E.6 and C.7 evaluate critically the results, showing

that the controller enhances the damping properties of the gas bearing as expected.

Notation

The paper uses upper case bold letters for matricesA , lower case bold letters for

vectors a and non-bold letters for scalarsa or A. When relevant, clear distinctions

are made to address time signalsa(t) and the Laplace transformed a(s). Units

for rotational speeds are listed in revolutions per minute (1rpm = 1=60Hz), and

pressures are listed in bar(1bar = 100; 000Pa).

C.2 Experimental Setup of Controllable Gas Bearing Test Rig

The experimental controllable gas bearing setup at hand is shown in Fig. C.1. It

consists of a turbine (1) driving a �exible shaft (2) supported by both a ball bearing

(3) and the controllable gas bearing (4), in which pressurised air is injected through

four piezoactuated injectors numbered as shown. The injection pressurePinj is

measured by a mechanical gauge before splitting up to the four piezoactuators. A

disc (5) is mounted in one end to pre-load the journal. The horizontal and vertical

disc movement p , [px ; py ]T is measured at the disc location using eddy current

sensors (6) in the coordinate frame speci�ed in the �gure. The angular position of

the rotor � is measured by an optical quadrature encoder (7). The position of the

i -th piezoactuator can be controlled through a voltage input up;i 2 [0; 10]V , where an

increasing voltage expands the piezostacks by up to45 �m , which closes the injector.
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Test rig

dimension

Bearing

length

[mm ]

Bearing

diameter

[mm ]

Shaft

length

[mm ]

Shaft

mass

[kg]

Disc

diameter

[mm ]

Disc

mass

[kg]

Ori�ce

diameter

[mm ]
Value 40 40 500 2:04 140 1:5 2

Table C.1: Controllable gas bearing test rig parameters.

Figure C.1: The experimental controllable gas bearing setup. A turbine (1) drives a �exible

shaft (2), which is supported by both a ball bearing (3) and the controllable gas bearing (4)

with four piezoactuated injectors. A disc (5) is mounted in one end to preload the journal and

displacement sensors (6) measure the lateral movement of the disc in the shown reference

frame. A quadrature encoder (7) measures the angular position.

Figure C.2 shows a CAD drawing of the test rig, where the gas bearing is cut in half

to visualise the control mechanism. The nominal clearance of the gas bearing is

25 �m . Given the right conditions of suf�cient injection pressure and suf�ciently low

rotational speed, the gas �lm generates restoring forces and thereby keeps the rotor

levitating about a stable equilibrium, and opening or closing an injector perturbs the

gas �lm. Physical dimensions of the test rig are shown in Table C.1. All measurements

are sampled with period Ts = 0 :2 ms. A detailed description of the setup is available

in [31].

The piezoelectric stacks in the piezoactuators have two inherent nonlinear phe-

nomena [91, 112]: creep and hysteresis. Hysteresis causes uncertainties in the

piezoactuator position, which is a challenge for modelling and control. To counteract

these nonlinear effects, decentralised PD-controllers are deployed. The controllers al-

low piezoactuator i , i 2 f 1; 2; 3; 4g to track a reference position r p;i . This is described

in detail in C.8, and it is shown, that the closed loop piezoactuator dynamics can be

captured by linear models, which is pursued further in Sec. C.3.7.

The four piezoactuators are available to control the shaft displacement inx and
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Figure C.2: CAD drawing of the test rig: a) the test rig with the controllable gas bearing cut

in half. Major dimensions are included in millimetre [mm ]. b) zoom of a piezoactuator. The

piezo electric stack pushes a pin, which controls the injector opening. c) zoom of the injector

pin and journal.

y. Individual control of the piezoactuators gives the challenge of control allocation.

Instead they are pairwise controlled using a differential principle. Piezoactuator

reference positionsr (t) , [r x (t); r y (t)]T are commanded using:

r p;1(t) = r 0 + r y (t) r p;2(t) = r 0 + r x (t);

r p;3(t) = r 0 � r y (t) r p;4(t) = r 0 � r x (t);
(C.1)

i.e. one reference signalr x is sent to the pair of piezoactuators mounted horizontally,

and one reference signalr y is sent to the pair mounted vertically as shown in Fig. C.3.

The constant offset r 0 is chosen to ensure the largest dynamical range avoiding

actuator saturation. The individual piezoactuator positions are similarly mapped to a

vector containing the difference of piezoactuator positions u(t):

u(t) , [ux (t); uy (t)]T = [ yp;2(t) � yp;4(t); yp;1(t) � yp;3(t)]T (C.2)

The measurements of this difference of piezoactuator positions combined with

the measurement of lateral disc movement allows modelling of actuator and bearing

dynamics as individual linear subsystems. A rotor-bearing model is set up to describe

the dynamics from piezoactuator position to lateral disc movement [px ; py ]T . An

actuator model is set up to describe the relation from commanded piezoactuator

positions [r x ; r y ]T to piezoactuator position [ux ; uy ]T . The measured inputs and

outputs of each subsystem are used to identify models as shown in Fig. C.4. The

entire rotor-bearing-actuator model G is then obtained as the interconnection of the
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Figure C.3: The piezoactuators are controlled pairwise using a differential principle. A

reference signalr x is sent to the pair of piezoactuators mounted horizontally, and a reference

signal r y is sent to the pair mounted vertically.

Figure C.4: Overview of the system identi�cation process. A perturbation of the commanded

piezoactuator positions perturbs both the piezoactuators and the shaft and disc. An actuator

model can the be identi�ed from the f r ; ug data sets, and a rotor-bearing model from the

f u; pg data sets.

rotor-bearing model G rb and the actuator model G act :

G = G rb G act (C.3)

The individual models are derived in the following sections.

C.3 Experimentally-Based Modelling Aided by Grey-Box

Identi�cation

This section presents a low-complexity linear dynamical model describing the

controllable gas bearing and rotor dynamics. The proposed model is shown to capture
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the dominant dynamics well, and its simplicity makes it suitable for controller design.

The model parameters are found from experimental data using grey-box system

identi�cation [45]. Experiments performed over the operating range allow the

description of the overall dynamic behaviour of the controllable gas bearing. Multiple

data sets collected at each operational condition are used for cross-validation ensuring

the quality of the identi�ed models.

C.3.1 Static Input-Output Gain Modelling of Rotor-Bearing

The presence of nonlinear phenomena in the shaft actuation is assessed by the

collection of a staircase response, where a stepwise increasing voltage is applied to

the commanded piezoactuator positionsr , followed by a stepwise decreasing voltage.

The response allows the generation of a steady state gain mapping showing shaft

equilibrium position p as a function of the difference of piezoactuator positionsu.

Figure C.5 shows such a mapping for the injection pressure�Pinj = 6 bar, and the

rotational speed �
 = 0 rpm. The linear relation from inputs to outputs is evident.

Cross-coupling gains from the aerostatic effect are also present in the system, though

with small in�uence. This analysis shows no evidence of hysteresis or other nonlin-

ear phenomena affecting the shaft position. Similar results are obtained for other

injection pressures and rotation speeds, though with varying slopes and equilibrium

position. The error in equilibrium position from approximating the static gain linear

is less than0:95 �m over the range of applied inputs with root mean square errors

[� g0;xx ; � g0;xy ; � g0;yx ; � g0;yy ]T = [0 :44; 0:037; 0:059; 0:21]T �m . Therefore linearity is

a reasonable approximation.

C.3.2 Grey-Box Model of Rotor-Bearing System

A combined model of the rotor and the gas bearing can be set up as a 2 DOF

coupled mass-spring-damper equivalent in a neighbourhood around the two �rst

eigenfrequencies. For given constant shaft rotational speed
 = �
 and injection

pressurePinj = �P, the model reads:

M •p(t) + ( D + �
 G) _p(t) + K p(t) = f (t); (C.4)

where M = diag( m; m) is the mass matrix,D is the damping matrix, G represents

the antisymmetric gyroscopic effect, andK is the stiffness matrix, all of dimension

2 � 2. The matrices D ; G, and K are known to vary with injection pressure and

rotational speed. The right hand side of Eq. C.4 includes external forcesf (t) acting
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Figure C.5: Steady state characterization of input-output gains at �Pinj = 6 bar, �
 = 0 rpm : the

experimental data reveal a linear mapping from u to lateral disc position p.

on the shaft, which includes mass unbalance, external disturbances and active forces

controlled with help of the piezoactuators. Section C.3.5 shows how to subtract the

response from the unknown mass unbalance. Thus, by ensuring no impacts occur

during collected data sets, only the response from active forces remain. These are

not easily modelled due to the compressibility of air, which causes memory effect

as known from Cummins equation [113]. The memory effect can effectively be

modelled as time delays� = [ � x ; � y ]T from piezoactuator position to force applied on

the shaft. Section C.3.1 showed that the disc lateral movement could be approximated

proportional to u, and it is therefore reasonable to assume that the active forces are

also proportional to the delayed signal u � (t) , [ux (t � � x ); uy (t � � y )]T with a gain

Bp:

M •p(t)+( D + �
 G) _p(t)+ K p(t) = Bpu � (t); u � (t) , [ux (t � � x ); uy (t � � y )]T (C.5)

This suggests a model structure for identi�cation. With a model structure known,

the identi�cation of the rotor-bearing system parameters is sought through grey-box

identi�cation. The grey-box modelling is eased by reformulation of the dynamics

Eq. C.5 to state space form, where a suitable choice of states is the lateral movement

and velocity of the disc x , [px ; py ; _px ; _py ]T . The output is yb = Cx = p. The very

simple model structure inevitably gives rise to modelling errors, which are included

as process noisev(t). Measurement noise is modelled as an additive signalw(t).
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This combination of process noise and measurement noise can be reduced to one

equivalent noise term db(t) entering both the state and the output equation [45].

Therefore model errors and measurement noise are included as a stochastic additive

signal db(t) entering both through an input gain Bd and the measurements directly:

_x(t) = A x(t) + Bu � (t) + Bddb(t); x(0) = x0;

y (t) = Cx(t) + db(t);
(C.6)

where the system-, input gain-, and output matrix are:

A =

"
0 I

K D

#

; B =

"
0

B

#

; Bd =

"
0

B d

#

; C =
h
I 0

i
; (C.7)

and D , � M � 1(D + �
 G) , K , � M � 1K , and B , M � 1Bp are matrices to be

identi�ed along with the disturbance gain B d. 0 and I are zero-, and identity matrices

respectively. K , D and B are thus equivalent to stiffness, damping and input gain

scaled by the mass matrix. In other words,M is assumed to be the identity matrix.

The equivalent stiffness therefore has units[N=(kgm)], the equivalent damping has

units [Ns=(kgm)] and the equivalent input gain has units [N=(kgm)], and they are

simply referred to as stiffness, damping and input gain. Using only the measured

piezoactuator position as input, the model in the Laplace domain reads:

"
px (s)

py (s)

#

=

, G b (s)
z }| {"

Gb;xx (s) Gb;xy (s)

Gb;yx (s) Gb;yy (s)

#
, G � (s)

z }| {"
e� � x s 0

0 e� � y s

#

| {z }
, G rb (s)

"
ux (s)

uy (s)

#

; (C.8)

in which f Gb;xx ; Gb;xy ; Gb;yx ; Gb;yy g are the individual transfer functions, and � x and

� y are the delays from the pressure build-up in the gas �lm active forces. The time

delay � is small, but not negligible. It is not easy to estimate directly; hence a �rst

order Padé approximation is used instead, which gives:

G � (s) � G ~� (s) ,

"
G~� ;x (s) 0

0 G~� ;y (s)

#

; G~� ;j (s) ,
1 � � j

2 s
1 + � j

2 s
; (C.9)

Equation C.9 has an equivalent state space description with state vector denotedx � ,

and matrices A � ; B � ; C� ; D � . The controllable rotor-bearing model emerges from
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Figure C.6: Overview of the rotor-bearing model: the difference of piezoactuator positions u

enters as input into the Padé approximated delays modelling the �uid memory effect. The signal

db models the differences between measured and model response including measurement

noise.

substitution of the Padé approximated time delay Eq. C.9 into Eq. C.6:

, _x b ( t )
z }| {"

_x(t)

_x � (t)

#

=

, A bz }| {"
A BC �

0 A �

#
, x b ( t )

z }| {"
x(t)

x � (t)

#

+

, B bz }| {"
BD �

B �

#

u(t) +

, B d;b
z }| {"

Bd

0

#

db(t); xb(0) = xb0

yb =

, Cb ( t )
z }| {h
C 0

i
xb(t) + db(t);

(C.10)

where xb is the concatenated state vector,A b; Bb; Bd;b and Cb are the state space

matrices. Figure C.6 shows an overview of the rotor-bearing model. The signaldb

models the differences between measured and model response.

The parameters of Eqs. C.7 and C.9 in Eq. C.10 are identi�ed by recasting the prob-

lem to a model parametrised in � b , f K ; D ; B ; � ; B d; xb0g asM b(� b). Each matrix

K ; D ; B ; B d has four elements denoted by small letters and subscriptsxx; xy; yx; yy ,

e.g. K =
h

k xx k xy

k yx k yy

i
. The initial state xb0 has six elements denoted byx̂ j; 0; j 2

f 1; 2; 3; 4; 5; 6g. The corresponding estimates are�̂ b , f K̂ ; D̂ ; B̂ ; �̂ ; B̂ d; x̂b0g =
h
k̂xx ; k̂xy ; k̂yx ; k̂yy ; d̂xx ; : : : ; x̂6;0

i T
. The model then reads:

M b(� b) :

8
<

:

_xb(t) = A b(� b)xb(t) + Bb(� b)u(t) + Bd;b(� b)db(t); xb(0) = xb0(� b)

yb(t) = Cbxb(t) + db(t)

(C.11)
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C.3.3 Grey-Box Model of Piezoactuators

A similar model can be set up for the PD-controlled piezoactuator pairs. Each pair

of piezoactuators can be modelled as a second order low-pass �lter. The piezoactuator

dynamics is written as transfer functions with gains � a;j and two poles p1;j , and p2;j ,

where the subscript j refers to the pair of horizontal ( x) or vertical ( y) piezoactuators.

Considering the commanded reference position as input, the piezoactuator dynamics

G act then reads:
"

ux (s)

uy (s)

#

=

"
Ga;x (s) 0

0 Ga;y (s)

#

| {z }
, G act

"
r x (s)

r y (s)

#

; Ga;j (s) =
� a;j�

1
p1;j

s + 1
� �

1
p2;j

s + 1
�

(C.12)

in which Ga;j (s) is the second order �lter of the speci�ed form. The piezoactuator

dynamics can also be written in state space form as a grey-box structure similar

to Eq. C.6 with state vector xa . Let de�ne an equivalent modelling error term da

entering as input along with the commanded piezoactuator positions r . The output is

u, and the unknown parameters are:

� a , [p1;x ; p1;y ; p2;x ; p2;y ; � a;x ; � a;y ; xa1;0; xa2;0; xa3;0; xa4;0]T ; (C.13)

thus the actuator model M a(� a) has been set up, which reads:

M a(� a) :

8
<

:

_xa(t) = A (� a)xa(t) + B(� a)r (t) + Bd;a (� a)da(t); xa(0) = xa0(� a)

u(t) = Caxa(t) + da(t)

(C.14)

C.3.4 Description of Experiments

The sought model should represent the controllable gas bearing over the entire

operating range. Previous work [41] show that the gas bearing coef�cients mainly

depend on two parameters: the rotational speed 
 and injection pressure Pinj ,

which can vary within 
 2 [0; 6]krpm and Pinj 2 [3; 7]bar. Locally valid models can

therefore be identi�ed from data sets collected over a grid of these two parameters.

Grid points are chosen in the sets �Pinj 2 f 3; 4; 5; 6; 7gbar and rotational speeds
�
 2 f 0; 4; 6gkrpm. Five to six data sets are collected at each grid point( �Pinj ; �
) , and a

model is identi�ed from each data set. During the collected data sets, identi�ability of

the parameters is ensured by commanding a pseudo-random binary sequence (PRBS)
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to the piezoactuators r (t), where the inputs are stepped randomly and mutually

independently from � 1V to 1V at �xed sampling instants. The eigenfrequencies are

very under-damped, and care should be taken to avoid rub due to over-excitation.

The piezoactuator position referencesr (t) and measured difference of piezoactuator

positions u(t) are logged as input and output respectively for the actuator submodel

and u(t) and the lateral disc movement p(t) are logged as input and outputs for the

rotor-bearing model.

C.3.5 Pre�ltering

Pre�ltering is required before carrying out the identi�cation to remove offsets,

response from run-out, and mass unbalance from the raw position measurements

p raw . A data set is collected at each investigated operational condition( �Pinj ; �
) . Each

data set allows generation of a �lter F r to remove run-out and unbalance response

from the lateral disc movement measurements. During these experiments, the

piezoactuators are kept stationary, which allows mapping of the measured response

p raw as function of the angular position of the rotor � . Thereby the �ltered lateral disc

movement is p(t) = p raw (t) � F r (� (t)) . For the signals collected for identi�cation,

the mean lateral disc position is subtracted from each data set, and a median �lter of

size 3 is used to reduce measurement noise from the disc movement measurements.

The compensation for run-out and unbalance signi�cantly improves the signal quality

and allows micrometer precision measurement of the response from perturbing the

piezoactuators.

C.3.6 Identi�cation of Rotor-Bearing Models

The optimal rotor-bearing model M b(� ?
b) from each data set is chosen as the

one associated with the minimum cost of a prediction error cost function Wb(� b) ,
P N

t =1 � (t)T � (t), where the prediction error � is de�ned as the difference between

the one step ahead measured and the predicted output� (t) , p(t) � p̂(t). The

minimum is sought using the prediction error method (PEM) [45], such that the

optimal parameter set reads:

� ?
b = min

� b

Wb(� b) (C.15)

The model update iterations should stop when the parameter estimates converge. This

convergence is decided when the relative improvement norm is less than the bound

10� 4. A rotor-bearing model M b(�̂ b) is identi�ed from each data set f u(t); p(t)g.
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Figure C.7: Example of identi�cation from data set collected at �Pinj = 5 bar; �
 = 6 :0krpm ,

here a zoom in time interval in the interval t 2 [1:2 : 1:4]s. The piezoactuator positions

[ux ; uy ] shown in c) cause disc vibrations. The lateral disc movementpmeas = [ px ; py ] and the

simulated movement using the identi�ed model ppred = [ p̂x ; p̂y ] subject to same excitation is

shown in a) and b). The model predicts both the direct and the cross coupling oscillations.

The identi�ed model is simulated using the measured input sequence to generate

the model predicted response to allow comparison. Figure C.7 shows an example

of measured lateral disc movementpmeas = [ px;meas ; py;meas ]T and their predicted

ppred = [ px;pred ; py;pred ]T for a part of one of the 86 data sets. A step signal com-

manded to the piezoactuators in one direction generates disc vibrations in both

orthogonal directions due to the cross-coupling effect from the gas �lm forces and

the gyroscopic moment. The identi�ed model predicts direct and cross-coupling

oscillations well. All the available data sets give similar results.

