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Fish stock assessment models often rely on size- or age-specific observations that are assumed to be statistically independent of each other. In reality,
these observations are not raw observations, but rather they are estimates from a catch-standardization model or similar summary statistics based
on observations from many fishing hauls and subsamples of the size and age composition of the data. Although aggregation mitigates the strong
intra-haul correlation between sizes/ages that is usually found in haul-by-haul data, violations of the independence assumption can have a large
impact on the results and specifically on reported confidence bounds. A state-space assessment model that allows for correlations between age
groups within years in the observation model for catches and surveys is presented and applied to data on several North Sea fish stocks using various
correlation structures. In all cases the independence assumption is rejected. Less fluctuating estimates of the fishing mortality is obtained due to a
reduced process error. The improved model does not suffer from correlated residuals unlike the independent model, and the variance of forecasts is
decreased.

Keywords: age-based correlation structure, correlated observations, data weighting, SAM, state-space model, stock assessment, template model
builder.

Introduction
Statistical analysis of catch data from commercial and scientific
fishing vessels for stock assessment requires assigning appropriate
relative weights to each data source, and the results may depend
heavily on these weights (Francis and Hilborn, 2011). The analysis
typically requires the optimization of a likelihood function, and
the appropriate data weighting is obtained asymptotically when
the likelihood function of the model is correctly specified, parti-
cularly it is important that any assumptions of independence are
valid.

Integrated assessment models (Maunder and Punt, 2013) allow
optimal weights to be estimated through the optimization of a joint
likelihood for all the observed data. Although formal methods exist
for validating that the likelihood corresponds to the way data are dis-
tributed, specifying an appropriate likelihood function for fisheries
data is inherently difficult (Francis, 2014). However, if the likelihood
is seriously misspecified, the output of the model and hence the stock
assessment is essentially useless, so performing the model validation
to ensure that the likelihood is correctly specified is important.

The catch data typically contain two types of information: abun-
dance data (total numbers or biomass) and composition data
(length or age frequencies), which can have highly varying precision
due to differences in the sampling design between fleets, years, etc.
A common approach is to use a multinomial likelihood for the
composition data (e.g. Stock Synthesis (Methot and Wetzel,
2013)), but this distribution fails to account for the overdispersion
and correlations that are usually found in compositional catch data
(e.g. Pennington and Volstad, 1994; Hrafnkelsson and Stefánsson,
2004; Francis, 2014). These issues can be dealt with by pretending
that the observed frequencies were obtained from a reduced
sample, whose size is often referred to as the effective sample size
(Thorson, 2014). However, the effective sample sizes are often spe-
cified outside of the assessment model, and so it does not fit well with
the self-weighting integrated assessment approach. In addition, the
correlation structure found in real data does typically not match the
implied negative correlations of the multinomial model (Francis,
2014). Hence, the challenge remains to find a suitable distribution
that describes the variation in catch data. Francis (2014) suggested
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the logistic-normal distribution to replace the multinomial distri-
bution for composition data. An alternative, which we will consider
in this paper, is to use a lognormal likelihood for the catch-at-age
data, i.e. the product of composition and abundance data rather
than fitting compositions and abundances separately. A disadvan-
tage of this approach is that information about actual sample sizes
in each haul are not utilized, since we are considering an aggregation
of all samples. On the other hand, the sample sizes are difficult to
utilize directly, because data are not well described by a simple dis-
tribution such as the multinomial, and often sample sizes are not
even readily available—only the catch-at-age data. In the situation
where the total catch weight is known with high precision but the
composition is more uncertain, separate abundance and compos-
ition likelihoods with different associated variances might be still
preferable. Nevertheless, a clear advantage of analysing catch-at-age
data using a lognormal likelihood is that both negative and positive
correlations of any magnitude are easily accounted for. When
applied in a state-space modelling framework, it also has the desir-
able properties (Francis, 2014) of being self-weighting (weights are
estimated within the model as variance parameters) and various
parsimonious correlation structures exist for this distribution.