The fourteen key parameters being stiffness, damping, input gain and time

delay estimates are comparable across identi�ed models, and they determine the

eigenfrequencies, the static gains and delays of the models. Parameters such as the

initial state x̂b0, and disturbance gain B̂ d;b are more descriptive for the particular

dataset and are not relevant to compare across identi�ed models. The key parameters

are treated further in Sec. C.4.
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Param. p1;x
�

rad
s

�
p2;x

�
rad

s

�
p1;y

�
rad

s

�
p2;y

�
rad

s

�
� a;x

�
m
m

�
� a;y

�
m
m

�

Value 3078 8143 2452 6494 1:863 1:865

Table C.2: Actuator model parameters.

C.3.7 Identi�cation of Actuator Models

The actuator dynamics is identi�ed using the same procedure as in Sec. C.3.6.

An actuator model M a(�̂ a) is identi�ed from each data set f r (t); u(t)g. Figure C.8

shows the estimated gains and polesf � x ; � y ; p1;x ; p2;x ; p1;y ; p2;y g of the identi�ed

models using Eq. C.12 across the data sets. The actuator parameters do not vary

over the range of injection pressure and rotational speed, but there are outliers in

the pole and gain estimates. There are two main reasons for this. The well damped

actuator dynamics does not show clear resonances. Further, the step frequency of

the excitation signals is low compared to the dynamics of the piezoactuators. Higher

frequent stepping intervals in the PRBS signals would however excite the under-

damped eigenfrequencies of the bearing dynamics and cause big amplitude shaft

oscillations.

Since the actuator dynamics are found to be independent of rotational speed and

injection pressure, a nominal model is chosen as the one with the highest mean of

�t-percentages in cross-validation. This is No. 39, which has parameters listed in

Table C.2.

C.3.8 Model Cross-Validation

The quality of the identi�ed models is assessed by cross-validating them on other

data sets collected at similar operational conditions.

A simulation compares how well each identi�ed model is at predicting the re-

sponse for a cross-validation data set. Modelj identi�ed from dataset j is validated

on dataset j + 1 collected at the same rotational speed and injection pressure. Fig-

ure C.9 shows a histogram of the cross-validation �ts. The horizontal �t mean value

is � bh = 81:1% and its standard deviation is � bh = 2 :66%, and the vertical �t mean

value is � bv = 85:1%and its standard deviation is � bv = 3 :37%. These are high �t per-

centages indicating the models can well describe the behaviour of the rotor-bearing

system. The simulation residual � (t) de�ned as the difference between measured

responsep and predicted responsep̂(�̂ b) should ideally be white noise. This is not

the case, and the residual will to some extent be cross-correlated with the inputs.
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Figure C.8: Estimated gains� a;x ; � a;y , slow poles p1;x ; p1;y , and fast polesp2;x ; p2;y of the

actuator models from Eq. C.12 across the models identi�ed from different data sets.

This is a penalty of the simple model structure. The in�nity norm of the residuals is,

however, small for all 86 datasets, indicating good signi�cance of the results.

Similar analysis is made for the piezoactuator submodel. The piezoactuator

model is cross-validated against the other piezoactuator datasets. The results are

shown in Fig. C.10. The actuator horizontal �t mean value is � ah = 98:34% and

its standard deviation is � ah = 0 :074%, whereas the �t percentages for the pair of

vertical piezoactuators have� av = 99:42%and its standard deviation is � av = 0 :058%.

The lower horizontal �ts match well with the bigger variation in parameters of the

horizontal piezoactuators from Fig. C.8.

C.4 Linear Parameter Varying Model of Rotor-Bearing System

The locally identi�ed models provide the basis for construction of a parametrised

rotor-bearing model valid over the operating range. The model is developed in three

steps: the �rst step is the approximation of each key parameter from the 86 parameter

estimates onto smooth surfaces. These individually approximated terms are used in

the second step to assemble a linear parameter varying model of the rotor-bearing

system parametrised in speed and injection pressure. The last step is to cascade the

linear parameter varying model with the piezoactuator model to obtain the model of

the entire rotor-bearing-actuator system. The steps are elaborated in the following.
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Figure C.9: Cross-validation �t percent-

ages of the horizontal and vertical residuals

in validation of the identi�ed bearing sub-

models cross-validated on other data sets.

Figure C.10: Horizontal and vertical valida-

tion �t percentages of the identi�ed actua-

tor submodels cross-validated on other data

sets.

The rotor-bearing model parameters are expected to depend continuously on injection

pressure and rotational speed. Each key parameter is therefore approximated onto

a polynomial surface. A second order polynomial is chosen to avoid over-�tting.

Thereby the identi�ed stiffness, damping and gain matrix coef�cients (�) ij , where

(�) 2 f k; c; bg and i; j 2 f x; yg (e.g. kxy ) and the time delays � x and � y are modelled

as:

kij (
 ; Pinj ) = k0;ij + k1;ij Pinj + k2;ij 
 + k3;ij 
 Pinj + k4;ij P2
inj + k5;ij 
 2

cij (
 ; Pinj ) = c0;ij + c1;ij Pinj + c2;ij 
 + c3;ij 
 Pinj + c4;ij P2
inj + c5;ij 
 2

bij (
 ; Pinj ) = b0;ij + b1;ij Pinj + b2;ij 
 + b3;ij 
 Pinj + b4;ij P2
inj + b5;ij 
 2

� i (
 ; Pinj ) = � 0;i + � 1;i Pinj + � 2;i 
 + � 3;i 
 Pinj + � 4;i P2
inj + � 5;i 
 2

(C.16)

This describes a surface in space, whose cross-sections are a parabola. The parameters

of the polynomial models are �tted using linear least squares and the calculated

regression coef�cients are listed in table C.6. Note the units of the stiffness, damp-

ing and input gain equivalents as described in Sec. C.3. The stiffness coef�cients

f k̂xx ; k̂xy ; k̂yx ; k̂yy g are shown in Fig. C.11 along with their polynomial approxima-

tions. Similarly Figs. C.12 and C.13 show the estimated damping coef�cients and

input gains with the corresponding polynomial approximations. The variation of

each key parameter's estimate for a �xed operational condition is small, indicating a

good consistency across different data sets.
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Figure C.11: Identi�ed stiffness coef�cients as function of injection pressure Pinj (1bar =

0:1MP a) and rotational speed 
 , along with 2nd order polynomial �t, assisting lines indicate

3D location of the parameter estimates.

Figure C.12: Identi�ed damping coef�cients as function of injection pressure Pinj (1bar =

0:1MP a) and rotational speed 
 , along with 2nd order polynomial �t, assisting lines indicate

3D location of the parameter estimates.
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Figure C.13: Identi�ed input gain coef�cients as function of injection pressure Pinj (1bar =

0:1MP a) and rotational speed 
 , along with 2nd order polynomial �t, assisting lines indicate

3D location of the parameter estimates.

Figures C.14 and C.15 show comparisons of the estimated time delays between

the identi�ed models and their polynomial approximations. It is interesting to note

that the delay is bigger in the horizontal direction. The RMS deviation for horizontal

and vertical time delays are � � x;RMS = 0 :088ms, � � y;RMS = 0 :041ms. Compared

to the sampling period of Ts = 0 :2ms, the variation in estimated time delays is small,

and since their identi�cation is not easy due to the combination of dynamics and

time delays, the results are considered good. It is evident that for increasing pressure

the time delay drops, which intuitively makes sense: a larger pressure allows a faster

pressure build-up.

All parameters (stiffness, damping, gain terms and time delays) have been

parametrised in the same manner. This in turn allows for the assembly of the

linear parameter varying model:

_x(t) = A (
 ; Pinj )x(t) + B(
 ; Pinj )u ~� (t; 
 ; Pinj )

u ~� , [ux (t � � x (
 ; Pinj )) ; uy (t � � y (
 ; Pinj ))]T

y(t) = Cx(t)

(C.17)
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Figure C.14: Identi�ed and linear pa-

rameter varying model horizontal time

delay [samples@5kHz ] between Eq. C.17

over varying speed and injection pressure,

(1bar = 0 :1MP a).

Figure C.15: Identi�ed and linear pa-

rameter varying model vertical time delay

[samples@5kHz ] between Eq. C.17 over

varying speed and injection pressure.

Where the parameters from Eq. C.16 are used to assemble the matrices:

A (
 ; Pinj ) =

"
0 I

K 0 D 0

#

| {z }
A 0

+

"
0 0

K 1 D 1

#

| {z }
A 1

Pinj +

"
0 0

K 2 D 2

#

| {z }
A 2


 +

"
0 0

K 3 D 3

#

| {z }
A 3

+ 
 Pinj +

"
0 0

K 4 D 4

#

| {z }
A 4

P2
inj +

"
0 0

K 5 D 5

#

| {z }
A 5


 2;

B(
 ; Pinj ) =

"
0

B (
 ; Pinj )

#

;

B (
 ; Pinj ) = B 0 + B 1Pinj + B 2
 + B 3
 Pinj + B 4P2
inj + B 5
 2;

� (
 ; Pinj ) = � 0 + � 1Pinj + � 2
 + � 3
 Pinj + � 4P2
inj + � 5
 2

(C.18)

This linear parameter varying model has rotational speed and injection pressure as

scheduling parameters, and for constant parameters(
 ; Pinj ) = ( �
 ; �Pinj ), the bearing

transfer function can then be de�ned:

G rb (s; �
 ; �Pinj ) = G b(s; �
 ; �Pinj )G ~� (s; �
 ; �Pinj );

G b(s; �
 ; �Pinj ) = C
�
sI � A ( �
 ; �Pinj )

� � 1
B( �
 ; �Pinj )

(C.19)
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The linear parameter varying model in Eq. C.17 is valid if it preserves the main

characteristics for the rotor-bearing system such as natural frequencies, damping

factors and static gainsG dc = G rb (0; �
 ; �Pinj ) =
� gxx gxy

gyx gyy

�
. These characteristics

can be directly calculated from the experimentally identi�ed models and compared

to those of developed modelG rb (s; �
 ; �Pinj ). The identi�ed models have two pairs

of complex conjugate eigenvalues, which can be listed as two natural frequencies

! 1; ! 2 and corresponding damping factors� 1; � 2. Figure C.16 shows a comparison

of the natural frequencies ! 1 and ! 2 between the linear parameter varying model

and the identi�ed rotor-bearing models. The quality of the linear parameter varying

model is quanti�ed by the deviation de�ned for a given pressure �Pinj and rotational

speed �
 as the difference between the identi�ed parameter and parameter predicted

using Eq. C.16. The RMS deviation for the �rst and 2nd eigenvalue pairs are

� ! 1;RMS = 1 :13Hz, � ! 2;RMS = 0 :58Hz respectively.

Figure C.17 shows a comparison of the damping factors of the eigenvalues.

The RMS deviation for the damping factors of the �rst and 2nd eigenvalue are

� � 1;RMS = 0 :0104[� ] and � � 2;RMS = 0 :0063[� ]. The damping factors are in general

more uncertain, which makes the polynomial approximation more uncertain. It

is evident that the results collected at �
 = 4 krpm are in general more uncertain

than results collected at other operational conditions. The measurement quality

of the lateral disc movement relies on the quality of the �lter to remove run-out

and unbalance, which in turn relies on a well de�ned stationary mass unbalance

orbit. This is not the case for the results collected around 4krpm, where small

deviations occur in the orbit, indicating non-synchronous vibration. The �lter is

therefore not able to eliminate the mass unbalance response. The static gain matrix

is shown in Fig. C.18 along with the static gains of the identi�ed models. The

maximum observed deviation is0:016m=m, and the standard deviation for each gain

is [� g;xx ; � g;xy ; � g;yx ; � g;yy ]T = [0 :0031; 0:0022; 0:0027; 0:0031]T m=m.

The entire model results from cascading the linear parameter varying model with

the piezoactuator model Eq. C.12:

G(s; �
 ; �Pinj ) = G rb (s; �
 ; �Pinj )G act (s); (C.20)

which is readily evaluated for a given operational condition.
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Figure C.16: Natural frequencies of the

experimentally identi�ed models and the

linear parameter varying model Eq. C.17

over varying speed and injection pressure,

(1bar = 0 :1MP a).

Figure C.17: Damping factors of experimen-

tally identi�ed models and the linear pa-

rameter varying model Eq. C.17 over vary-

ing speed and injection pressure,(1bar =

0:1MP a).

C.5 Decentralised P-control of Controllable Gas Bearing

The poor damping properties of the controllable gas bearing can be improved

by means of active control. A P-controller is designed using the proposed model,

which strongly increases the closed loop damping factor. Figure C.19 provides an

overview of the closed loop system. Experimental results for selected operational

conditions validate the strong damping enhancement. Comparisons show a good

agreement between the simulated and measured response, and con�rms suitability

of the identi�cation procedure.

The identi�ed models show that the direct couplings from horizontal/vertical

piezoactuator to horizontal/vertical disc movement have gains an order of magnitude

larger than the cross coupling gains. This makes decentralised control a feasible

option. The controller should improve the damping properties and reject disturbances

in a frequency range around the under-damped eigenfrequencies. Our recent work [4]

show, that this is possible with a proportional controller, where an interval of positive

feedback gains provide damping injection. Therefore a proportional controller is

designed for the horizontal and vertical directions to improve the damping properties.
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Figure C.18: Comparison of static gains between experimentally identi�ed models and the

linear parameter varying model Eq. C.17 over varying speed and injection pressure.

Figure C.19: Block diagram of the closed loop system. The horizontal piezoactuators are

decoupled from the vertical ones. The lateral disc movement is used by the feedback controller

to generate piezoactuator reference positions.
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The control law is r (s) , K pl (s)p(s), where the controller K pl has the form:

K pl (s) ,

"
� x 0

0 � y

#

H lp (s) (C.21)

The controller parameters to be tuned are the proportional gains � x and � y . An nK -th

order lowpass �lter H lp (s) is inserted to reduce controller sensitivity towards high

frequency oscillations. The developed model Eq. C.20 provides an excellent basis for

of�ine design, which avoids the risk of instability during online tuning. Upon closing

the loop with the controller K pl , the output sensitivity So and closed loop controller

sensitivity K pl So can be calculated, where:

So(s) , (I 2 � G(s)K pl (s)) � 1: (C.22)

The output sensitivity So and closed loop controller sensitivity K pl So are useful

tools for tuning the controller gains. The output sensitivity both allows evaluation

of the reduction in sensitivity in the desired frequency range, while at the same

time evaluating the increase in sensitivity at other frequencies. Similarly the closed

loop controller sensitivity K pl So allows inspection of the required control effort.

The controller design produces positive feedback and the choices� x = 1 :1250m=m

,� y = 0 :99 m=m, increases the damping factor by a factor9:0 and 14:5 respectively. A

�rst order low-pass �lter H lp (s) , plp =(s+ plp ) with bandwidth plp = 1000 Hz is used

to avoid counteraction of high frequency disturbances. The output sensitivity and

closed loop controller sensitivity shown in Fig. C.20 reveal the desirable properties:

the sensitivity is greatly reduced close to the resonance frequencies, thus increasing

horizontal and vertical damping. This comes at the cost of a disturbance ampli�cation

for low frequencies in the horizontal direction. An increase in sensitivity in some

frequency interval is unavoidable due to Bode's sensitivity integral [104], and this is

affordable as the mass unbalance response at these frequencies is low. Figure C.21

shows the open loop magnitude responsep(s) = G(s)r (s) compared to the closed

loop input disturbance responsep(s) = So(s)G(s)r (s). The reduction in peak gain is

evident.

C.5.1 Experimental Results

The increase in damping is experimentally validated by comparing the lateral

disc response to impulse excitation with and without the controller proposed. Both

the horizontal and vertical controllers are simultaneously active. An impact hammer
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Figure C.20: Output sensitivity So and closed loop controller sensitivity K pl So for the con-

troller K pl .

Figure C.21: Bode magnitude diagram for the open loop systemG and closed input distur-

bance responseSoG for the controller K pl .
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Figure C.22: Horizontal open and closed loop impact responses and measured impact forces.

is used to excite the shaft close to the controllable gas bearing while measuring

the impact force to ensure equal excitation across the experiments to be compared.

Figure C.22 shows the horizontal impact responses. Only the horizontal responses

and control signals are shown as the controller almost eliminates cross-coupling

oscillations. The increase in damping is evident. A vertical impact shown in Fig. C.23

reveals a similar performance as expected. The impact responses are �tted to a

two degrees of freedom using the system identi�cation procedure described in

[1]. This allows comparison between the expected results using the model and the

results obtained from experiments. The expected and obtained open loop natural

frequencies! 1;ol ; ! 2;ol and similarly closed loop natural frequencies ! 1;cl ; ! 2;cl are

compared in Table C.3, and show good agreement. Table C.4 similarly compares the

expected and obtained open loop damping factors� 1;ol ; � 2;ol and closed loop damping

factors � 1;cl ; � 2;cl . The results match within a factor two, which is considered a good

agreement. A root locus analysis in [4], show that a small change in proportional

gain results in a large change in damping factor for the gas bearing, similarly a small

model uncertainty can cause a large damping factor uncertainty.

The measured impact responses are validated against the model using the fol-

lowing approach. An impact enters the rotor-bearing dynamics directly without

the time delay and the piezoactuator dynamics, but it enters with a scaling fac-

tor gf as the impact is a force signalf (t), and the model input is a difference of

piezoactuator positions. The impact response is thus given in the Laplace domain

asp(s) = G b(s)gf f (s) from Eq. C.8. This scaling factor is found using a linear least
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Figure C.23: Vertical open and closed loop impact responses and measured impact forces.

Figure C.24: Simulated and measured hori-

zontal closed loop impact response.

Figure C.25: Simulated and measured verti-

cal closed loop impact response.

Natural frequency ! 1;ol [Hz ] ! 1;cl [Hz ] ! 2;ol [Hz ] ! 2;cl [Hz ]

Expected from model 126.6 99.9 132.1 105.1

Obtained Experimentally 126.3 89.9 134.4 111.6

Table C.3: Expected and obtained open loop natural frequencies! 1;ol , ! 2;ol and expected and

obtained closed loop natural frequencies! 1;cl , ! 2;cl .

squares on the measured and simulated non-scaled response. Figures C.24 and C.25

show comparisons of the measured and simulated horizontal and vertical impacts,

which show great agreement.

The controller stabilises the controllable gas bearing for non-zero rotation speeds

as well, which can be validated from the sensitivity function. This is proven for a
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Damping factor � 1;ol [� ] � 1;cl [� ] � 2;ol [� ] � 2;cl [� ]

Expected from model 0.035 0.318 0.029 0.424

Obtained Experimentally 0.026 0.658 0.016 0.446

Table C.4: Expected and obtained open loop damping factors� 1;ol , � 2;ol and expected and

obtained closed loop damping factors� 1;cl , � 2;cl .

Figure C.26: Experimental open vs closed loop horizontal impact response at�
 = 2 :05 krpm .

rotational speed of �
 = 2 :05 krpm. Figures C.26 and C.27 show a horizontal and

a vertical impact respectively. Here, the run-out �lter has not been used to remove

mass unbalance response. The mass unbalance response is more pronounced in the

horizontal direction, still, the damping increase is evident.

The obtained controller performance is close to the expected. The results show,

that the proposed modelling methodology can be used to develop accurate models,

which can be used effectively for model based controller design.

C.6 Discussion

The presented approach offers a systematic procedure to model rotor-bearing

systems. The models have low complexity, yet they suf�ce for controller design since

they capture the essential dynamics. The procedure is general in the sense that in

many real applications, the mathematical model does not describe the behaviour

of the plant with suf�cient accuracy, which makes the model dif�cult to use for

model based controller design. The methodology of the grey-box identi�cation
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Figure C.27: Experimental open vs closed loop vertical impact response at�
 = 2 :05 krpm .

can be applied "in situ" and accurately identi�es eigenfrequencies and damping

factors, which are in general dif�cult to estimate for eigenfrequencies so closely

placed. The suggested method does not require knowledge of the geometry of the

test rig to be modelled, and it avoids solving the Reynolds equation, CFD methods

and �nite element modelling along with the time-consuming tuning required for

these methodologies. The suggested method does not allow direct estimation of the

gyroscopic effect nor the mass directly, nor are they necessary for control purposes.

However, their effects are implicitly included in the identi�ed parameters. The mass

matrix can be estimated from impact responses with known impact forces. The

proposed �lter is capable of removing both run-out and mass unbalance, and it can

be applied online. This gives the possibility of using the controller to counteract mass

unbalance or to only be active when the disc deviates from the mass unbalance orbit.

The grey-box method imposes a parameter structure, which allows comparisons

of the grey-box model parameters across identi�ed models. This is different from

black-box models, where different sets of model parameters can represent the same

system. The approach has potential of being extended to other types of controllable

bearings. The method is general in the sense that in�uence from e.g. eccentricity

or other factors could have been included by performing system identi�cation for a

range of those factors.
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C.7 Conclusion

Grey-box modelling was used to successfully develop accurate linear models

of an entire rotor-bearing-actuator system from experimental data. The models

were identi�ed "in situ" without knowing the exact geometry of the machine to

be modelled, and the developed models were shown to be suitable for controller

design due to their low complexity. The model was decomposed to two subsystems:

an actuator dynamics and a rotor-bearings dynamics, where the subsystems were

identi�ed separately. It was found that incorporation of the air pressure build-up

dynamics was necessary to match observed behaviour, which was accomplished by

approximation of the unknown time delays. The approximated delays could then

be included as parameters in the grey-box identi�cation. A �lter was shown to

signi�cantly improve the lateral disc movement measurement quality by �ltering out

mass unbalance and run-out to allow micrometer precision measurement. The locally

identi�ed models were used to derive a linear parameter varying model describing

the behaviour of the rotor-bearing system over the operating range, de�ned by the

combination of injection pressure and rotational speed. The linear parameter varying

model preserved important system characteristics in terms of eigenvalues, static

gains and damping factors. The model was shown to allow design of model based

decentralised controllers, which greatly improved the damping properties of the

controllable gas bearing. This increase was veri�ed experimentally both for a non-

rotating and for a rotating condition. All results were compared with experiments.

The very good agreement between the model and the experiments con�rmed the

suitability of the approach.

Acknowledgements

The Danish Ministry of Science, Innovation and Higher Education is gratefully

acknowledged for the support to the FTP research project 12-127502. A thanks also

goes to John D'Errico for his Matlab function polyfitn.m .

C.8 Experimental Characterisation and Control of

Piezoactuators

Piezoelectric stacks have two inherent nonlinear phenomena: creep and hysteresis.

The creep effect causes slow expansion of the piezo stacks by a few percent over
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Parameter Pi [m=m] z1 [rad=s] pp [rad=s]

Piezoactuator 1 0.926 1996 101

Piezoactuator 2 0.927 1983 101

Piezoactuator 3 0.220 8349 101

Piezoactuator 4 0.640 2945 101

Table C.5: PD-controller parameters for piezoactuator controllers.

a time scale of minutes. This is very slow compared to the time constants of the

controllable gas bearing. Hysteresis causes uncertainties in the piezoactuator position,

which is a challenge for modelling and control. A staircase response is collected

for each piezoactuator to characterise the hysteresis: a stepwise increasing voltage

is applied to a piezoactuator, followed by a stepwise decreasing voltage. Plotting

the stationary piezoactuator position after each step as function of the applied

input voltage reveals the open loop hysteresis curve. This is shown in Fig. C.28 for

piezoactuator number four. For the same input voltage, the piezoactuator position

differs up to 8:4�m depending on the input history. Due to variations in the piezo

ceramics, the characteristics and hysteresis curve for each piezoactuator vary. A

PD-controller is tuned experimentally for each piezoactuator to counteract these

nonlinear effects. The controlled piezoactuators are capable of tracking desired

reference positionsr p;i , and the control law for piezoactuator i; i 2 f 1; 2; 3; 4g reads:

up;i (s) = Pi
s + zi

s + pp
(r p;i (s) � yp;i (s)) (C.23)

The proportional gains Pi and zeroszi have different values to account for the varia-

tion of characteristics in each piezo stack. The values can be found in Table C.5. A

staircase response is collected for the uncontrolled and the PD-controlled piezoac-

tuator to show the tracking capabilities of the PD-controller. Figure C.28 shows the

stationary piezoactuator positions for the closed loop case, and Figure C.29 shows

the open loop and PD-controlled piezoactuator staircase responses. Without con-

trol, the static gain at each step varies due to the hysteresis, and the piezoactuator

slowly creeps. The PD-controller reduces both hysteresis and creep effect and the

PD-controlled step responses are uniform. The three dashed step responses differ

notably. The dashed closed loop responses is the last decreasing step response, and

in this case the actuator reached saturation, which deteriorates the performance. The

two dashed open loop responses have a noticeable smaller step size, since in these

cases the piezoactuator reaches maximum expansion.
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Figure C.28: a) Hysteresis curves

for piezoactuator four for the open

loop cases commanded the staircase se-

quence up; 4 and the closed loop case

commanded the position referencer p; 4 .

The responses are collected for a stair-

case input shown in b). The PD-

controller ef�ciently eliminates the hys-

teresis.

Figure C.29: Open loop and PD-controlled

piezoactuator staircase responses. b) shows the

piezoactuator position during the staircase re-

sponse, and a) shows the individual steps, which

were normalised by subtracting the offsets in time

and position from each response. In the uncon-

trolled case, the stationary position varies due to

hysteresis, and the piezoactuators creep. The PD-

control reduces both hysteresis and creep effect.

C.9 Fitted Coef�cients

Table C.6 contains the coef�cients of �tted polynomials of the form Eq. C.16.
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Abstract:

Rotor-gas bearings are attracting increasing interest because of their high speed ca-

pabilities, low friction and clean operation. However, hydrostatic rotor-gas bearings

show reduced damping characteristics, which makes it challenging to operate the

rotating machine at and about the resonance frequencies. Active lubrication of the

journal during operations could enhance the damping and stabilisation characteristics

of the systems, and this could be achieved by means of stabilising controllers. This

paper investigates the feasibility of using reduced order models obtained through

Grey-Box identi�cation for the design of stabilising controllers, capable of enabling

the active lubrication of the journal. The root locus analysis shows that two different

control solutions are feasible for the dampening of the �rst two eigenfrequencies

of the rotor-gas bearing in the horizontal and vertical directions. Hardening and

softening P-lead controllers are designed based on the models experimentally iden-

ti�ed, and salient features of both controllers are discussed. Both controllers are

implemented and validated on the physical test rig. Experimental results con�rm the

validity of the proposed approach.



134
Appendix D. Experimental Investigations of Decentralised Control Design for The

Stabilisation of Rotor-Gas Bearings

D.1 Introduction

Gas bearings are receiving growing attention for their high speed operation ca-

pabilities, low friction, and clean and abundant air as lubricant. However, they

suffer from low damping and vibration instabilities [34, 35, 78, 114]. The damping

and stability properties require enhancement to allow a safe machine operation in

presence of disturbances, especially close to the under-damped resonances. A mecha-

tronic approach can provide such enhancement, while at the same time providing

robustness and adaptability. The actuation for such a solution can be electromagnetic

[49], which can be further combined with lubricated bearings [83] to exploit the

bene�cial features of both. Other actuations rely on the use of smart materials, e.g.

using piezo-ceramics, where the piezo actuators can either be used as pushers on

squirrel cages [19, 23], as pushers on active tilting pads [77] or as servo valves [78]

controlling the air injection. In the latter approach, the injected air is both a lubricant

and it provides the active forces. The controllers for the mentioned systems can

either be experimentally tuned [78] or based on a model. The design of model based

controllers for gas bearings requires models that catch the dynamic behaviour of the

journal in the frequency range where control is needed. In [3] such a model has

been developed exploiting Grey-Box identi�cation techniques for a piezo actuated

rotor-gas bearing. Using the fundamental knowledge of rotor-dynamics, a reduced

order model was set up and a few key parameters suf�ced to describe the dynamics

of the bearing for given injection pressure and rotational velocity. Experiments run at

a range of different operational conditions in terms of injection pressure and rota-

tional velocity allowed identi�cation of locally valid models of the rotor-gas bearing

providing estimates of the unknown parameters, which allowed the formulation of a

model valid over the investigated operational range.

This paper investigates the feasibility of using this low complexity model for the

design of control systems capable of enhancing the closed-loop damping characteris-

tics by means of active lubrication of the journal. The root locus method is exploited

to analyse the spectrum of possible control strategies. Two different control solutions

appear to be feasible for the dampening of the �rst two eigenfrequencies of the

rotor-gas bearing in the horizontal and vertical directions. Hardening and softening

decentralised P-lead controllers are designed based on the models experimentally

identi�ed, and their stabilizing characteristics are analysed both in the frequency and

time domain. Both controllers are then implemented and validated on the physical

test rig. Experimental results con�rm the validity of the proposed approach.
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The paper is structured as follows. Section D.2 describes the experimental test

rig. Section D.3 brie�y reviews some of the �ndings about the system modelling

presented in [3]. Section D.4 discusses the design of the two decentralized con-

trollers for damping injection, and the respective features are analysed. Section D.5

makes a comparative analysis of the numerical and experimental results. Last, some

conclusions are drawn in Section D.6.

D.2 Experimental Setup of Rotor-Gas Bearing Test Rig

The experimental setup at hand shown in Fig. D.1 consists of: a turbine driven

�exible shaft (a) supported by both a ball bearing (d) and the controllable gas

bearing (b), in which pressurised air is injected through four piezo actuated valves

numbered as shown. The manometric injection pressurePinj of the pressurised

air is measured by a mechanical gauge before splitting up to the four actuators.

The absolute pressure in the valvesPabs is assumed to be the sum of the measured

pressure and the atmospheric pressurePatm . A disc (c) is mounted on one end to

pre-load the journal. The horizontal and vertical shaft de�ections p , [px ; py ]T are

measured at the disc location using eddy current sensors (e) in the coordinate frame

speci�ed in the �gure. The angular position of the shaft � is measured by an optical

encoder. All values are sampled with periodTs = 0 :2ms.

The position of the i -th valve can be controlled through a voltage input up;i 2

[0; 10]V , where an increasing voltage causes the piezo stacks to expand up to46�m ,

which closes the valve. The exact expansion varies from stack to stack, and the

measured valve positionsyp;i are therefore given as voltagesyp;i 2 [0; 10]V , where

0V corresponds to an open valve and10V corresponds to a closed valve. Decen-

tralised PD-controllers counteract hysteresis in the valves and control the valve

positions, using one commanded valve positionr x (t) for the horizontal valves,

and one commanded valve positionr y for the vertical valves. This approach re-

duces the system from over- to fully actuated. The valves are therefore seen as

a "lumped" horizontal valve and a lumped vertical, each having a valve position

[ux ; uy ]T , [yp;2(t) � yp;4(t); yp;1(t) � yp;3(t)]T .

The pressurised air generates a25�m thin layer of �uid �lm in the gap between

the shaft and the bearing housing. Given the right conditions of suf�cient injection

pressure and suf�ciently low rotational velocity, the �uid �lm generates restoring

forces and thereby keeps the shaft levitating about a stable equilibrium position.

Opening or closing a valve thus perturbs the �uid �lm. A more thorough description



136
Appendix D. Experimental Investigations of Decentralised Control Design for The

Stabilisation of Rotor-Gas Bearings

Figure D.1: The experimental rotor gas-bearing setup. A �exible shaft (a) is supported by

both a ball bearing (d) and the controllable gas bearing (b) with four piezo actuated valves. A

disc (c) is mounted on one end to preload the journal and displacement sensors (e) measure

the lateral movement of the disc in the shown reference frame.

of the setup is available in [78].

D.3 Rotor-gas Bearing Model

[3] have identi�ed reduced-order models for the rotor-gas bearing through an ex-

tensive experimental campaign, where data have been acquired at different injection

pressures and rotational velocities. These models have the advantages of being low

parametrised and locally well representing the dynamical behaviour of the system.

Therefore they appear to be particularly suitable for model-based controller design.

The model is set up as the interconnection of two subsystems: the actuators and

the bearing, as shown in Fig. D.2. The actuators subsystem models the dynamics

of the PD-controlled piezo actuated lumped valves from commanded valve position

r (t) = [ r x (t); r y (t)]T to actual valve position u(t) = [ ux (t); uy (t)]T . The bearing

model is parametrised in shaft rotational speed and injection pressure with input

being the actual valve position u(t) and output being the shaft displacement p(t).

The parameters de�ning the rotor-gas bearing operational conditions can vary in the

following ranges: the rotational speed 
 2 [0; 6]krpm, and the injection pressure
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Figure D.2: Block diagram of the �nal system. The horizontal valves are decoupled from the

vertical. The measured shaft de�ections will be used for feedback controller design generating

valve reference positions.

Pinj 2 [3; 7]bar.

From an input-output perspective the entire model is given by

G p(s) = G bear (s)G act (s); (D.1)

where G bear (s) is the transfer function matrix from valve position u to shaft dis-

placement at the disc location p, and G act (s) is the transfer function matrix from

commanded valve position r to valve position u. The characteristics of the two

transfer function matrices will be further discussed in the following sections.

D.3.1 Modelling of Actuators

The four PD-controlled piezo actuated valves are controlled pairwise, where

the two horizontal valves are controlled as one lumped valve, and similarly for the

vertical valve. This is described further in [3]. Each pair of valves are modelled as a

second order lowpass �lter with two real poles p1;j , and p2;j and a stationary gain

� a;j , where j refers to the horizontal valve x or vertical valve y. The dynamics then

reads:
"

ux (s)

uy (s)

#

=

"
Ga;x (s) 0

0 Ga;y (s)

#

| {z }
, G act (s)

"
r x (s)

r y (s)

#

; Ga;j (s) =
� a;j�

1
p1;j

s + 1
� �

1
p2;j

s + 1
�

(D.2)



138
Appendix D. Experimental Investigations of Decentralised Control Design for The

Stabilisation of Rotor-Gas Bearings

in which Ga;j (s) is the second order �lter of the speci�ed form. The poles are located

at p1;x = 3078 rad=s,p2;x = 8143 rad=s, p1;y = 2452 rad=s,p1;x = 6494 rad=s. The

gains are� a;x = 1 :863V=V, and � a;y = 1 :865V=V

D.3.2 Modelling of Bearing

The combination of �exible shaft and gas bearing can be modelled locally (for

constant injection pressure and rotational velocity) as a 2 DOF coupled mass spring

damper system combined with an input delay for each valve direction [3]. The

bearing model input is the actual valve position u(s) and the output is the shaft

displacement p(s). The model reads:

"
px (s)

py (s)

#

=

, G b (s)
z }| {"

Gb;xx (s) Gb;xy (s)

Gb;yx (s) Gb;yy (s)

#
, G � (s)

z }| {"
e� � x s 0

0 e� � y s

#

| {z }
, G bear (s)

"
ux (s)

uy (s)

#

; (D.3)

in which f Gb;xx ; Gb;xy ; Gb;yx ; Gb;yy g are the relevant transfer functions, and the

delays model the pressure build-up transients. This is valid over a wide operational

range as the model coef�cients are parameterised in rotational speed and injection

pressure. For constant
 = �
 and Pinj = �Pinj , the transfer function can be written

with a slight abuse of notation:

G bear (s) = G bear ( �
 ; �Pinj ) (D.4)

Choosing more speci�cally �Pinj = 6bar; �
 = 0 rpm, the rotor-gas bearing will

have two resonance frequencies! x ; ! y . The �rst ! x = 126:5Hz is dominant in the

horizontal direction, while the latter ! y = 132:1Hz dominates the vertical direction.

The corresponding damping factors are� x = 0 :035and � y = 0 :029. Figure D.3 shows

a Bode plot of the whole systemGp. The time delays at this operational condition

are �� x = 0 :57ms = 2 :8Ts, �� y = 0 :123ms = 0 :6Ts. The time delay due to the pressure

build-up is approximated using a �rst order Padé approximation

G � (s) � G ~� (s) ,

"
G�;x (s) 0

0 G�;y (s)

#

; G~� ;j (s) ,
1 � � j

2 s
1 + � j

2 s
; (D.5)

The rotor-gas bearing model then reads

p(s) , G(s)r (s) = G b(s)G ~� (s)G act (s)r (s) (D.6)
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Figure D.3: Bode plot of the rotor-gas bearing from commanded valve position to shaft

de�ection. The system has one clear eigenvalue in each direction, with weaker cross couplings.

Figure D.4: Experimental model valida-

tion by horizontal impact response.

Figure D.5: Experimental model valida-

tion by vertical impact response.

D.3.3 Model validation

The bearing model is validated experimentally by impact responses. Application

of a horizontal and a vertical impact allows the comparison of the measured and

the simulated responses. Figure D.4 shows the comparison of the horizontal impact

response and Fig. D.5 shows the comparison of the vertical impacts. The model

deviation is more evident in the horizontal direction resulting in larger residuals

de�ned as the difference between measured and simulated responses� j , pj;meas �

pj;sim .



140
Appendix D. Experimental Investigations of Decentralised Control Design for The

Stabilisation of Rotor-Gas Bearings

D.4 Hardening and Softening Decentralised control of

Rotor-gas Bearing

The reduced damping properties of the rotor-gas bearing can be improved by

application of a suitable control strategy.

Problem statement Given the open loop rotor-gas bearing input-output modelp(s) =

G(s)r (s), with p(s) and r (s) being the Laplace transforms ofp(t) and r (t), design a

control system that ful�ls the following requirements:

1. To increase the damping and reject disturbances around the two �rst eigenfrequen-

cies of the rotor-gas bearing system by at least a factor two while

2. using a suf�ciently low control effort to avoid actuator wear.