The common approach is to ignore the problem of correlated
errors (Francis and Hilborn, 2011), although some authors have
addressed the issue (e.g. Myers and Cadigan, 1995; McDonald et al.,
2001; Berget al., 2014). However, such correlationsshouldbe expected
(Francis, 2014).

Berg et al. (2014) estimated the between-age correlations in
survey index catch-at-age estimates using bootstrap methodology
and haul-by-haul survey data and found a general pattern of increas-
ing positive correlations with age (Figure 1). These correlations were

subsequently treated as known input to a stock assessment
model and improved the results compared with assuming inde-
pendent survey catch-at-age. By utilizing the extra information in
haul-by-haul data, this method has the advantage of not introdu-
cing any additional parameters to estimate in the stock assessment
model, not imposing any particular structure on the correlation
structure, and finally that the correlation structure can change
between years. However, the bootstrap approach is fairly computa-
tionally expensive because the index standardization procedure has
to be repeated for each bootstrap sample and the requirement of
haul-by-haul data restricts its applicability. Another approach was
taken by Myers and Cadigan (1995), where the correlation structure
was estimated within the assessment model using catch-at-age only
rather than haul-by-haul data and using a simple correlation struc-
ture (compound symmetry) with only one additional parameter to
estimate. They found that survey data are usually positively corre-
lated among ages, and failing to account for this can greatly increase
bias and variance if the correlations are large. Here we will follow
the same approach as Myers and Cadigan (1995) of using a time-
constant parameterized correlation structure, but using a modern
state-space formulation of the assessment model and considering
several different parameterizations inspired by the empirical
correlation structures found by Berg et al. (2014).

Material and methods
The stock assessment model used here is an extension of the state-
space assessment model (SAM) by Nielsen and Berg (2014),
which is used as basis for management advice for several stocks
monitored by the International Council for the Exploration of the
Sea. State-space models present a general framework for analysing
dynamical systems, where the quantities of interest (the state) are
not observed directly, but rather through indirect measurements
with noise, which are related to the states via the observation equa-
tions. States are connected in time through the state (or system)
equations and are also subject to random perturbations known
as process noise. An important feature of state-space models is the
quantification of the random variability in both the observations
and the system equations. This is expressed through observation and
process variances, respectively, which can be estimated using
maximum likelihood techniques and give the appropriate weighting
to each data source in the estimation of the unobserved state.
The unobserved state vector consists of the log-transformed
numbers-at-age log N1, . . . , log NA and fishing mortalities logF1, . . . ,
logFA*. The oldest age groups may share fishing mortality, which is
indicated by using maximum index A* instead of A, which is the
oldest age group in the assessment. The state equations for log Ni are
as in Nielsen and Berg (2014):

log N1,y = log N1,y−1 + 1(R)y , (1)

log Na,y = log Na−1,y−1 − Fa−1,y−1 − Ma−1,y−1 + 1(S)a,y for 2 ≤ a , A,

(2)

log NA,y = log(elog NA−1,y−1−FA−1,y−1−MA−1,y−1 + elog NA,y−1−FA,y−1−MA,y−1 )

+ 1
(S)
A,y .

(3)

where Ma,y is the natural mortality at age a in year y, which is assumed to
be known a priori, and F is the total fishing mortality. Although more

Figure 1. The correlation matrix between ages for the survey index for
North Sea Autumn Spawning Herring in quarter 1 in 2005 (recreated
from Berg et al. (2014)). Each ellipse represents the level curve of a
bivariate normal distribution with the corresponding correlation.
Hence, the sign of a correlation correspond to the sign of the slope of
the major ellipse axis. Increasingly darker shading is used for increasingly
larger absolute correlations, while uncorrelated pairs of ages are
depicted as circles with no shading.
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elaborate functions can be used, a simple random walk model is chosen
for the recruitment process (eq. 1) as in Berg et al. (2014). The process
errors on log N are assumed to be independent normal with (at least)
separate variance parameters for recruitment and survival:
1(R) � N(0,s2

R) and 1(S) � N(0,s2
S).