The rotor-gas bearing model Eq. D.6 (Fig. D.3) shows that the direct couplings

from horizontal valves to horizontal shaft de�ection (and similar for the vertical)

have gains an order of magnitude larger than the cross coupling gains. This makes

decentralised control a feasible option. The controller should improve the damping

properties and reject disturbances in a frequency range around the �rst two eigen-

frequencies. This can be achieved through the design of a P-lead controller. The

horizontal and vertical P-lead controllers K pl;x and K pl;y thus form the controller

K pl , such that:

"
r x (s)

r y (s)

#

= � K pl (s)

"
px (s)

py (s)

#

;

K pl (s) ,

"
K pl;x (s) 0

0 K pl;y (s)

#

H lp (s);

K pl;j (s) , � j
� j s + 1

� j � j s + 1
;

(D.7)

in which the controller parameters to be tuned are the proportional gain � j , the

time constant � j , and � j . Each controller contains a lowpass �lter H lp (s) to avoid

too large high frequency gains. A choice ofH lp (s) as ans-th order lowpass �lter

with bandwidth blp = 1000Hz,ns = 2 and unity DC-gain gives suf�cient results. The

developed model Eq.(D.6) provides an excellent basis for off-line design, which

avoids the risk of instability during on-line tuning. Upon closing the loop using the

controller K pl , the output sensitivity So and closed-loop controller activity K pl So can
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be calculated:

So(s) , (I 2 + G(s)K pl (s)) � 1 (D.8)

The output sensitivity So(s) and closed-loop controller activity K pl So(s) are useful

tools for tuning the control system's gains, since they provide clear measures of the

controller action over the desired range of frequencies. The ful�lment of requirement

1) implies that the output sensitivity close to the resonance frequencies! j satis�es

jSo(! j )j< 0:5. Further, to avoid simply shifting the resonance, the peak should be

suf�ciently low, here chosen as jjSojj1 � 1:6. At lower and higher frequencies control

effort is not desired.

The speci�cations can be achieved through two designs, which differ in the sign

of proportional action. The natural approach is to establish a negative feedback

control law, which implies that the sign of the proportional gain in Eq. (D.7) is

positive, � j > 0. This is what we address as thehardening decentralised controller.

An alternative approach, which still achieves the control objectives, is to establish a

positive feedback by means of a negative proportional action,� j < 0. This is what

we address as thesoftening decentralised controller.

The controller must satisfy the Bode sensitivity integral [104], which states

that the sensitivity function S(s) evaluated at s = j! satis�es the following integral

constraint
R1

0 ln jS(j! )j d! = 0 which implies that any linear control law that reduces

the sensitivity function in an interval must increase the sensitivity function in some

other interval. Moreover, the presence of the time delays, modelled as �rst order non-

minimum phase system, sets limitations on the achievable performance due to the

interpolation constraints [93]: denote the right half plane zeros zm ; m 2 f 1; :::; M g.

The sensitivity must then satisfyS(zm ) = 1 .

A hardening decentralized controllerplaces the sensitivity peak at the closed-loop

eigenfrequency, which is higher than the open loop eigenfrequency. On the other

hand,the softening decentralized controllerplaces the sensitivity peak at a lower

frequency. In this aspect, the time delay in the bearing dynamics plays an important

role as it sets an upper bandwidth limit: using the hardening control approach

it is not possible to achieve a suf�cient reduction in sensitivity at the resonance

frequency without it being at the cost of an unacceptably high sensitivity peak at

higher frequencies. However, this is achievable using softening control. Evaluation of

the sensitivity functions obtained through the hardening decentralized controllerand

the softening decentralized controllerclearly con�rm the analysis, and experimental

results verify the sensitivity functions.
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D.4.1 Controller Designs

The choice of gains for the controllers is no trivial task. Figure D.6 shows a root

locus for the horizontal direction using only proportional gain � x . The gain must be

within � x 2 [� 0:47; 0:05] to avoid instability. For the hardening case, the controller

soon destabilises the rotor-gas bearing, whereas for the softening case, proportional

action alone is enough to achieve an increase in stabilisation. This is re�ected in the

choice of controller gains. The hardening and the softening controllers' parameters

Figure D.6: Root locus for the horizontal direction using only proportional gain � 2 [� 1; 1].

are listed in Table D.1, and the respective Bode diagrams are shown in Fig. D.7. The

lead action in the hardening case improves the damping characteristics, whereas

for the softening controller the derivative action is minimal, and could in practice

be neglected. Further, the root locus shows that positive proportional control can

move the system eigenvalues to the real axis, thereby achieving a damping factor of

1. Experimental results validating this are available in [3]. Such a design however

violates the sensitivity requirement jjSojj1 � 1:6 and is therefore not considered

further here. The output sensitivities shown in Fig. D.8 validate that both designs

achieve the speci�ed sensitivity requirements.

For many applications controllers are used to provide suf�cient damping to allow

safe crossing of critical speeds. The main disturbance from mass unbalance thus
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Figure D.7: Comparison of controller gains for the hardening and softening designs. left)

K P l;x (s), right) K P l;y (s). Note the phase difference between the hardening and softening

designs.

increases in frequency. Using the hardening controller design, these oscillations

are attenuated at low frequencies, but are then ampli�ed (compared to open loop)

when the rotational speed becomes supercritical. This is avoided by the softening

design, where the sensitivity reduces before the critical speed and remains low even

in supercritical operation.

Table D.1: Controller parameters for controller of form Eq. (D.7)

Design
Gain � x

[V=�m ]

Gain � y

[V=�m ]

Time Const. � x

[ms]

Time Const. � y

[ms]

� x

[� ]

� y

[� ]

Hardening 0:0061 0:0133 20:8 11:3 0:0036 0:0148

Softening � 0:132 � 0:090 0:30 0:0200 0:0077 0:0077

D.5 Experimental and Numerical Validation

This section presents validation of the controller designs. Both designs have been

validated experimentally and numerically in the non-rotating case, and numerically

for the vertical direction with a rotational speed of �
 = 4 :0krpm.

D.5.1 Experimental and Numerical Validation - Non-Rotating Case

Both controllers have been discretised and implemented on the rotor-gas bearing

system. Impact responses were collected both for the open and closed-loop bearing
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Figure D.8: Comparison of output sensitivities using the hardening and softening designs. The

hardening design already achieves some performance for low rotational speeds (jS0;hard: (0)j<

1), whereas the softening ampli�es disturbances at low frequencies (jS0;sof t: (0)j> 1). Both

controllers have decently small controller activities KS o

for both the horizontal (shown in Fig. D.10) and rhe vertical direction (shown in Fig.

D.9). In both impact directions the softening controller achieves a clear damping

increase. The hardening controller however only achieves a damping increase in the

vertical direction. The unsatisfactory performance may well stem from the model

discrepancies found in the horizontal open loop model validation. Figure D.11 shows

individual comparisons between the measured and the simulated impact responses,

where the model is simulated using the same impact force. The responses validate

that the obtained performances are close to the predicted in all cases other than

the horizontal hardening impact response. The revealed model deviation should be

investigated further.

D.5.2 Numerical Validation - Rotating Case

The designed controllers have been tested in a rotating case as well by simulating

impacts on the open-loop and closed-loop system with a rotational speed�
 =

4:0 krpm. Figures D.12 and D.13 show simulated horizontal and vertical impact

responses in 1) open loop and using 2) the hardening and 3) the softening controller

design. Both controllers increase the damping compared to the open loop case

with satisfactory performance. The modi�ed dynamics due to the rotation however



D.6. Conclusion 145

Figure D.9: Experimental comparison of vertical impact responses for cases: 1) without

control, 2) using hardening, 3) using softening design.

bene�ts the hardening controller most in the vertical case, where it performs slightly

better than the softening one. Closed-loop experimental results for rotating conditions

are available in [3].

D.6 Conclusion

High-speed rotating machines with �exible shaft and gas bearings are complex

systems, whose dynamics is generally modelled by means of partial differential

equations naturally arising from the physics governing the system behaviour. Those

models are not suitable for the design of control systems, which are instead preferably

based on low order models that capture the essential dynamics in focus of the control

objectives.

This paper has successfully investigated the feasibility of designing a control

system for the stabilisation of a rotor-gas bearing based on a 2 degrees-of-freedom

mass-spring-damper equivalent model, previously identi�ed in [3]. Application of the

root locus method pointed out the possibility of designing two types of decentralised
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Figure D.10: Experimental comparison of horizontal impact responses for cases: 1) without

control, 2) using hardening, 3) using softening design.

P-lead controllers, one determining a hardening of the closed-loop system, and

one achieving a softening of the closed-loop system. Both controllers ful�l the

control objectives. However, the decentralised softening controller showed better

performance than the hardening one in terms of damping injection in both the

horizontal and vertical directions.

The designed controllers have been successfully implemented and tested on the

physical rotor-gas bearing test rig. The experimental results available for the non-

rotating case are in very good agreement with the numerical simulations, especially

for the softening controller. Numerical results validate damping enhancement for

rotating conditions as well. This clearly con�rms the feasibility of designing stabilising

controllers for the rotor-gas bearing exploiting low complexity models obtained

through system identi�cation techniques.
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(a) Hardening controller - horizontal impact

(b) Softening controller - horizontal impact

(c) Hardening controller - vertical impact

(d) Softening controller - vertical impact

Figure D.11: Experimental validation of controller designs by impact responses: measured

impact vs simulated using the coresponding measured impacts from Fig. D.9.
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Figure D.12: Numerical validation for horizontal impact response at �
 = 4 :0 krpm for cases:

1) without control, 2) using hardening, 3) using softening design.

Figure D.13: Numerical validation for vertical impact response at �
 = 4 :0 krpm for cases: 1)

without control, 2) using hardening, 3) using softening design.





Appendix E

Enhancing damping of gas bearings
using linear parameter-varying control
Submitted to Journal of Sound and Vibration (2016)

The paper has been reformatted to for the thesis.

Lukas R. S. Theisena� * , Hans H. Niemanna, Roberto Galeazzia, Ilmar F. Santosb

* Department of Electrical Engineering, Technical University of Denmark, Elektrovej,

Bld. 326, 2800 Kgs. Lyngby, Denmark

Abstract:

Journal bearings can be lubricated through controllable injectors using pressurised

�uids such as oil, water or air. The �uid viscosity determines the friction losses. Fluids

with low viscosity reduce friction at the expense of poor damping properties, which

pose challenges for safe operation of rotating machines in presence of disturbances.

One advantageous design solution is to actively control the injection. The dynamics

of rotating machinery is inherently parameter-varying. A controller should then be

able to guarantee stability over the range of parameter variation of the machine. This

paper addresses the enhancement of the damping properties of active gas bearings

over a desired operating range using control. We propose a linear parameter-varying

(LPV) control design that guarantees stability and performance over the desired

operating range. For comparison we also propose anH 1 controller optimised for the

linearised plant. The performance of the controllers is compared numerically and

experimentally. Both controllers are found to signi�cantly enhance the damping of

the gas bearing over the scheduling parameter range.
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E.1 Introduction

Industry is searching for methods to reduce losses and increase the performance

of rotating machines. One of the main in�uencing factors is friction losses in the

bearings [115]. The friction can be reduced by choosing lubricants with lower

viscosity, which in turn results in poorer damping properties. Pressurised air indeed

offers this low viscosity and increasing research activities are focussing on the design

of gas bearings with controllable injection of pressurised air [20, 28, 41]. Those

air bearings have been shown to have poor damping properties [34] that cause

signi�cant ampli�cation of the induced vibrations from mass imbalance and external

disturbances near the system resonance frequencies. Therefore it is of interest to

�nd passive or active technological means capable of enhancing the damping to

reduce the sensitivity towards disturbances. An attractive solution among the active

means is represented by mechatronic systems where electromechanical actuators

are embedded into the bearings with advanced control systems. A promising design

solution is the active gas bearing where pressurised air is injected through controllable

piezo-actuators [41, 78, 3]. Such a solution is attractive for a number of applications

including compressors, atomisers and turbochargers, but the bearing development is

still in its infancy. The �rst design solution was proposed in [37]. Later a solution

was proposed with active inherent restrictors [28], and more recently with radial

injection of pressurised air through piezo-actuated injectors [78]. The controllers for

those active bearing designs have been tuned for a constant scheduling parameter

de�ned by the combination of angular velocity and pressure of the injected air. The

bearings are often employed in applications where drifts and changes occur in the

scheduling parameters. A control system must therefore be able to guarantee stability

and a certain level of performance over the operating range. Those control systems

are preferable designed from low complexity models that capture the phenomena

relevant for control design. In recent work [3], we proposed a linear parameter-

varying (LPV) identi�cation method that allowed identi�cation of low-complexity

models of the entire rotor-bearing actuator-sensor system. The models captured

the dynamics of the machine and had a suitable complexity for control design [4].

The LPV identi�cation bypassed the need for the �rst principles models [41, 42]

based on the modi�ed Reynolds equation [38]. Those models are often of a high

complexity and the modelling of the air �ow in the injectors may be subject to

signi�cant parameter uncertainties [44].

The LPV identi�cation was used in [3] to identify the dynamics of a controllable
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gas bearing test rig modelled with the shaft angular velocity and air injection pressure

as scheduling parameters. Proportional controllers designed from the proposed model

were able to improve the damping signi�cantly for a given scheduling parameter.

However, robustness was not in focus, and the controller's performance deteriorated

as the operating conditions changed. Other previous control systems for gas bearings

were as well designed without focus for robustness. The controllers were usually

designed for a speci�c linearisation point with a constant scheduling parameter either

using a linearised model [3, 42, 4] or tuned experimentally [37, 20, 78, 28]. The

variations in the operating conditions that occur slowly over time will therefore result

in performance degradation or, in extreme cases, in closed-loop instability. This calls

for more advanced control systems that guarantee stability and a certain level of

performance over a wide range of plant operation.

LPV control system design represents a suitable methodology when closed-loop

stability and robust performance in the H 1 sense need to be guaranteed over a wide

range of operation, as shown in [76, 75, 33]. LPV control has been widely applied

in active magnetic bearings (AMBs), conversely the research community seems to

not have devoted the same attention to gas bearings due to the fact that active gas

bearing technology is in its “infancy” in comparison to AMB technology. Our literature

study shows that the application of LPV control for gas bearing is novel. The LPV

review paper [33] devotes a section to AMBs and reports the �rst ten LPV papers for

AMBs validated by high �delity simulations or experimental results. LPV control of an

oil bearing combined with an AMB was considered in [87]. In [85] an LPV controller

was designed for an AMB to reject the synchronous mass imbalance response. The

shaft was assumed rigid to neglect the �exible modes. The work was extended in

[52] by using a �exible shaft model and a switching between multiple unstable LPV

controllers was proposed. A similar procedure was used in [53]. The LPV controllers

were compared in [52] and [53] to a set of narrow-band H 1 controllers, which

were optimised for mass imbalance rejection at a single angular velocity, and the

LPV controller was shown superior in performance. The LPV designs mentioned

place zeros on the closed-loop sensitivity functions at the known frequency location

to reject the synchronous mass imbalance disturbance. In industrial environments,

the machines may further be subject to signi�cant disturbances from mechanical

shocks and vibrations from other machinery. Such disturbances may act over a

wide frequency range. Critical disturbances are those acting near the underdamped

resonance frequencies where strong vibration ampli�cations occur. The impact of

these disturbances can be diminished by proper shaping of the closed-loop sensitivity
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function.

The present work addresses the enhancement of the damping properties of

controllable journal bearings over a desired operating range using feedback control.

We propose an LPV control design that is able to guarantee stability and performance

for a rotating machine supported by controllable gas bearing. The rotating machine

is scheduled on the shaft angular velocity and air injection pressure. The damping

and noise rejection requirements are cast according to the mixed sensitivity setup

where suitable performance weights are chosen to obtain controllers that signi�cantly

enhance the damping properties of the gas bearing over the selected operating range.

An LPV control design is proposed to directly address the parameter dependency in

the design by scheduling the controller's gains. For comparison anH 1 controller is

designed since it is a natural initial design choice which is simple yet robust. The same

performance weights are used for designing both controllers to assess the advantages

and disadvantages of the two control methods. The damping enhancement of the

controllers is investigated and compared through simulations and experiments using

a controllable gas bearing test rig. Here the responses to impulse excitations are

investigated and used to quantify the performance of the controllers.

The paper is structured as follows: Section E.2 provides an overview of the

experimental test rig and the identi�cation-based gas bearing model. The LPV and

the H 1 controllers are designed in Section E.3. Their effectiveness is investigated

through simulations in Section E.4 and in Section E.5 the controllers are validated

experimentally over the selected operating range and their performance is quanti�ed.

A discussion of the results and some conclusions are drawn in Section E.6.

E.2 Gas bearing Test Rig

This section provides a brief description of the controllable gas bearing test rig.

The interested reader is referred to [31] for a detailed analysis of the experimental

setup and the corresponding identi�ed LPV model.

E.2.1 Test Rig description

The gas bearing test rig consists of a �exible shaft supported by a ball bearing

and the controllable gas bearing as shown in Figure E.1. A disc is mounted to

preload the shaft, and the horizontal and vertical disc movements are measured with

eddy-current sensors. The deviation from the equilibrium position is denoted by
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Figure E.1: Experimental gas bearing test rig. Four piezo-actuated injectors in the gas bearing

control the injection of pressurised air and the lateral disc movement is measured with

eddy-current sensors.

p = [ px ; py ]T , where the horizontal (x), and the vertical (y) shaft directions are as

shown in the photo. The shaft is actuated by the injection of pressurised air through

four controllable piezo-actuated injectors mounted in the gas bearing. The air�ow

generates a �uid �lm which provides a stable lifting force on the shaft. This �uid �lm

gives rise to dynamics in the rotor-bearing coupling and its dynamics is a function of

both the shaft angular velocity and the injection pressure [41]. The piezo-actuators

have local high gain control loops as described in [3] to linearise their dynamics.

The injectors are position-controlled in a pairwise differential mode. Thereby one

piezo-actuator referencer x is sent to control the position of the horizontal injectors

and one referencer y is sent to control the vertical ones. These references take

values in the interval [� 5; 5] V, which corresponds to full-span motion of the piezo-

actuator positions in the interval [0; 45] � m. A turbine drives the shaft and an encoder

measures the angular position� , from which the angular velocity q1 is calculated.

The pressurised air to the gas bearing is supplied from a large pressure tank. In

an industrial application, the injection pressure would be slowly time-varying. For

the test rig at hand, a lever is mounted to allow manual control of the pressure

variations. The injection pressureq2 is measured before the air�ow is split up to the

four actuators.
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Table E.1: Actuator Model Parameters. Polesp1;x ; p2;x ; p1;y ; p2;y are given in units krad=s.

Gains are non-dimensional.

Parameter p1;x p2;x � x p1;y p2;y � y

Value 3:08 8:14 1:86 2:45 6:49 1:87

E.2.2 Gas bearing model

Gas bearing models derived from �rst principles [41, 42] rely on solution schemes

to the nonlinear partial differential modi�ed Reynolds equation[38]. Those methods

often produce high order models and are subject to parameter uncertainty [42].

To avoid the need for those models, we instead adopt the grey-box identi�cation

procedure reported in [3] to obtain linear parameter-varying models of the test

rig. The resulting model captures the dominant dynamics of the rotating machine

and its low complexity suits the design of controllers [4]. The method from [3] is

summarised in the following.

The LPV model has the scheduling parameter vectorq whose components are the

shaft angular velocity q1 and the injection pressureq2. The scheduling parameters

can vary in the intervals q1 2 [q1; �q1] = [0 ; 6] krpm, q2 2 [q2; �q2] = [0 :3; 0:7] MPa.