The fishing mortality vector Fy = {F1,y, . . . , FA∗,y} is assumed to
follow a correlated random walk with an AR(1) correlation structure
as in Nielsen and Berg (2014):

log Fy = log Fy−1 + 1(F)y , (4)

where 1(F)y �N(0,S(F)). The covariance matrix S(F) is constructed
via the vector of process standard deviations sF and the correlation
matrix R (F ) as S(F) = diag(sF)R(F)diag(sF). The elements in R (F )

are defined as R(F)
a,ã = r|a−ã|, where 21 , r , 1, which is known

as AR(1) correlation structure.
When observations are assumed multivariate normal rather than

independent, which is where we depart from Nielsen and Berg
(2014), we obtain the following observation equations for total
catches C and survey indices I:

log Cy = log
Fy

Zy
(1 − e−Zy )Ny

( )
+ 1(C)y , (5)

log I(s)y = log Q(s)e−Zy (D(s)/365)Ny

( )
+ 1(I

(s) )
y , (6)

where 1(I
(s))

y �N(0,S(I(s))
y ) and 1(C)y �N(0,S(C)

y ) express the possible
covariances between age groups within years, Za,y ¼Ma,y + Fa,y is
the total mortality rate, D(s) is the number of days into the year
where the survey s is conducted, and Q(s)

a are catchability parameters.
Note that Q(s), D(s), and all quantities with year subscript but without
age subscript are vectors containing all age groups at once, and multi-
plication and division operations are elementwise. As with the fishing
mortalities, we choose to parameterize the observation covariance
matricesvia the vectorsofprocess standard deviations and correlation
matrices. However, to allow for a correlation structure that resembles
the ones found by Berg et al. (2014) (Figure 1), we consider the follow-
ing parameterization of the correlation matrix

Ra,ã = 0.5|da−dã| 1 ≤ a, ã ≤ Af , (7)

where Af is the number of age groups for fleet f, and d1 ¼ 0 and
d2 . . . dAf

are parameters to be estimated with the constraints that
da ≤ dã for all a , ã. Equation (7) corresponds to an AR(1) structure
on an irregular lattice [IRAR(1)], where the lattice is defined by the
d’s. If all neighbouring distances given by |da 2 da21| can be
assumed equal, then the regular AR(1) structure is obtained. For dis-
tances going to infinity, a correlation of zero is obtained between the
corresponding age groups, and the zero limit gives a correlation
of one. The constraints on the d’s are obtained by estimating
logDda = log(da − da−1) rather than the d’s themselves. This
parameterization can, with few model parameters, capture the
pattern of gradually increasing positive correlations with older age
groups seen in surveys (Berg et al., 2014) by having decreasing neigh-
bouring distances with age. The base constant of r ¼ 0.5 in the
IRAR(1)-structure is arbitrary, but to avoid over-parameterization
one must fix either one of the distance parameters or r.

Finally, we consider free unconstrained parameterization of
R (via its Cholesky factor L, such that R ¼ LLT), which has

Af(Af 2 1)/2 free parameters per fleet. The five following models
are investigated:

(i) All observations are independent (R ¼ I). No parameters are
related to correlation.

(ii) Regular lattice AR(1) observation correlation structure for all
fleets. One correlation parameter per fleet, although surveys
may share parameters.

(iii) Irregular lattice AR(1) observation correlation structure for all
fleets. Between 2 and Af 2 1 parameters per lattice, and lattice
parameters are allowed to be shared among fleets.

(iv) Unconstrained observation correlation structure for commer-
cial catches and irregular lattice AR(1) observation correlation
structure for all surveys.

(v) Unconstrained observation correlation structure for all fleets.
Af(Af 2 1)/2 parameters per fleet

Note that the models using AR(1) and IRAR(1) correlation structures
are allowed to share parameters both among and within fleets (the
latter only applicable for IRAR). These are chosen by performing
exploratory runs where no parameters are shared to identify para-
meters with similar estimates. Since all parameters interact, these
configurations may change between models for the same fleet, e.g.
the IRAR(1) structures for the surveys may differ between models
3 and 4. The chosen configurations are included in the
Supplementary material. The final model selection is carried out
using AICc (Hurvich and Tsai, 1989), which is a small-sample-size
bias-corrected version of AIC. Although the standard AICc is
derived for univariate Gaussian linear models, we use it anyway as
recommended by Burnham and Anderson (2002, p. 378), since we
do not know a more exact correction term. The consequences of
using the final model over Model 1 are illustrated by comparing
point estimates ofb = (log �F, log SSB) and, as a measure of forecast-
ing performance, the total variability of the corresponding
b-covariance matrices in the final data year and for a 3-year projec-
tion. The projection is obtained simply by running the model for 3
additional years without any data. Technically this is implemented
by adding a single observation of catches of the youngest age group
in the projection year. That observation is set to the same as the last
observed value. The sensitivity of this procedure was tested by doub-
ling the single observation of recruits, and it was confirmed that it had
negligible influence on the results.

The total variability of a covariance matrix is calculated as the sum
of conditional variances maximized over all permutations(Mustonen,
1997). For the stock status b this amounts to mvar(Sb) = max

{Var( log �F) + Var( log SSB| log �F),Var( log SSB) + Var( log �F| log SSB)}.
The conditional variances are computed as the squared diagonal ele-
ments of the Choleski decomposition of Sb. To ensure the stability
of the parameter estimation, wide bounds were put on the elements
of L and the correlation coefficient r of the F random walk.

Residuals
For state-space models, diagnostics should be based on the one-step
ahead (OSA) prediction errors, also known as recursive residuals
(Harvey, 1990). The OSA residual for an observation is calculated
by conditioning on previous data points (and fixed effect para-
meters). These residuals differ from those where one has condi-
tioned on all the data, which should have a mean of zero, but not
be serially independent unlike OSA residuals (Harvey, 1990). Let
Y1. . .YN be the combined vector of scalar observations sorted

1790 C. W. Berg and A. Nielsen
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by time, fleet, and age, then the residual ri associated with the ith
observation is given by

ri =
Yi − Ŷ i|i−1

sd(Yi|i−1)
, (8)

where Ŷi|i−1 = E(Yi|Yi−1,Y1) is the OSA prediction of the observa-
tion Yi given {Y1,. . .,Yi21}, and sd(Yi|i21) is the standard deviation of
this prediction (Harvey, 1990). Note that the residuals reported in
Nielsen and Berg (2014) and Berg et al. (2014) were of the second
kind due to computational convenience when using the AD
Model Builder software (Fournier et al., 2012), where the posterior
distributions of Yi|N are readily available, but the one-step condi-
tionals Yi|i21 are not. The model used here is implemented in
Template Model Builder (TMB, Kristensen et al. (2016)), which
has provision for calculating OSA residuals (see the TMB documen-
tation of the oneStepPredict function for further details). Also note
that the interpretation of the residuals depends on the ordering of
observations within a year, although they should be standard
normal distributed regardless of the ordering. A weak Gaussian
prior on the state vector in the first time-step is needed for the
OSA residual calculations to work in the very beginning of the

Figure 2. Estimated spawning-stock biomasses (left column) and average fishing mortalities herring, whiting, haddock, and turbot (from top to
bottom row). Light solid lines represent results from models assuming independent observations (Model 1), whereas black lines come from the
model with the best AICc (Model 4). The light dashed lines and shaded areas represent 95% marginal confidence intervals calculated from Model 1
and the best model, respectively. Vertical lines indicate the start of the projection period.

Table 1. Model selection criteria.

Stock Model Neg. log Lik No. par AICc

Herring 1 739.95 16 1512.56
2 685.98 19 1410.87
3 654.21 23 1355.77
4 586.68 65 1314.32
5 572.70 86 1337.06

Whiting 1 367.01 17 769.03
2 333.89 19 707.03
3 310.67 19 660.59
4 261.03 57 647.77
5 234.68 78 648.01

Haddock 1 490.35 17 1015.66
2 471.62 19 982.43
3 451.43 21 946.30
4 405.68 57 936.29
5 381.47 78 939.06

Turbot 1 1030.40 27 2116.80
2 985.41 30 2033.29
3 984.77 32 2036.36
4 925.79 76 2020.12
5 892.17 114 2051.53

“Neg. logLik” is the negative log-likelihood and “No. par” is the number of
parameters (excluding random effects). Best AICc values are shown in bold
face.