Local LTI models are identi�ed from data-sets collected in the grid points q1 2

f 0; 1; 2; 3; 4; 5; 6g krpm, q2 2 f 0:3; 0:4; 0:5; 0:6; 0:7g MPa. The local models are iden-

ti�ed with a structure that allows interpolation of the model parameters to obtain

the LPV model. The control input vector contains the position references sent to

the piezoactuators r = [ r x ; r y ]T and the output vector to be controlled is the lateral

disc movement p = [ px ; py ]T . The control input was selected as a pseudo random

step-wise excitation. The model is a cascading of two subsystems: the LTI actuator

dynamics and the parameter-varying rotor-bearing dynamics. The actuator dynamics

G act in each direction is modelled as second order low-pass �lters with real poles

and a static gain:

G act (s) =

"
Ga;x (s) 0

0 Ga;y (s)

#

; Ga;j (s) = � a;j�
1

p1;j
s+1

��
1

p2;j
s+1

� ; j 2 f x; yg

(E.1)

The actuator model parameters are listed in Table E.1.

The rotor-bearing dynamics is modelled as the interconnection of parameter-

varying Padé approximated input delays and a second order parameter-varying

mass-spring-damper system with stiffness, damping and input gains~K ; ~D ; ~B and

a unit mass ~M . The stiffness equivalent, damping equivalent and an input gain
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equivalents are then de�ned K = ~K = ~M ; D = ~D = ~M and B = ~B= ~M . If the state

vector is chosen as the disc positionp(t) and velocity _p(t), a state-space realisation

reads:

G rb (t; q) =

8
>>>>>><

>>>>>>:

2

4
_p(t)

•p(t)

3

5 =

2

4
0 I

K (q) D (q)

3

5

2

4
p(t)

_p(t)

3

5 +

2

4
0

B(q)

3

5 u rb (t)

y (t ) =
h
I 0

i
2

4
p(t)

_p(t)

3

5

(E.2)

The parameter-varying matrices are polynomials of the scheduling parameter

vector q = [ q1; q2]T :

K (q) = K 0 + K 1q1 + K 2q2 + K 3q2
1 + K 4q2

2 + K 5q1q2

D (q) = D 0 + D 1q1 + D 2q2 + D 3q2
1 + D 4q2

2 + D 5q1q2

B(q) = B0 + B1q1 + B2q2 + B3q2
1 + B4q2

2 + B5q1q2;

(E.3)

where K 0; :::; K 5; :::; B5 describe the development within the operating range.

The two Padé approximated input delays� x in the horizontal actuation and � y

in the vertical one are included in the identi�cation and are as well parameter-

dependent:

� x (q) = � x; 0 + � x; 1q1 + � x; 2q2 + � x; 3q2
1 + � x; 4q2

2 + � x; 5q1q2

� y (q) = � y; 0 + � y; 1q1 + � y; 2q2 + � y; 3q2
1 + � y; 4q2

2 + � y; 5q1q2

(E.4)

The delay approximations have state-space realisations:

G � (t; q) =

"
G� x (t; q) 0

0 G� y (t; q)

#

G� j (t; q) =

"
� 2=� j (q) 1

4=� j (q) � 1

#

; j 2 f x; yg

(E.5)

The Padé-approximated input delays and the stiffness, damping and input gain matrix

are therefore functions of the scheduling parameter. Figure E.2 provides an overview

of the model and the parameter-dependencies.

It is of interest to reduce the model order, since it reduces the controller order for

synthesis with robust control techniques. We therefore use residualisation [93] to

reduce the model from 10-th to 6-th order.
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Figure E.2: Overview of the gas bearing model, which includes the actuator dynamics and

parameter-varying rotor-bearing dynamics.

The gas bearing model can then be formulated in state-space as:

G(t; q) = G rb (t; q)G � (t; q)G act (t) =

"
A G (q) B

C 0

#

; (E.6)

A g(q) = A g0 +
P N

n =1 f n (q) � A g;n ; (E.7)

f 1 = q1; f 2 = q2; f 3 = q2
1 ; f 4 = q2

2 ; f 5 = q1q2 (E.8)

in which the basis functions f n describe the parameter-dependency forN = 5 . Since

the parameters' variation is slow, it is reasonable to assume_q � 0.

The LPV model is shown in [3] to preserve important properties (natural frequen-

cies, damping factors and static gains) of the system within the desired range of the

scheduling parameters. The shape of the time-varying parameters are shown in [3]

as functions of the scheduling parameters. Here, the effects of parameter-variation

are quanti�ed by a set of derived parameters for the system. These parameters are

chosen to describe the static gain matrixG(s;q)
�
�
s=0 =

� gxx gxy
gyx gyy

�
and the eigenvalues.

The model has six eigenvalues: two related to the time delays and two complex pole

pairs, which model the two �rst critical speeds of the rotor-bearing. The natural

frequencies associated with the complex pole pairs are denoted! x and ! y and their

associated damping factors are� x ; � y . Table E.2 provides the range of variation of the

parameters considered showing that they all vary signi�cantly across the operating

range.

Figure E.3 shows how the frequency responses of the gas bearing system change

when the scheduling parameters are at the extrema of the operating range ([q1; q2];

[q1; �q2]; [�q1; q2]; [�q1; �q2]). For high angular velocities, the cross coupling gains

increase signi�cantly. For high injection pressures, the natural frequencies increase

and the damping decreases.
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Table E.2: Derived parameter-variation

Parameter interval Deviationa

Horizontal natural frequency ! x [657; 775] rad=s 15:2%

Vertical natural frequency ! y [736; 832] rad=s 11:5%

Horizontal damping factor � x [0:033; 0:12] 73:2%

Vertical damping factor � y [0:016; 0:092] 82:7%

Horizontal delay � x [0:056; 0:41] ms 86:5%

Vertical delay � x [0:093; 0:46] ms 80:0%

Static gain gxx [2:37; 3:27] � m=V 27:4%

Static gain gxy [� 0:01; 0:74] � m=V 101:5%

Static gain gyx [� 0:61; 0:14] � m=V 540:8%

Static gain gyy [2:97; 3:24] � m=V 8:2%

aDeviation from the maximum value for variable a 2 [a; �a] calculated as100(�a � a)=�a

Figure E.3: Bode diagrams of the gas bearing system for the scheduling parameter extrema

[q1 ; q2 ]; [q1 ; �q2 ]; [�q1 ; q2 ]; [�q1 ; �q2 ]
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E.3 Damping enhancing control of gas bearings

This section describes the design of the controllers. First a discussion is given

of what is meant by damping enhancing control, followed by the design of the LPV

controller and the H 1 controller.

The gas bearing dynamics contains under-damped eigenfrequencies making it very

sensitive to disturbances near the associated resonance frequencies. The impact of

these disturbances can be diminished by proper shaping of the closed-loop sensitivity

function. Consider the general control system from [93], the system output y (s) is:

y (s) = G(s)u(s) + G d(s)d(s) (E.9)

in which G is the the plant to be controlled using the input u(s). The disturbances

d(s) enter the output through the (generally unknown) dynamics G d(s). When the

loop is closed with the control law u(s) = K (s)y (s), the system output is

y (s) = SGdd(s); S(s) = ( I � GK ) � 1 (E.10)

The analysis shows that the effects of the disturbances on the output in a speci�c

frequency range! 2 
 are diminished by a controller K that obtains a low sensitivity

jS(j! )j� 1 in that range. Therefore the damping of the resonance frequencies is

increased by reducing the sensitivity near the associated frequency.

E.3.1 LPV controller design

The LPV controller K should enhance the damping to reduce the disturbance

sensitivity near the resonance frequencies and at the same time avoid wear of the

actuator. These disturbance and noise rejection requirements can be cast according

to the mixed sensitivity setup [93] which seeks to minimise:

K (t; q) = min
K

kN k1 ; N (t; q) =

"
W pS

W u KS

#

; (E.11)

where the closed loop sensitivity functions are de�ned for constant q = q0: S(s;q0) ,

(I n y � G(s;q0)K (s;q0)) � 1 and KS , and they are shaped by the weight functions

W p and W u . The external output disturbance w and external outputs z = [ zT
1 ; zT

2 ]T

are augmented to the system to obtain the augmented plant as shown in Figure E.4.

To enhance damping, the controller should therefore have high performance in the

frequency range around the under-damped eigenfrequencies of the rotor-bearing
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Figure E.4: The augmented plant with controller for LPV controller design with performance

weights W p and controller sensitivity weight W u .

! x (q) and ! y (q). The performance �lter is therefore chosen to contain inverse

notch-like �lters:

W p(s) = diag (wph (s;q); wpv (s;q))) (E.12)

in which wph and wpv both have the form:

wph (s;q) = s2 +2 � 1 ! x (q )s+ ! x (q )2 k0

s2 +2 � 2 ! x (q )s+ ! x (q )2 ; (E.13)

wpv (s;q) = s2 +2 � 1 ! y (q )s+ ! y (q )2 k0

s2 +2 � 2 ! y (q )s+ ! y (q )2 (E.14)

The natural frequencies ! x = ! x (q), ! y = ! y (q) are chosen as the under-damped

natural frequencies of the gas bearing to obtain a high weight around these. The

weight at the resonance frequencies is a tuning parameter and an increased peak

gain at the resonance frequency in general results in more damping. A few iterations

showed that � 1 = 0 :3 and � 2 = 0 :05 provides a suf�cient damping enhancement

over the operating range. The peak gain is then19 dB. The low sensitivity around

the natural frequencies must come at the cost of increased sensitivity in another

frequency range due to Bode's sensitivity integral [104]. Recent work [4] showed it

is bene�cial to place this sensitivity increase in the low frequency range where an

ampli�cation of disturbances is acceptable. The constantk0 = 1=3 determines the

low frequency weight. The control signal sensitivity weight W u is chosen to penalise

control action at high frequency control with the high-pass �lter from [93]:

W u (s) = I wu (s); wu (s) =
s=Mb + ! b

s + ! bAb
; (E.15)

where the low frequency gain is 1=Ab, Ab = 10, the high frequency gain is 1=Mb = 15,

and the approximate crossover frequency is! b = 2 � 1000 rad=s. The weight W u and

a realisation of the parameter-varying performance weight are shown in Figure E.5.
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Figure E.5: Example of performance weight wp;h (s; q) as de�ned in (E.13) and con-

troller sensitivity weight wu (s) as de�ned in (E.15) for scheduling parameter q =

[2:87 krpm; 0:51 MPa]T .

The augmented plant P has an LPV state-space realisation of12th order (6th order

system,4th order W p, 2nd order W u ):

P(q) =

2

6
4

A (q) B 1 B 2(q)

C1(q) D 11 D 12

C2 D 21 D 22

3

7
5 ; (E.16)

in which the scheduling parameter-dependency can be formulated using the basis

functions f n (q) de�ned in (E.8).

We use the guidelines from [33] to determine the synthesis method for the LPV

controller. The scheduling parameter dependency is not af�ne and not on a linear

fractional transformation form. The number of scheduling parameters is fairly low.

For the present system, the guidelines then suggest to use the gridding-based LPV

synthesis method [76]. A full-order LPV controller K (q) for the system P(q) (E.16)

guaranteeskzk2 �  kwk2 if it is a solution to the following two matrix inequalities

for the decision variables Â K ,B̂ K ,ĈK ,D K , X ,Y ;  of appropriate dimensions for T1

and T2:

T1 � 0; T2 � 0 (E.17)
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T1 =

"
X I n a

I n a Y

#

;

T2 =

2

6
6
6
6
6
4

XA + B̂ K C2 + ( ?) ? ? ?

Â T
K + A + B 2DK C2 AY + B 2ĈK + ( ?) ? ?

�
XB 1 + B̂ K D 21

� T
(B 1 + B 2D K D 21)T �  I n w ?

C1 + D 12D K C2 C1Y + D 12ĈK D 11 + D 12D K D 21 �  I n z

3

7
7
7
7
7
5

(E.18)

The dependency of the scheduling parameters is omitted in the above. This problem

is a linear matrix inequality (LMI) with in�nite dimension, but becomes tractable by

the following proposals from [75]: 1) the matrix inequalities are evaluated over a

�nite grid Qd of scheduling parameters covering the operating range; 2) the decision

variables are constrained to copy the non-linear plant function dependency:

Â K (q) = Â K; 0 +
NX

n =1

f n (q)Â K;n ; B̂ K (q) = B̂ K; 0 +
NX

n =1

f n (q)B̂ K;n

ĈK (q) = ĈK; 0 +
NX

n =1

f n (q)ĈK;n ; D K (q) = D K; 0 +
NX

n =1

f n (q)D K;n

(E.19)

In the above, Â K;n ; B̂ K;n ; ĈK;n and D K;n are matrices to be determined in the LMI

optimisation. The augmented systems(E.16) in the design grid must be in coherent

state-space bases. To improve the numerical plant conditioning, it is balanced using

one constant transformation matrix T 0, such that
h

T 0 AT � 1
0 T 0 B

CT � 1
0 0

i
where T 0 equalises

the maximum row and column norms across the entire array of gridded augmented

plants. The scaling matrix is found in Matlab with ssbal.m .

To obtain a controller which is practically valid (i.e. is not a function of the

scheduling parameter derivatives, which are not measured), it is proposed in [75]

to constrain either X or Y to be constant. All attempts trying to constrain X to

a constant failed to provide a feasible LMI solution. We therefore chooseX to be

function of the scheduling parameters andY to be constant:

X (q) = X 0 +
NX

n =1

f n (q)X n ; Y = Y 0 (E.20)
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The resulting LMIs are then solved to minimise the objective function:

min

(

 + "T

NX

n =0

tr (X n ) + tr (Y 0)

)

(E.21)

where the small constant "T = 2 :2 � 10� 16 is chosen to avoid numerically large values

in X and Y .

The LMIs are generated in Matlab with YALMIP [99], which only permits non-strict

LMIs. The LMIs (E.18) are therefore restricted to:

T1 � "; T2 � � "; (E.22)

in which " > 0 is some small positive number. Design iterations show that a value

" = 1 :5 � 10� 3 and a grid of 8 � 8 equidistant values of the scheduling parameter

provides an adequate solution.

The LMIs are solved over the design gridQd using MOSEK to obtain an LMI

solution satis�ed for  =  d = 1 :4987. To ensure the performance over the whole

scheduling parameter interval, the LMI solution must be validated over a �ner valida-

tion grid Qv . It is common that the value  d must be increased for the LMI solution to

be valid in the validation grid. In Figure E.6, we show how the performance  d varies

over the scheduling parameter interval for a validation grid of 16 � 16 equidistant

values of the scheduling parameters.

We re�ned the grid further to ensure the solution is valid. Figure E.7 shows the

performance  for varying sizes of the validation grid. The LMI solution is satis�ed

for  = 1 :4995.

From the solution, the factorisation problem I � XY = NM T must be solved

for N (q) and M (q). We chooseM = I and N (q) = I � X (q)Y 0. The controller

parameters are calculated:

K (q) =

"
A K (q) B K (q)

CK (q) D K (q)

#

; (E.23)

in which:

A K = N � 1
�

X _Y + N _M T + Â K � X (A � B 2D K C2) Y

� B̂ K C2Y � XB 2ĈK

�
M � T

B K = N � 1
�

B̂ K � XB 2D K

�

CK =
�

ĈK � D K C2Y
�

M � T ;

(E.24)



E.3. Damping enhancing control of gas bearings 165

Figure E.6: Validation of LPV controller. Around q2 � 0:4 MPa better performance is achieved

than de�ned by  d whereas the limiting performance is obtained at q = [2 :3 krpm; 0:3 MPa]T ,

where max( )= d = 1 :00054.

Figure E.7: Performance index for varying validation grid sizes. The performance converges

as the grid size increases.

where the parameters are functions of the scheduling parameter. The evaluation of

the matrices Â K ; B̂ K ; ĈK ; D K and X ; Y , and calculations of the controller matri-

ces(E.24) have to be performed online for each scheduling sampling step, which is

computationally heavy due to the two matrix inversions.

E.3.2 H 1 controller design

The LPV controller can directly address the parameter-dependency though conser-

vatism may be introduced by constraining the controller parameters to polynomial

surfaces. A more simple controller which is able to include the multiple control

objectives in the design is theH 1 controller. This design methodology offers many

possibilities. The parameter-varying dynamics could be modelled as uncertainties

using e.g. multiplicative uncertainty. Such an approach tends to result in conservative
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designs since performance is required in the frequency range of the under-damped

eigenvalues where the gain varies strongly, so to guarantee robust performance; the

controller could therefore not enhance the damping. An alternative and simpler

approach is to design the controller for one operating condition to pursue a high

damping increase for that nominal plant. This approach only guarantees stability

for the design condition. The stability and performance must therefore be investi-

gated over the selected operating range. The controller must be designed from a

non-parameter-varying reference model which is chosen as the gas bearing model

evaluated in the center operating condition q0 = [3 krpm; 0:5 MPa]T . The same

mixed sensitivity setup for the LPV controller is used with the weights evaluated at

qc0 to have N (s;qc0) = N (s)

K (s) = min
K

kN (s)k1 ; N (s) =

"
W p(s)S(s)

W u (s)K (s)S(s)

#

; (E.25)

The controller will then be optimised for this particular operating condition. The

controller K 1 is synthesised with performance H 1 = 1 :13. The found  is lower

than the one found for the LPV controller and indicates the level of conservatism

from constraining the LPV controller parameters. The stability and performance

of the H 1 controller over the operating range is then validated by calculating

the closed-loop system overQv , and it is found that the controller stabilises the

gas bearing. The worst case performance index is found to bemax  = 2 :28 at

q = [1 :86 krpm; 0:3 MPa]T . Figure E.8 shows the performance in the validation grid

points of the H 1 - and the LPV controller. The LPV controller performance only

varies little over the design interval. Based on theH 1 -performance values, the LPV

controller in general outperforms the H 1 controller except for a range around the

design condition of the H 1 controller. This is expected since the LPV controller gains

are constrained to polynomial surfaces and similar results were found in [52, 53].

E.4 Numerical Controller Validation

The performance of rotating machinery is often assessed using impulse responses

which effectively reveals under-damped modes by exciting the system over a wide

frequency range. Such impulse responses have been generated for a �ne grid of

operating conditions. A constant impulse magnitude corresponding to a strong impact

is chosen. Due to spacial limitations, only four are included in the paper as they

are representative for the remaining impulse responses. The results shown are from
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Figure E.8: Comparison of H 1 -performance index  for LPV controller evaluated in the

validation grid points q l 2 Q v .

the four scheduling parameter extrema f [q
1
; q

2
]T ; [q1; q

2
]T ; [q

1
; q2]T ; [q1; q2]T g. The

impulse responses are compared for three different cases: a) open loop operation

b) H 1 controlled c) LPV controlled. Both output directions have been investigated

over Qv showing that the controller performance of the LPV and the H 1 controller

are similar in the vertical direction; whereas the horizontal direction shows more

variation. Therefore only the horizontal results are shown. Figure E.9 shows the3� 4

impact responses. The impulse responses in the open loop case a) show differences

in the natural frequency and the damping factor. The robust controller in case b) is

able to enhance the damping but the LPV controller in case c) enhances the damping

more for all investigated cases. The LPV controller does not alter the vibration

period signi�cantly. The oscillation magnitude is negligible after one period. The

impact responses shown are of high magnitude, and controller saturation would

occur in the the H 1 controlled case as the control signal exceeds the saturation

limits r x 2 [� 5; 5]V and deteriorates the performance whereas the LPV control signal

remains within the limits.
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Figure E.9: Simulated horizontal impact responses for the scheduling parameter extrema

in the three cases: a) open loop, b)H 1 control, c) LPV control. Figures to the right show

corresponding control signals.