1791Accounting for correlated observations in an age-based state-space stock assessment model
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dataset, but if the variances are chosen sufficiently large this has no
bearing on the final results.

Case studies
The data used in this study consist of total catches and survey indices
by age for haddock, herring, turbot, and whiting in the North Sea.
These cases were chosen to facilitate comparison with the results
of Berg et al. (2014) (herring and whiting), and because the
numbers of age groups for these stocks are rather high (9, 10, 10,
and 9 for haddock, herring, turbot, and whiting, respectively),
such that one would expect to gain something from including
correlations between age groups. Data were obtained from ICES as-
sessment reports (ICES, 2014a,b), except survey indices for herring
and whiting, which were calculated using the methodology
described in Berg et al. (2014). The full source codes and also the

datasets are available online at www.stockassessment.org under the
names “Haddock-corrObs”, “Herring-corrObs”, “Turbot-corrObs”,
and “Whiting-corrObs”. The precise configuration of the observation
covariance structure for each case is included in Supplementary ma-
terial, while the additional assessment configurations, which are iden-
tical for all five models, can be found at www.stockassessment.org.

Simulation study
A small simulation study is performed to ensure correct implemen-
tation of the model and the ability to differentiate between datasets
simulated with independent and correlated observations using
AICc. The simulations are set up to resemble the North Sea
whiting case. The efficiency of the model to reconstruct the true
N’s and F’s is also cross-tabulated. This is quantified using root
mean squared errors (RMSE) between true and estimated values
of N and F. Details about the simulation study can be found the
online Supplementary materials.

Results
The simulation study showed that the model is able to reconstruct
the correct parameters and states from data. When data were truly
independent, Model 1 was correctly selected in all 20 cases by the
AICc criterion, and Model 5 was also correctly selected in 20 out
of 20 cases when observations was truly correlated. The correct
models were as expected the most effective at reconstructing the

Table 2. Change in process error parameters.

sF/s̃F sR/s̃R sS/s̃S r/r̃

Herring 0.77 0.90 0.51 1.01
Whiting 0.54 1.08 0.86 1.35
Haddock 0.65 1.12 0.63 1.00
Turbot 0.51 0.97 1.01 1.27

Estimates from Model 4 are divided by the corresponding estimate from
Model 1, hence s-ratios values less than one imply reduced process error in
Model 4. For r-ratios it is reversed—values greater than one imply reduced
variance.

Figure 2. Continued.
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true states. However, wrongly assuming that observations are inde-
pendent had worse consequences (22% RMSE increase) than esti-
mating correlations in the independent case (10% RMSE increase).

In all the case studies the combination of IRAR(1) covariances
for the surveys and unconstrained for the commercial catches
(Model 4) had the best AICc (Table 1) although the purely

Figure 3. Estimated observation correlation matrices for herring, whiting, haddock, and turbot (from the top to bottom). All estimates are from
the final models (Model 4). The columns represent from left to right: commercial catches, survey 1, and survey 2.
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unconstrained Model 5 is a close contender for whiting and
haddock. There is virtually no support for the independent Model
1 compared with any of the alternative models (DAICc . 20).

While the overall trends in F and SSB are similar between
models, there are important differences in the point estimates of
the stock status (�F, SSB) after the 3-year projection when changing
from Model 1 to the best model—most substantially for haddock
and turbot (Figures 2 and 5). The direction of change is both

towards higher abundance and lower fishing mortality (254%
SSB and +87% �F for haddock) and vice versa (+106% SSB and
220% �F for turbot).