E.5 Experimental Closed-Loop Results

This section presents experimental results validating the enhanced damping

properties of the controllers designed. Experimental impact responses are collected

and used to assess the performance of the controllers. The impact responses are

compared for the open loop and the controlled cases. Finally, experiments have

been performed during angular velocity transients to investigate the controllers'

capabilities during scheduling parameter variations.

To allow implementation in the dSpace control system the controllers must be

discretised. TheH 1 controller is converted to discrete time using a Tustin approx-

imation. The LPV controller is discretised using the trapezoidal LPV discretisation

method proposed in [100]. The calculation of the controller matrix updates requires

the inversion of two matrices of dimensions 12� 12, which is time consuming. We

therefore update the control gains at a lower frequency as proposed in [85]. The

equipment used allows the controller matrices to be updated with a sampling rate

of 10 Hz while the control signal is updated with the sampling rate f s = 5 kHz. The

scheduling parameters change slowly on a time scale of seconds, the control matrix

is updated 10 times faster.
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E.5.1 Impact Responses

The controller performances are investigated experimentally with impulse re-

sponses similar to the ones in Section E.4 since they are effective for exciting the

system eigenfrequencies. The shaft was therefore excited as close as possible to

the gas bearing with an impact hammer which measures the applied forcef (t).

To investigate the controller capabilities over the operating range such impulse

responses were collected over a �ne grid of operating conditions chosen as the

combination of angular velocities q1 2 f 0; 1:5; 3; 4:5; 6g krpm and injection pressures

q2 2 f 0:3; 0:433; 0:567; 7g MPa. This includes points different from the identi�cation

grid to validate the controller works in the interpolation regions too.

The impact response data collected for rotating conditions contains both the

response from mass imbalance and from the shaft impact. The displayed data has

therefore been �ltered to remove the mass imbalance response. An example of data

before and after �ltering is shown in Figure E.10.

The experimental closed-loop results resemble the simulated and both controllers

enhance the damping signi�cantly. The experiments show that the LPV controller

and the H 1 controller achieve similar performance in the vertical shaft direction

whereas the the differences are more evident in the horizontal direction. Due to the

space restrictions all the4 � 5 � 3 impact responses cannot be shown in the paper,

but Figure E.11 shows �ltered horizontal impact responses for the open-loop, H 1

controlled and the LPV controlled cases at the scheduling parameter extrema. The

controllers enhance the damping in all cases. Four vertical impact responses at the

operating conditions q1 2 f 1:5; 4:5g krpm, q2 2 f 0:433; 0:567g MPa are shown in E.7

to validate that the performance also is achieved in off-identi�cation grid points.

It is desirable to quantify the controller performances both in terms of damping

enhancement and noise rejection. A common approach is to estimate the damping

factors using e.g. the logarithmic decrement. This approach is not suitable here since

the controller increases the total system order by 12 and the impact responses cannot

easily be decomposed. Therefore alternative approaches must be sought. When the

damping is increased the impulse response decays faster hence the energy of the

impulse response decreases. The magnitude of the response is proportional to the

impact energy. The impulse responses are therefore quanti�ed with the ratio of the

disc displacement energy and the impact force energy denoted asVp:

Vp =
kp(t)kL 2

kf (t)kL 2
(E.26)
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Figure E.10: Closed loop impact response atq = [6 krpm; 0:7 MPa]T . To display the impact

response, the data is �ltered to remove the mass imbalance. This �gure shows the data before

and after runout-�ltering, which �lters out the mass imbalance response.

where the L2� norm of a signal a = [ a1; a2; :::; aJ ]T sampled at instants kTs, k 2

f 0; 1; :::; K g is

ka(t)kL 2 =

vu
u
t 1

Ts

KX

k=0

JX

j =1

a2
j (kTs) (E.27)

The impact responses are de�ned as settled afterK = 500 samples. Similarly, the

control effort is quanti�ed as the energy Vp de�ned as the ratio of the control signal

displacement energy and the force energy:

Vr =
kr (t)kL 2

kf (t)kL 2
(E.28)

Multiple impact responses have been collected for each experimental grid point

and the mean energy for the impact responses at the 20 experimental grid points is
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Figure E.11: Horizontal open loop and LPV closed loop impact responses at the schedul-

ing parameter extrema: a) q = [0 rpm; 0:7 MPa]T , b) q = [6 krpm; 0:7 MPa]T , c)

q = [0 rpm; 0:3 MPaT , d) q = [5 :5 krpm; 0:3 MPa]T

shown in Figure E.12. The LPV controller reduces the response energy in all cases

whereas the H 1 controller reduces the energy at all operating conditions except

experiment 1 at q = [0 :0 krpm; 0:3 MPa]. This is in good agreement with the long

settling time observed from Figure E.11.c.

The averages of control effort of the LPV controller and theH 1 controller are

shown in Figure E.13 which shows that the LPV controller generally has the lowest

control effort. The means of the impact energies have been calculated over the

experiments and Table E.3 summarises the results. TheH 1 controller in average

reduces the impact energy for horizontal impacts to51%compared to open-loop case

and the LPV controller in average reduces the impact energy to34%. Similarly for

the vertical impacts, the the H 1 controller reduces the impact energy to 25%, and
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Figure E.12: Mean energy for the open and closed-loop impact responses calculated

with (E.26).

Table E.3: Mean response energies of impact responses

Open loop LPV H 1

Horizontal impact energy: 14.94 5.08 7.63

Vertical impact energy: 16.51 4.00 4.20

Horizontal control energy: 0.30 0.53

Vertical control energy: 0.18 0.23

the LPV controller to 24%. This shows that the main bene�ts of the LPV control in

this case is obtained in the horizontal shaft direction. The LPV controller reduces the

control effort compared to the H 1 controller to 57%for the horizontal impacts and

78%for the vertical ones.

The results are interesting since theH 1 controller was tuned for one operating

condition to pursue a high attenuation for the nominal plant. Figure E.8 shows

that this comes at the cost of performance in the “global sense”since its performance

deteriorates signi�cantly over the operating range. A controller designed to guarantee

robust performance would even locally be outperformed by the LPV controller. The

approach pursued was very simple and the resulting controller was effective over the

operating range.

E.5.2 Run-Up and Coast-Down

When the machine is started up (and shut down), faster variations occur in the

angular velocity which is accelerated from zero to some operating speed (or vice
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Figure E.13: The mean control efforts for closed-loop impact responses calculated with(E.28).

versa). The controllers designed are not guaranteed to work for changes in the

scheduling parameters but simulations have shown the controller is effective in these

scheduling parameter transients as well. Experiments have therefore been performed

to display the controller capabilities during these transient modes. During the ex-

periments the shaft is accelerated from0 krpm to 6 krpm with a mean acceleration

of 0:1 krpm=s. The turbine supply is then turned off and the shaft decelerates at a

mean rate of 0:04 krpm=s. Figure E.14 shows the vibration amplitude during the

run-up and following coast-down phase both for the open loop and the controlled gas

bearing using both controllers. At low angular velocities the controllers amplify the

vibrations within an acceptable level as expected. As the angular velocity increases

the controllers reduce the vibration amplitude compared to open loop. In the vertical

direction the LPV and the H 1 controllers show equal performance in reducing the

vibration amplitude. At 6 krpm the LPV controller reduces the vibration magnitude

to 62:6%, whereas the H 1 only reduces the vibration amplitude to 76:9% in the

horizontal direction and 78% in the vertical direction. As desired both controllers

use limited control efforts to avoid wear. The open loop experiments show vibra-

tion peaks in the horizontal and the vertical direction around angular velocities

3:69 krpm(= 61 :5 Hz) and 4:05 krpm(= 67 :5 Hz) and also at 2:34 krpm(= 39 :0 Hz)

and 2:64 krpm(= 44 :0 Hz). These frequencies correspond to one half and one third

of the �rst critical speeds. Such vibrations commonly indicate that the rotor is not

accurately mounted in the gas bearing i.e. is misaligned. The misalignment is dif�cult

to avoid in applications with low tolerances such as gas bearings. The misalignment

causes excitation at integer-multiple of the angular velocity (q1; 2q1; 3q1; :::) [55, 56,
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Figure E.14: Vibration amplitude in open loop and with LPV control during run-up and

run-down in the interval q1 2 [0; 6] krpm at q2 = 0 :7 MPa

57]. Inspection of the frequency content supports the hypothesis of misalignment.

The misalignment vibrations are signi�cantly ampli�ed around the under-damped

eigenfrequencies. The controller therefore reduces these vibrations signi�cantly.

Since the system-gain in this frequency interval is high the controller does not require

a signi�cant effort to reduce the vibrations.

E.6 Conclusions and future aspects

This paper has presented control designs for enhancement of the damping prop-

erties of controllable journal bearings over their operating range. An LPV and anH 1

controller were designed using the mixed sensitivity setup where a suitable choice of

weights could provide the desired level of damping. The LPV control design is able

to guarantee a certain level of performance over the desired scheduling parameter
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range at the cost of an increased complexity in design. TheH 1 control design is

simpler both in design and implementation and was designed for optimality for a

given constant value of the scheduling parameter. Simulations and experimental

closed loop results con�rmed that both of the designed controllers were able to

provide a signi�cant enhancement of damping over the selected operating range.

The LPV controller in general showed a somewhat better performance and required

less control effort than the H 1 controller. This improved performance should be

compared to the strong increase in complexity in design and implementation which

must be judged for the speci�c application.

The control design procedure was shown for a gas bearing system but has potential

to be extended to other bearing designs as well, e.g. controllable oil bearings.
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E.7 Vertical Impact Responses

This appendix contains the comparison of vertical impact responses of the LPV

controlled and the open loop gas bearing for four non-identi�cation operating condi-

tions. During these experiments, the shaft was excited from the top of the shaft, and

the �rst oscillation is therefore negative. The displayed responses have been �ltered

to remove the mass imbalance response. The responses are shown in Figure E.15.

The controllers effectively enhance the damping.
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Figure E.15: Vertical open loop and closed loop impact responses at the four operating

conditions f 7; 9; 12; 14g: a) q = [1 :5 krpm; 0:57 MPa]T ,b) q = [4 :5 krpm; 0:57 MPa]T ,c)

q = [1 :5 krpm; 0:43MPa]T ,a) q = [4 :5 krpm; 0:43 MPa]T
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Abstract:

Gas bearings are popular for their high speed capabilities, low friction and clean

operation, but require low clearances and suffer from poor damping properties.

The poor damping properties cause high disturbance ampli�cation near the natural

frequencies. These become critical when the rotation speed coincides with a natural

frequency. In these regions, even low mass unbalances can cause rub and damage

the machine. To prevent rubbing, the variation of the rotation speed of machines

supported by gas bearings has to be carefully conducted during run-ups and run-

downs, by acceleration and deceleration patterns and avoidance of operation near the

critical speeds, which is a limiting factor during operation, specially during run-downs.

An approach for reducing the vibrations is by feedback controlled lubrication. This

paper addresses the challenge of reducing vibrations in rotating machines supported

by gas bearings to extend their operating range. UsingH 1 -design methods, active

lubrication techniques are proposed to enhance the damping, which in turn reduces

the vibrations to a desired safe level. The control design is validated experimentally

on a laboratory test rig, and shown to allow safe shaft rotation speeds up to, in and

above the two �rst critical speeds, which signi�cantly extends the operating range.
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F.1 Introduction

Gas bearings offer clean operation with low friction, but suffer from poor damping

properties and require low clearances. Rotating machines supported by gas bearings

are therefore very sensitive towards mass unbalance and disturbances. The natural

frequencies especially become critical as they coincide with the rotation speed,

where the mass unbalance response grows until the shaft rubs the bearing surface.

Operation near the critical speeds is therefore avoided, which limits the usability of

the machines. An ad-hoc approach to reduce vibrations when crossing the critical

speeds, is to quickly accelerate rotation shaft across the critical speed before the full

vibration amplitude is obtained. Such an approach however results in the "cat in the

tree"-problem - it may be easy to get up, but dif�cult to get safely down again. Due

to the low viscosity there are almost no friction losses, which in turn results in a slow

deceleration of the shaft. This gives enough time for the undesired vibrations to build

up.

For a given �xed machine design, the shaft vibrations can be reduced in two

ways. Proper balancing of the shaft can drastically reduce mass unbalance, but

not eliminate it. Further this obviously does not diminish sensitivity to external

disturbances. Active lubrication techniques through feedback control represent a

valid alternative approach, which can handle both mass unbalance and external

disturbances. Feedback control has been widely applied to active magnetic bearing

(AMB)-systems. Many authors have proposed various control designs, e.g. linear

parameter-varying (LPV)-controllers to eliminate the mass unbalance response by

placing closed-loop zeros in the sensitivity function at the shaft rotation speed. e.g.

in [53, 85, 52]. Such controllers completely eliminate the mass unbalance at the

cost of a high control effort. The use of phase shift �lters has also been proposed

in literature [116]. These mentioned approaches only reject disturbances at the

rotational frequency.

Previous papers [3, 4, 78] on control of gas bearings have treated design of

classical controllers, but none of these had suf�cient robustness, and therefore were

not able to reduce vibrations enough to allow a safe crossing of the critical speed. In

[5] we proposed an H 1 and an LPV controller to enhance the damping of the gas

bearing. The controllers were found able to both reject the external disturbances and

reduce the vibration amplitude within the considered operating range.

In continuation of that work, this paper explores further the capabilities of such

designs. The sameH 1 setup is used to obtain a damping enhancing controller,
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and the vibration reduction capabilities are investigated to extend the region of

operation. The available model relies on open loop identi�cation, which poses a

challenge, since open loop operation is not possible in these regions. A controller

is therefore required, which should again be validated from a model of the system

at that particular operating condition. Instead, an alternative must be sought. Our

approach therefore relies on designing a controller from the LPV model inside the

identi�ed region, and investigating the controller performance outside the identi�ed

region. The upper limits for safe rotation are investigated both for closed loop

experiments and open loop experiments.

The paper is structured as follows. Section F.2 contains an overview of the

test rig utilised for experimental validation and some highlights of the model of

the gas bearing. The design of theH 1 controller is detailed in Section F.3, and

the available LPV model is used in extrapolation to provide an expectation of the

controller performance for higher rotation speeds. This performance is investigated

experimentally in Section F.4. Last, some conclusions are drawn and future aspects

are discussed in Section F.5.

Notation

The paper uses upper case bold letters for matricesA , lower case bold letters for

vectors a, the Laplace variable is denoteds. Continuous time signals are addressed

a(t). Signals in the Laplace domain are addresseda(s), and sampled signals at time

instants kTs are denoted a(kTs). State-space dynamics is formulated in shorthand as

G =
h

A B
C D

i
, which de�nes the state-space relation

h
_x
y

i
= G

h
x
u

i
=

h
A B
C D

i h
x
u

i
.

The identity matrix of size n is denoted I n . Shaft rotation speed units are given in Hz,

though the common in rotordynamics is revolutions per minute: (1 Hz = 60 rpm).

F.2 Controllable Gas Bearing

F.2.1 Test Rig

The experimental controllable gas bearing setup at hand is shown in Fig. F.1. It

consists of a turbine (1) driving a �exible shaft (2) supported by both a ball bearing

(3) and the controllable gas bearing (4), in which pressurised air is injected through

four piezoactuated injectors numbered as shown. The injection pressure is constant

Pinj = 0 :3 MPa, which is measured before splitting up to the four piezoactuators.

The pressure is not controlled, but the variations are negligible. A disc (5) is mounted
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Figure F.1: The experimental controllable gas bearing setup. A turbine (1) drives a �exible

shaft (2), which is supported by both a ball bearing (3) and the controllable gas bearing (4)

with four piezoactuated injectors. A disc (5) is mounted in one end to pre-load the journal and

displacement sensors (6) measure the lateral movement of the disc in the shown reference

frame. A quadrature encoder (7) measures the angular position.

in one end to pre-load the journal. The horizontal and vertical disc movement

p , [px ; py ]T is measured at the disc location using eddy current sensors (6) in the

coordinate frame speci�ed in the �gure. For zero input and when the rotor is at stand

still, the position is p = 0. The angular position of the rotor � is measured by an

optical quadrature encoder (7), from which the rotation speed 
 is calculated. The

injectors are controlled in a pairwise differential mode. Thereby one piezoactuator

reference r x is sent to control the position of the horizontal injectors, and one

reference r y is sent to control the vertical ones. These references are in intervals

[� 5; 5] V, which corresponds to full-span motion of the piezoactuator positions in

the interval [0; 45] � m. The nominal clearance of the gas bearing is25 �m . Given

the right conditions of suf�cient injection pressure and suf�ciently low rotational

speed, the gas �lm generates restoring forces and thereby keeps the rotor levitating

about a stable equilibrium. All measurements are sampled with periodTs = 0 :2 ms.

A detailed description of the setup is available in [31].

For equipment safety, the vibrations must be within a safety region, in this case

chosen as a circle:

xs = r � cos(� ) � x0; ys = r � sin (� ) � y0; � 2 [0; 2� [ rad (F.1)

Manual tests were performed to assess safe limits of the circle parameters, and

the following were found suf�ciently conservative: radius r = 20�m , and centre

x0 = 10�m , y0 = � 3�m . These limits are deliberately chosen to be conservative for

equipment safety.
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F.2.2 Gas Bearing Model

The gas bearing test rig is modelled using the linear parameter-varying (LPV)-

identi�cation approach from [3], where local LTI-models are identi�ed from data

collected in a grid of injection pressures and shaft rotation speeds. For the present

work, the injection pressure is kept constant, and the model is then only function

of the rotation speed. The identi�cation grid contained six uniformly spaced shaft

rotation speeds in the interval 
 2 [0; 92] Hz. The model can be decomposed to a

cascade coupling of the actuator dynamicsG act , time delaysG � and the rotor-bearing

dynamics G rb :

G(t; 
) = G rb (t; 
) G � (t; 
) G act (t) (F.2)

The actuator dynamics are independent of the scheduling parameter and have the

following diagonal second order form with two real poles and a gain:

G act (s) =

"
Ga;x (s) 0

0 Ga;y (s)

#

;

Ga;j (s) =
� a;j�

1
p1;j

s + 1
� �

1
p2;j

s + 1
� ; j 2 f x; yg

(F.3)

The rotor-bearing dynamics is modelled as the interconnection of a parameter-varying

delay and a second order parameter-varying mass-spring-damper system. The latter

has a state-space realisation:

G rb =

2

6
4

02 I 2 02

K(
) D(
) B(
)

I 2 02 02

3

7
5 (F.4)

in which the parameter-varying matrices fK ; D; Bg are second order polynomials in

the rotation speed 
 . The delays are second order polynomials in rotation speed, and

�nite models are obtained by a �rst order Padé approximation:

G � (t; 
) =

"
G� x (
) (t) 0

0 G� y (
) (t)

#

;

G� j (
) (t) =

"
� 2=� j (
) 1

4=� j (
) � 1

#

; j 2 f x; yg

(F.5)

The natural frequencies of the LPV model change with rotation speed but are

approximately ! 1 = 105 Hz and ! 2 = 115 Hz. It is desired to extend the region

of safe operation, which implies increasing the rotation speed to values outside
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the identi�cation region. The actuator dynamics contains only real poles acting at

frequencies higher than 400Hz. Since actuation in this range of frequencies is not

desired, the actuator dynamics is approximated by a static gain. The gas bearing

model is then of order n = 6 .

The nominal model is chosen as the LPV model evaluated at91 Hz.

G = G(t; 
)

�
�
�
�

=91 Hz

(F.6)

The mass unbalance is not included in the model, but acts as a force on the shaft

given by:

fu = mu eu 
 2

"
sin(
 t + ' )

sin(
 t � �= 2 + ' )

#

(F.7)

in which 
 is the shaft rotation speed,mu is the unknown unbalance mass, andeu is

the unknown distance between the mass unbalance and the geometrical shaft centre,

and ' is the phase of the disturbance. This can be modelled as an input disturbance

in the gas bearing. The force from mass unbalance therefore grows by
 2 as the

rotation speed increases, and the response is greatly ampli�ed near the resonance

frequencies. At this point, the mass unbalance remains largely unknown except for

its frequency, which suf�ces for control design.

F.3 H 1 Control Design

This section details the damping enhancingH 1 control design from [5] to allow

the safe crossing of the �rst two critical speeds by reducing the vibrations to be

within the desired safety region from Eq. (F.1). These requirements are not easily

included directly in the H 1 setup especially since the mass unbalance is largely

unknown. Instead, the controller K should enhance the damping and thereby reduce

the gain magnitude at the resonance frequencies without wearing the actuator out.

These disturbance and noise rejection requirements are formulated using the mixed

sensitivity setup [93], which seeks to minimise:

K � = arg min
K

kN k1 ; N =

"
W pS

W u KS

#

; (F.8)

where the closed loop sensitivity functions for a given 
 = �
 are :

S(s; �
) , (I + GK ) � 1 (F.9)
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Figure F.2: The augmented plant with controller for LPV controller design with performance

weights W p and controller sensitivity weight W u .

and KS represents the control sensitivity. They are shaped by the weight functions

W p and W u . The external output disturbance w and external outputs z = [ zT
1 ; zT

2 ]T

are included into the system to obtain the augmented plant as shown in Fig. F.2. The

controller then satis�es kN k1 <  .

To enhance damping, the controller should have high performance in the fre-

quency range around the under-damped eigenfrequencies of the rotor-bearing! x and

! y . The performance �lter is therefore chosen to contain inverse notch like �lters:

W p(s) = diag (wpx (s); wpy (s)) (F.10)

in which wpx and wpy both have the form:

wpx (s) =
s2 + 2 � 1! x s + ! 2

x k0

s2 + 2 � 2! x s + ! 2
x

; wpy (s) =
s2 + 2 � 1! y s + ! 2

y k0

s2 + 2 � 2! y s + ! 2
y

(F.11)

The natural frequencies! x , ! y are chosen as the under-damped natural frequencies

of the gas bearing to obtain a high weight around these. The weight at the resonance

frequencies is set to19 dB, which is obtained by the damping factors � 1 = 0 :3 and

� 2 = 0 :05. The low sensitivity around the natural frequencies must come at the cost

of increased sensitivity in another frequency range due to Bode's sensitivity integral

[104]. It was argued in [4] to place this sensitivity increase in the low frequency

range, where an ampli�cation of mass unbalance and disturbances is acceptable. The

constant k0 = 1=3 determines the low frequency weight, and the sensitivity at low

frequency is guaranteed to be less thank 0. The control signal sensitivity weight

W u is chosen to penalise control action at high frequency. This is achieved with the

high-pass �lter from [93, Sec. 2, Eq. (2.72)]:

W u (s) = I wu (s); wu (s) =
s=Mb + ! b

s + ! bAb
; (F.12)
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Figure F.3: System gain, performance weightswpx (s), wpy (s) as de�ned in Eq. (F.11) and

controller sensitivity weight wu (s) as de�ned in Eq. (F.12). The two left plots share the

frequency axis to show the performance weight peaks coincide with the natural frequencies.

where the low frequency gain is 1=Ab, Ab = 10; the high frequency gain is 1=Mb = 15,

and the approximate crossover frequency is! b = 2000� rad=s. The weights are

shown in Fig. F.3. SincejSj > 1 for low frequencies, the controller ampli�es mass

unbalance for low rotation speeds, which is affordable, whereas at high rotation

speeds, the vibrations are attenuated. A 12-th orderH 1 controller is synthesised

with  = 1 :15 and the performance shown in Fig. F.4. At low frequencies up to above

the �rst two critical speeds, the performance is limited by S as desired, whereas at

high frequency, KS becomes limiting.

To allow implementation on the dSpace system, the controller is converted to

discrete time using Tustin transformation and sampling frequency f s = 5 kHz .

F.3.1 Closed-Loop Performance Assessment Based on Extrapolated

LPV Model

Since no gas bearing model is available for rotational speeds higher than 92

Hz, the performance of the controller is attempted to be assessed by means of

model extrapolation from the identi�ed LPV model. The performance assessment

is strongly affected by the extrapolation, therefore the obtained results must be
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Figure F.4: Resulting sensitivity functions S and KS and corresponding inverse scaled weights

 W � 1
p and  W � 1

u . At low frequency, the performance closely follows the performance weight.

carefully interpreted. The LPV model Eq.(F.6) is extrapolated for various rotation

speeds, and used to calculate the loop sensitivities using Eq.(F.9). The results are

shown in Fig. F.5. In open loop, the input disturbances are greatly ampli�ed near

the resonances, whereas the closed loop disturbance functionsSG show a signi�cant

reduction in disturbance gain as desired. The controller has low sensitivity near

the resonance frequencies, and obtainsjSj < 1 in an interval above the resonance

frequencies. This indicates that the controller reduces the mass unbalance both before

and after the critical speeds are crossed. Investigations also show, that the control

effort KS is suf�ciently low. The performance analysis based on the extrapolated

models suggests that the designed controller may succeed in increasing the system

damping at and about the critical frequencies. The validity of these predictions needs

to be veri�ed experimentally, and this is shown in the following section.

F.4 Experimental Results

The results of the previous section should be investigated experimentally, both

the open loop and the closed loop.

This is done by applying the controller at low speed, and then slowly accelerating

the shaft while monitoring the vibration amplitude. A standard runout �lter is applied

to remove artefacts from the measurements from mechanical imperfections in the

disk using the procedure described in [3]. At standstill, the rotor equilibrium position
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Figure F.5: Evaluation of open and closed loop input disturbance responses (G , SG ) for

different rotation speeds extrapolated with the LPV model. The model shows, that the

controller reduce the peak gain signi�cantly.

is below the geometric bearing centre [117]. The given shaft positions p correspond

to deviations from the equilibrium position. Two different experiment types where

performed to assess the upper limit of safe rotation speed: an open loop and a closed

loop. To avoid rotor-bearing rubbing during experiments, the shaft rotation speed

is increased slowly until the vibrations exceed the safety region. The vibrations of

the open loop experiment are shown in Fig. F.6. At 
 = 94 :8 Hz, the vibrations

exceed the safety region, and the rotor reaches a speed of
 = 97 :5 Hz before the

experiment is stopped. The critical speeds can therefore not be crossed safely in

open loop. During the closed loop experiment, the shaft is again accelerated slowly

allow the vibrations to build up during the operation. A bias is applied to the control

signal to allow a shift of the vibrations' centre. According to the model, the critical
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Figure F.6: Experimental measurements for various shaft rotation speeds. In open loop (ol),

the vibrations exceed the limit of safe operation at 
 = 94 :8 Hz . In closed loop (cl), the

control reduces the vibrations and signi�cantly increases this limit.

speeds are expected to be near105Hz and 115Hz. It is evident, that the shape of

the vibrations changes near these speeds. These speeds are crossed very slowly to

allow the vibrations to build up and validate, the critical speeds pose no challenge

in closed loop. The rotation speed can therefore be increased even further. During

the experiment, the rotor reaches a speed of
 = 153 Hz where the control signals

approaches the level of saturation. Such saturation in best case deteriorates the

performance, but potentially destabilises the system. It is therefore decided to stop

the experiment.

The vibrations are often investigated in rotor-dynamics as function of the rotation

speed in a waterfall diagram. This is obtained as the FFT of smaller sections of the

data. Such a diagram is shown for the vertical shaft direction in Fig. F.7 for both the

open loop and the closed loop case. The synchronous vibrations for
 > 50Hz are

signi�cantly reduced in the closed loop case, and the critical speeds can therefore be

crossed safely. It may be argued, that the approach of applying an input bias should

also have been used in the open loop experiment, but the vibration amplitude would

still quickly have grown exceeded the allowed vibration level.
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Figure F.7: Waterfall diagram for vertical shaft direction to investigate the frequency content

of the vibrations. In open loop (ol) the synchronous vibrations grow fast as the critical speed

is approached. In closed loop (cl), the vibrations are suf�ciently attenuated to allow faster

rotation speeds.

A later experiment was performed, where the rotor speed was increased even

further up to 
 = 161 :4 Hz, and the vibrations were within the desired level. This

corresponds to an increase in operating range of approximately70%.

F.5 Conclusions and Future Aspects

This paper investigated control designs to reduce the vibrations in rotating ma-

chinery supported by gas bearings. A controller was designed using the developed

LPV model, and experimental results demonstrated the feasibility of using the con-

troller to extend the operation range. The controller allowed rotation speeds up to,

in and above the �rst two critical speeds, which extended the operation range by

70%. Future experiments will investigate the performance as the rotation speed is

increased even further. In this region, sub-synchronous whirl dominates the response,

and it is of interest to use controllers to postpone the onset of the whirl [31].
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Gain-scheduling strategies using the Youla parametrisation can guarantee stability

at the cost of increased controller order and performance loss in the interpolation

region. This paper contributes with a gain-scheduling strategy using state-space

interpolation, which avoids both the performance loss and the increase of controller

order associated to the Youla parametrisation. The proposed state-space interpolation
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ing scheduled in two parameters. Comparisons against the Youla-based scheduling

demonstrate the superiority of the state-space interpolation.
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G.1 Introduction

Gain-scheduling is an attractive solution for rejection of time-varying sinusoidal

disturbances. One application is in rotordynamics where mass imbalance causes

undesirable vibrations. When the frequency of the disturbance is constant and known,

it can be rejected using, for instance,H 2 and H 1 control techniques by including

notches in the weights [52, 105]. For active magnetic bearings, disturbances with

time-varying known frequency can be rejected by linear parameter-varying (LPV)

control using parameter-varying notches [52, 53]. This motivates the use of gain-

scheduling to allow high performance across the scheduling parameter interval. The

LPV control can be conservative and in [5] for damping injection for gas bearings,

we found that H 1 controllers synthesised for local optimality in the scheduling

parameter are locally able to outperform a synthesised LPV controller. This indicates

conservatism in LPV control and demonstrates attractiveness of the locally synthesised

linear controllers.

A basic gain-scheduling approach consists in an output interpolation strategy,

where the controllers' outputs are weighted and summed. Thus for controllers

K 1; K 2, the resulting controller becomes K = �K 1 + (1 � � )K 2). Such approach

is shown in [118] to neither guarantee performance nor even stability. To ensure

stability of the closed-loop system, the authors in [118] propose a solution based

on the Youla-parametrisation. This approach increases the controller order, where

for a system of order ng, controller order nk and for np scheduling parameters, the

switched controller would be of order ng + 2 n p nk . The basic output interpolation

strategy and the one based on the Youla-parametrisation have the drawbacks of

increasing the order of the resulting controller. A signi�cant performance loss in the

controller switching/interpolation region for rejection of sinusoidal disturbances is

allowed by the gain-scheduling technique based on the Youla-parametrisation[52,

53] and using the basic output interpolation. This occurs because neither of the two

strategies allow the the poles and zeros of the notches to develop continuously with

the scheduling parameter. An alternative solution which can avoid the increase of

controller order and performance loss is to gain-schedule by state-space parameter

interpolation. Such approaches have been proposed in literature, for instance in

[102, 119, 120, 103, 101, 121] and references therein. These approaches commonly

rely on the design of local controllers which are optimal for a set of local models

obtained for speci�c values of the scheduling parameter. These local controllers are

represented in a suitable state-space representation and then interpolated to provide
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the gain-scheduled controller. Strategies to represent plant and controller models

in a coherent state-space form, such that interpolation techniques can be applied to

generate LPV models, are provided in [71, 69, 73].

The works [101, 102] propose to synthesiseH 1 controllers, which can subse-

quently be written in observer and state-feedback structures. The LPV controller

design proposed in [71], based on the original idea of interpolating local controller

from [119], uses a decomposition of the local controllers into gains, poles and zeros,

which can be approximated as functions of the scheduling parameters. In the second

step, they are transformed to a parameter-varying state-space representation. Such

an approach requires manual sorting of the poles and zeros and it is not easily ap-

plied for MIMO systems. A similar approach for gain-scheduled control of SISO LPV

systems in [122] requires an a priori assumed structure, and allows requirements

from Nyquist criteria to be included in the control parameter optimisation, but such

approach is not easily extended to MIMO systems.

Though the controller interpolation strategies do not guarantee closed-loop sta-

bility in the initial design, it can be proved subsequently using Lyapunov theory or

LFT techniques [120, 103, 121]. An LPV identi�cation strategy in [72] suggests to

use internally balanced state-space realisations to allow state-space interpolation.

The state-space parameters will then usually develop continuously, except for a

number of sign changes. The approach can require signi�cant manual labour for

systems of high order and/or when many local models must be used since many sign

changes may occur. Another approach proposed for LPV identi�cation is to transform

the local models to a suitable state-space representation [69]. Here, a numerically

well-balanced interpolated system is obtained by transforming the local systems to

a coherent basis using the extended observability and controllability matrices. This

method is not applicable when the resulting transformation matrices become singular.

This can happen for full-order control designs for continuous time systems, where

both the observability and the controllability matrices can be ill conditioned. The

numerical condition is usually better for discrete time systems, but the model can be

very sensitive to the subsequent interpolation in the sense that the time and frequency

response of the interpolated controller will not match the one of the local linear

controllers well.

We propose a state-space interpolation strategy for gain-scheduled control of

MIMO systems with multiple scheduling parameters. The strategy avoids an increase

in state-space order and it does not require manual sorting of poles and zeros. Fur-

thermore, it can be applied effectively even when the interpolation approaches from
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[69, 73] is not applicable for numerical reasons. Our strategy relies on synthesising

H 2 controllers directly in a suitable state-space representation, such that the con-

trollers' state-space parameters can be directly interpolated. The effectiveness of the

strategy is demonstrated in a design case for multi-objective control design for a

controllable gas bearing test-rig.

The manuscript is structured as follows; Section G.2 presents an overview of the

state-space interpolation techniques and its usage for the design of gain-scheduling.

In Section G.3, the gain-scheduling approach is applied to the design of a multi-

objective controller for a gas bearing test rig using a 6-th order model with two

gain-scheduling parameters. In this step, localH 2 controllers are designed and the

gain-scheduling is performed using both the state-space interpolation and the Youla

parameter-scheduling. In Section G.4, numerical simulations show the bene�t of the

proposed gain-scheduled controller design using both techniques. Finally conclusions

are drawn in Section G.5.

G.2 State-Space Interpolation-Based Gain Scheduling

Many approaches exist for gain-scheduling. The interpolation of the controller's

outputs is simple in implementation but it does not guarantee performance or stability

in the interpolation regions. Youla parametrization based approaches [118, 123]

guarantee stability at the cost of increased controller order, which grows rapidly with

the number of scheduling parameters. The interpolation approaches proposed in

[102, 72, 121, 71, 73] require that the controllers' state-space parameters can be

well approximated as functions of the scheduling parameters. It allows the poles

and zeros of the interpolated controller to develop continuously and at the same

time avoids the increase in controller order. Closed-loop stability in the interpolation

regions is not guaranteed with this approach, but it can easily be investigated using

Lyapunov theory.

G.2.1 Overview of State-Space Interpolation

This section presents an overview of previous works in local LPV modelling

approaches and gain-scheduling approaches.

State-space interpolation is the process of �nding an LPV model (for the system

plant or the controller) G(q; t) from i 2 f 1; :::; I g local LTI models ~G i (t) of the system

at the scheduling parameter q i . The local systems ~G i (t) must be in a “suitable”
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state-space representationG i (t). The state-space interpolation approach can be

summarized as follows:

1. Assume that for eachi 2 f 1; :::; I g scheduling parameter(s) q i 2 f q1; :::; qI g, a

realization of the plant the plant model ~G i is available with order na and nu

inputs and ny outputs

2. Ensure the systems are in “suitable” state-space representations denoted by

G i (t) =

"
A i B i

C i D i

#

. Denote their packed system matrices[G i ] 2 RL � M ,

L = ( na + ny ), M = ( na + nu ):

[G i ] =

"
A i B i

C i D i

#

; (G.1)

denote the elements (state-space parameters) of[G i ] by glm;i , for l 2 f 1; :::; Lg,

m 2 f 1; :::; M g:

[G i ] =

2

6
6
4

g11;i : : : g1M;i

...
. . .

...

gL 1;i : : : gLM;i

3

7
7
5 (G.2)

3. Approximate the state-space parameter estimatesglm; 1; :::; glm;i ; :::; glm;I onto

functions glm (q) of the scheduling parameter using theI estimates:

glm (q) estimated from f glm; 1; :::; glm;i ; :::; glm;I g (G.3)

4. The LPV systemG(q; t) is then obtained from its packed form:

[G(q)] =

2

6
6
4

g11(q) : : : g1M (q)
...

. . .
...

gL 1(q); : : : gLM (q)

3

7
7
5

=

"
A (q) B (q)

C(q) D (q)

#
(G.4)

The question of how to obtain a “suitable” state-space representation is an open chal-

lenge. The authors in [73] show how to obtain a coherent state-space representation.

The approaches employed in [3, 72, 71, 69] can be seen as alternative speci�c solu-

tions. This challenge has been solved for a variety of cases for LPV identi�cation using

local approaches. The authors of [3] propose a grey-box model, where the parameters
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are identi�ed in a speci�c realisation such that the models are directly identi�ed in

the desired realisation, and the parameters therefore directly develop continuously.

Here, a desired number of state-space parameters will be parameter-varying. The

authors in [72] propose to transform locally identi�ed models to internally balanced

realisations. These realisations can differ by sign changes in the parameters which

requires many manual changes of gains in the local models. The SMILE technique

[69, 73] for LPV modelling uses state-space transformations of the local systems
~G i using transformation matrices T i to obtain the transformed systemsG i . The

transformation matrix T i for system i is calculated from the observability matrices

Oi of ~G i (or alternatively controllability matrices) to obtain T i = O� 1
1 Oi . Here, the

reference model ~G 1 is the one which maximises the observability (or controllability).

This approach requires numerically well-conditioned plants to ensure invertibility

of T i . This is not the case for the control design example in Section G.3 hence this

method is not applicable.

G.2.2 Gain-Scheduled Control Using State-Space Interpolation

We propose to use the state-space interpolation technique for gain-scheduled

control. A set of local linear controllers is designed for a set of scheduling parameters

using H 2-techniques. Our approach for obtaining the suitable state-space repre-

sentation is to directly set up the generalised plant in a speci�c LPV state-space

representation and then design the controllers.

The technique is summarised as follows:

� Set up the generalised plantP(q; t) and ensure that the state-space parameters

of P develops continuously in the scheduling parameters.

� For a set of i 2 f 1; :::; I g scheduling parametersq i 2 f q1; :::; qI g, synthesise

local LTI controllers K i (t) using H 2 synthesis.

� Use state-space interpolation to obtainK (q; t)

� Investigate closed-loop stability

For the interpolation of the state-space parameters, standard regression tools

such as linear least squares �tting can be applied. The standard guidelines to avoid

over-parametrisation should be followed. We propose to take out a fraction of the

systems to validate, that the behaviour of the interpolated controller matches the one

of the local linear controllers in the interpolation regions.
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The proposed approach is very �exible since it is applicable for both continuous

and discrete time systems and the generalised plant can be cast to include multiple

control objectives. In some cases for discrete time systems, we experienced a high

parameter sensitivity in the sense that a small change error in the estimate of a

state-space parameter can have a high effect on the dynamics. In these cases, the

interpolated parameters appear to follow the desired values well, but the bode

diagrams of the interpolated controllers are signi�cantly different from the desired

ones. Further, the resulting interpolated controllers have an LPV form and can be

converted to discrete time using available methods from [100]. The gain-scheduling

proposed is limited to systems with slow parameter-variation. which can be quanti�ed

using the approach from [103]. As discussed in [102], the approach is limited to

an appropriate interpolation of the control weights. Instead of local H 2 controllers,

it is possible to useH 1 synthesised controllers, but they are often obtained in non-

coherent state-space realisations. It is then possible to transform the controllers to

observer form with state feedback as proposed in [102].

The gain-scheduled interpolation proposed is not guaranteed to provide con-

trollers whose parameters develop continuously, but this can easily be assessed from

the parameter-development of the local controllers.

The next section shows the example application of the proposed state-space

interpolation strategy for the design of a gain-scheduled control for a rotordynamical

system.

G.3 Interpolation-Based Control for Hydroactive Gas Bearings

This section presents the application of the proposed gain-scheduledH 2 control

design for a hydro-active gas bearing test rig. Technical details of the test rig can

be found in [31, 3]. Gas bearings are attractive for their low friction losses which

generally come at the cost of poor damping characteristics. The low damping

poses a challenge due to induced vibrations from the mass imbalance and from other

machinery. Active control of the gas injection can increase the damping, by controlling

the rotor position to avoid rotor-bearing rub and rejecting the mass imbalance. The

gas bearing dynamics is a function of two scheduling parametersq = [ q1; q2]T ,

which are the angular velocity q1 calculated from the encoder measurements and

the injection pressure q2. The fast dynamics of the gas bearing are in the scale of

milliseconds, whereas the scheduling parameters change on a time scale of seconds.

The rate of variation of the scheduling parameters is therefore negligible.
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The hydro-active gas bearing shown in Fig. G.1 supports a rotating shaft by

the injection of air through controllable injectors mounted in the bearing. The

lateral (horizontal and vertical) disc movement, denoted by y(t) = [ y1(t); y2(t)]T , is

measured with eddy current sensors. The disc equilibrium position is a function of

the scheduling parameter. The shaft and disc are actuated using two pairs of piezo-

actuators which are commanded by two position referencesu(t) = [ u1(t); u2(t)]T in

the interval � 5V and +5V. The gas bearing test rig is modelled with inputs being

the disturbance force from the mass imbalanced(t) = [ d1(t); d2(t)]T and the piezo

reference positionsu(t) = [ u1(t); u2(t)]T and outputs being the disc movementy (t).

The state-space representation is given by:

G(q; t) =

2

6
6
6
6
4

0 I 0 0 0

K m (q) D m (q) B m (q) B � 0

0 0 � V (q) 0 V (q)

I 0 0 0 0

3

7
7
7
7
5

; (G.5)

The model can be seen as a 2 dof coupled mass-spring-damper system. This

system is affected by mass imbalanced(t) and actuated through two indepen-

dent �rst order low-pass �lters. These �lters are denoted by h1(q; s) = v1 (q )
s+ v1 (q )

and h2(q; s) = v2 (q )
s+ v2 (q ) . and hence V (q) = diag(v1(q); v2(q)) . The mass, stiff-

ness, damping, and input gain of the mass-spring-damper system are denoted by

M ; K ; D ; B. The mass matrix is assumed identityM = I 2, and the stiffness equiv-

alent is then K m (q) = K (q)=M , likewise the damping equivalent and the input

gain are D m (q) = D (q)=M and B m (q) = B(q)=M . The mass imbalance gain is

B � = B � =M .

The parameter-dependent variables are denoted by� = [ � 1; :::; � m ; :::; � M ] and

include: the elements of K m ; D m ; B m and v1; v2 whose parameters are described

by 2nd order polynomial surfaces such that each state-space parameter has the

form � m (q) = � m 0 + � m; 1q1 + � m; 2q2 + � m; 3q2
1 + � m; 4q2

2 + � m; 5q1q2. The mass

imbalance is harmonic with the angular velocity of the shaft q1 and has the form

d(t) = k � q2
1 [cos(q1 � t); sin(q1 � t)]T , where k is a constant proportional to the

imbalance mass and the distance between the shaft centre of mass and geometrical

centre.

G.3.1 H 2 Control Design

The controllers to be designed must be able to reduce the mass imbalance re-

sponse, increase the damping, reject the noise and control the rotor position. These
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Figure G.1: The experimental controllable gas bearing setup. A disc is mounted on the �exible

shaft to preload the journal and displacement sensors measure the lateral movement of the

disc in the shown reference frame.

multiple requirements can be cast according to theH 2 control framework to allow

design of local LTI controllers.

� Mass imbalance response. To ensure mass imbalance attenuation, an angular

velocity-dependent speed �lter W p is included.

� Noise rejection. The noise is rejected by weighing control signals at high

frequency with the �lter W u .

� Rotor position control. The rotor-position control is obtained by integrating the

system's output weighted by a tuning parameterW i .

� Damping. The mass-spring-damper system contains two lightly-damped modes,

one dominant in the horizontal, and one in the vertical shaft direction. These

modes are damped by ensuring a suf�ciently high minimum weight W p.

The generalised plant is setup according to the mentioned description as shown in

Fig. G.2 with exogenous inputs being mass unbalancew ! 2 R 2� 1 and measurement

noise wn 2 R 2� 1 w = [ w ! ; wn ], and the two controllable inputs u. The mass
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imbalance is rejected using an approach inspired by [105]. An inverse notch �lter

W p is chosen:

W p(q1; t) = I 2wp(q1; t)

wp(q1; s) = � 0
s2 + 2 � 1q1s + q2

1 � 0

s2 + 2 � 2q1s + q2
1

(G.6)

To ensure the continuity, the �lter must be realised in a speci�c state-space represen-

tation chosen as:

wp(q1; t) =

2

6
4

0 1 0

� q2
1 � 2�q1 � 0

q2
1 � 0 � q2

1 2q1(� 1 � � ) � 0

3

7
5 (G.7)

The parameters are chosen� 1 = 0 :3, � = 0 :01, � 0 = 0 :5, � 0 = 0 :5.

The control effort is limited by the weight W u chosen as the following high-pass

�lter:

W u (s) = I 2wu (s); wu (s) =
s=Mb + ! b

s + ! bAb
; (G.8)

where the parameters are chosenAb = 10=11, 1=Mb = 165, and ! b = 2 � 11000 rad=s.

The measurement noise is rejected byW n , where a higher value results in less noise

sensitivity. Here it is chosenW n = 5 � 10� 4I 2. The integral action to allow tracking

of the rotor position is here obtained by augmenting the open loop system with

integrators G � = 1
s G whose output is included as an exogenous output weighted

by W i . The bandwidth of the tracking can be tuned using the weight W i . Here

the weight is chosen constantW i = I 2, and increasing the weight increases the

closed-loop control bandwidth. The controller to be applied to the system is then

K = 1
s K � , where K � is the synthesised controller.

The system has to operate in the intervalq1 2 [1; 6] krpm q2 2 [0:3; 0:7] MPa.

The number of local controllers should be suf�ciently large to have enough models

to use for the interpolation and some for validation [69]. Here, it is found that a grid

of 10� 10 equidistant values of the scheduling parameterq is suf�cient. All the bode

diagrams cannot be shown, but Fig. G.3 shows the Bode diagrams of the controller

K (s) =
h

K 11 (q 0 ;s) K 12 (q 0 ;s)
K 21 (q 0 ;s) K 22 (q 0 ;s)

i
(G.9)

designed for q0 = [5 :72krpm; 0:678MPa]. The diagonal gainsK 22(q0; s),K 11(q0; s)

are approximately 20dB higher than the off-diagonal gains. The controller has an

in�nite static gain due to the integral action and high gains are obtained near the

frequency of the mass imbalance to be rejected.
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Figure G.2: Generalised plant for H 2 control design

Figure G.3: Control gains K (q0) for q0 = [5 :72krpm; 0:678MPa].

Once the local controllers are designed, the next step is to design the gain-

scheduling. For the state-space interpolation, 66 of the local linear controllers

K i (t) =

"
A i B i

C i 0

#

, i 2 f 1; :::; 66g are used for interpolation to obtain the LPV

controller:

K (q; t) =

"
A (q) B (q)

C(q) 0

#

(G.10)

The parameter-dependency is modelled as annth order polynomial in q and the

polynomial order is determined from a cost function of the remaining 34 validation
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Figure G.4: Bode diagram of control gains K 11 (q; s) for varying q1 2 [1; 6] krpm with

q2 = 0 :39MPa. The gain of the interpolated controller K (q) resembles the bode diagrams of

both the local controllers used for the interpolation K d and the ones for validation K val .

controllers. Standard regression tools show that a2nd order polynomial in the

scheduling parameters describes the parameter-variation well without over-�tting.

The elements ofA (q); B (q) and C(q) then have the form � m (q) = � m 0 + � m; 1q1 +

� m; 2q2 + � m; 3q2
1 + � m; 4q2

2 + � m; 5q1q2. The interpolated controller is obtained as

described in Section G.2, and the remaining 34 local controllers are used to validate,

that the behaviour of the interpolated controller evaluated in the validation points

resembles behaviour of the local linear controllers as desired.

To validate that the interpolated controller's dynamics approximates the desired,

the bode diagrams of the local controllers used for obtaining the interpolated con-

troller have been compared with the bode diagrams of the interpolated controller and

the local controllers or validation. Fig. G.4 shows the controllers' gains for varying q1

with q2 = 0 :39MPa. The interpolated controller's gain follows closely the gains of the

local controllers used for design and the ones used for validation as desired.

Stability of the closed-loop system can be proven using a similar approach as done

in [121].

For comparison purpose, the gain scheduling control strategy based on Youla

parameterization from [52] is used.
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When the Youla parametrisation is used for gain-scheduling the approach is the

following [118]. For the system G it is desired to gain-schedule betweenj different

controllers K j . Choose one as the nominal controllerK . Assume there exists coprime

factorisations of the systemG = NM � 1 = ~M � 1 ~N and for the nominal controller

K = UV � 1 = ~V � 1 ~U satisfying the double Bezout equation
"

I 0

0 I

#

=

"
~V � ~U

� ~N ~M

# "
M U

N V

#

=

"
M U

N V

# "
~V � ~U

� ~N ~M

#

(G.11)

Then it is possible to switch from the nominal controller K to the controller K i is

performed using the Youla parameterQ i calculated as:

Q i = M � 1M i ( ~U i V � ~V i U) (G.12)

When switching between J multiple controllers, the parameter is calculated:

Q =
JX

j =1

� j Qj (G.13)

The parameters � j can be chosen using the approach described in [124]. For

operation e.g. in the centre between four design points K 1; K 2; K 3; K 4 we then

choose the weights to be� j = 1=4. The resulting controller is guaranteed to be stable

and is calculated as:

u = ( U + MQ )(V + NQ ) � 1y (G.14)

This summarises the design of the state-space interpolated and the Youla gain-

scheduled controllers.

G.4 Numerical Results

This section demonstrates the effectiveness of the state-space interpolated and

the Youla-scheduled controllers through numerical simulations. The capability for

mass imbalance rejection is analysed in the interpolation region using the designed

controllers.

Measurement noise, coming from an experimentally recorded signal is applied

during the simulation to show the noise rejection capabilities of the closed-loop

system.

We include the interesting results obtained in the interpolation regions. Many

simulations have been performed for a �ne grid of scheduling parameters. The
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system is simulated both in open loop and closed loop using the proposed state-

space interpolated and the Youla scheduled controllers. In the interpolation regions,

the controller generally operates between four locally designed controllers. The

included results are obtained for operation in the centre between four control design

points. From the responses in Fig. G.5, the mass imbalance rejection is evident

using both controllers, though the state-space interpolated controller is superior. The

horizontal and vertical responses are similar, thus only the horizontal is shown. Both

controllers reject the noise well with similar control effort for the rejection of the

mass imbalance. The proposed state-space interpolated controller rejects the mass

imbalance well though the scheduling parameter is not in the set used for design.

The controller scheduled with the Youla-parametrisation is less effective in rejecting

the mass imbalance. Similar results are obtained regardless of the chosen grid for

the scheduling parameter space.

The interpolated controller effectively rejects the mass imbalance with good

performance even in the interpolation region. This is because the state-space inter-

polation allows the notch frequencies be adequately interpolated in contrast the the

Youla-scheduled controller. This is demonstrated from an example in Fig. G.6, where

the controller is desired to operate at q1 = 5 :72 krpm, q2 = 0 :7 MPa. This is in the

centre between the two control design points q1;� = 5 :44 krpm and q1;� = 6 :00 krpm

for which controllers K � and K � were designed. Gain-scheduling using the Youla-

parametrisation from [118] results in the controller K (Q( � + � )=2), where Q is the

Q( � + � )=2 = ( Q� + Q� )=2, which has a signi�cantly reduced gain at the frequency of

rotation. The interpolated controller K (q) maintains the high gain in this interpola-

tion region. The gain of the Youla scheduled controller is very low at the frequency

of the angular velocity. The reduced gain stems from the180� phase shift near the

notch gains as shown in Fig. G.3.

Damping of the closed loop system can be analysed from the impulse response.

Here only the results using the state-space interpolated controller is included in

Fig. G.7, which shows the damping has effectively been increased.

G.5 Conclusions

The paper proposed a gain-scheduling approach using state-space interpolation

of local H 2 controllers. The method was shown to avoid the increase of state-space

order and preserve a high performance in the interpolation region for mass imbalance

rejection for hydroactive gas bearings.
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Figure G.5: Open and closed-loop response with measurement noise and mass imbalance for

q = [5 :72krpm; 0:678MPa] using the proposed state-space interpolated controllerK (q) and

the Youla-scheduled controllerK (Q).

It was demonstrated how a suitable choice of state-space representation allowed

synthesisingH 2 controllers whose parameters developed adequately in the scheduling

parameter to allow interpolation. The approach was applied for control of a gas

bearing to reject the time-varying mass imbalance, increase the damping, reject

measurement noise and allow control of the rotor-position. Numerical simulations

where mass imbalance and recorded measurement noise sequences were added

demonstrated the noise and mass imbalance rejection capabilities of the control

design.

The proposed state-space interpolated gain-scheduling control design was com-

pared against a controller scheduled on the Youla-parametrisation for rejecting mass

imbalance and measurement noise. The two controllers used similar efforts, but the
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Figure G.6: Bode diagrams for the controllers K � and K � , the state-space interpolated

controller K (q) and the Youla-scheduled controllerK (Q).

proposed state-space interpolated controller was shown superior for rejecting mass

imbalance in the interpolation region.
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Figure G.7: Open and closed-loop horizontal impulse response forq = [5 :72krpm0:678MPa]

using the proposed state-space interpolated controllerK (q).





Appendix H

Experimental Facilities
This appendix describes the controllable gas bearing setup.

The experimental setup considered throughout the project consists of arotor

supported in one end by a ball bearing, and in the other end by an active gasjournal

bearingas shown in Figure H.1.

The main machine components are the rotor with a �exible shaft (a), on which a

rigid disc is mounted (b). The rotor is supported in one end by a self aligning ball

bearing (c) and in the other end by the active gas bearing (d). The shaft rotation

is generated by the injection of pressurised air in the air turbine (e). The �exible

coupling (f) transfers the rotational energy from the turbine to the rotor while

reducing vibrations from the turbine. This laboratory test rig resembles a typical

industrial rotating machine. Major dimensions of the test rig are listed in Table H.1.

In the controllable gas bearing, four piezo-actuated injectors are mounted as

shown in Figure H.2 to push plastic pins. These pins control the control the injection

�ow of pressurised air. The pressurised air enters the bearing housing, where it

Figure H.1: The experimental controllable gas bearing setup.
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Table H.1: Dimension of the controllable gas bearing test rig

Property Value

Bearing diameter 40 mm

Bearing length 40 mm

Nominal clearance 25 � m

Injector ori�ce radius 1 mm

Shaft length 500 mm

Disc diameter 140 mm

Disc thickness 13 mm

Figure H.2: CAD drawing of the test rig: a) the test rig with the controllable gas bearing cut

in half. Major dimensions are included in millimetre [mm ]. b) zoom of a piezoactuator. The

piezo-electric stack pushes a pin, which controls the injector opening. c) zoom of the injector

pin and journal. Pressurised air is supplied at the location of the upper left arrow. It then

�ows past the injector and into the journal to generate a force on the rotor. The air can �ow

out by the sides of the journal (in and out of the paper). An increase in supply voltage to the

piezo-actuator expands it and reduces the �ow.



209

Table H.2: Sensors and actuators

Eddy-current position sensors TQ102 with a IQS603 signal conditioner

Piezo-actuators Physik Instrumente P-841.3B.

Encoder Agilen AEDB-9140

Data collection dSPACE DS1104 R&D controller board with CP1104

Ball bearing self aligning SKF 1200ETN9

Pressure transducer Danfoss AKS 32

generates a�uid �lm that can levitate the rotor. When a voltage is applied to a

piezo-actuator, it expands and pushes the plastic pin to reduce the �ow and thereby

the pushing force on the rotor. This actuation is opposite to active magnetic bearings

(AMBs) where the electromagnets can only pull the rotor.

The sensor, actuator and mechanical component details are listed in Table H.2.

The horizontal and vertical disc position is measured with eddy current sensors

(g). The measurement noise when sampling at5kHz is approximately � 1� m. A

pressure transducer is mounted to measure the pressure of the air injected in the

gas bearing. The pressure is measured before it is split to the four individual pipes

that supply the air to the gas bearing. A three channel optical incremental encoder is

mounted is mounted behind the ball bearing (c) and provides the angular position

of the rotor with a precision of 2000 counts per revolution. The angular velocity is

calculated as the time derivative of the angular position calculated using a backward

�nite difference approximation. The angular velocity estimate obtained with this

procedure is noisy, and it can be low-pass �ltered to reduce the noise.
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