The best models give smoother estimates of F compared with
Model 1 (Figure 2), which must be expected when some of the
observed covariation in the total catches are ascribed to the corre-
lated error term 1C

y rather than variability in the F-processes. This
shift of variance from process error to observation error is most
pronounced for whiting, where the best model is one where the
F-processes are essentially reduced to a multiplicative model, that
is they are completely correlated and there is effectively only one
F-process and a constant selectivity (constant proportions of total
F by age). This is in contrast to Model 1 for whiting, which
reports substantial changes in selectivity over time to match the
observed catches (Supplementary Figure S1). This effect is also
evident from Table 2, where all F-process standard deviations are
reduced when switching from Model 1 to Model 4. The survival
process errors also reduced in all cases except in the Turbot case,
where it is essentially the same. The recruitment process errors are
not affected much by changing to Model 4.

The estimated correlation structures from the final models are
illustrated in Figure 3, and for the surveys the pattern found is
very similar to the patterns found by Berg et al. (2014) (compare
the estimated survey correlations for herring in Figure 3 (top row,
middle) with Figure 1); the youngest age group is nearly uncorre-
lated with the rest while fairly strong positive correlations can be
found between the older age groups. This structure can be nicely
captured by the IRAR(1) structure and explains why Model 4 is
chosen over Model 5. For the commercial catches, on the other
hand, the estimated structure is more complex and consists of a
mixture of negative and positive correlations, which cannot be
captured by the IRAR(1) structure. Negative correlations are pre-
dominantly found among young age groups, whereas the strong
positive correlations are found among adult age groups, though
with a tendency to decrease among the very oldest age groups.

Neither the residuals for Model 1 nor for the best model are
without patterns, which indicate that further data and model scrutiny
would be in order; however, the latter appear to have fewer years
where all residuals have the same sign across ages (Supplementary
Figures S5–S12). This is also evident from Figure 4, where
an example (whiting, total catches) of the sample correlation of
one-step ahead residuals between ages are shown for Models 1
(panel A) and 4 (panel B). The residuals from Model 1 are clearly
not uncorrelated between ages as it is assumed in this model, and
although the model can somewhat compensate by adjusting N and
F, the patterns are similar to the estimated correlations in Model 4
(Figure 3). In contrast, the between-age sample correlations of the
residuals from Model 4 are close to zero as expected. The complete
set of sample correlation matrices of residuals for Model 1 and the
final models can be found in Supplementary material.

Forall stocks, the total uncertaintyon the stock status after a 3-year
projection (see Figure 5) is smaller when using the final model com-
pared with Model 1, while in the last data year this is reversed (except
for turbot). This indicates more precise predictions from the final
model, which describe the datawith less process noise, while relatively
more of the variation is described by the observation error compo-
nent compared with the independent observation model.

Discussion
The objective of this study was to extend the SAM assessment
model from assuming independent observations by age to allowing

Figure 4. Whiting total catches: sample correlation between age
groups of the one-step ahead residuals from Model 1 (A) and Model 4
(B). Note the resemblance between (A) and the estimated correlations
in Figure 3.
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correlations between ages with varying complexity of the correlation
structure: AR(1), IRAR(1), unconstrained, and mixtures. In all
cases, the assumption of independence was firmly rejected as was
the simple AR(1) correlation structure. The IRAR(1) structure
was sufficiently flexible to capture the correlation structure in the
surveys. This is in line with the results found in Berg et al. (2014),
who used haul-by-haul survey data and non-parametric methods
to estimate year-specific correlation structures. For the commercial
fleets, the IRAR(1) failed to account for the substantial negative
correlations found between younger age classes when the uncon-
strained correlation structure was used.

The earliest versions of SAM assumed independence between
ages in the F- and N-processes as well as in the observation equa-
tions. This is still a useful model, because it imposes very little struc-
ture on the processes involved, such that any observed patterns can
be used to formulate a more structured model with improved fore-
casting abilities. Nielsen and Berg (2014) improved on this model by
introducing an AR(1) correlation structure for the F-process, and
Berg et al. (2014) considered correlated observation errors for
the surveys, where the correlation structure was estimated with

non-parametric methods from haul-by-haul data, rather than
from aggregated catch-at-age data as in this study. Earlier work
(Myers and Cadigan, 1995) had already demonstrated that survey
data are not independent among ages for a given year. They used a
model that considered catches to be known without error and
had a simple correlation structure with equal correlation between
all age groups within a year (compound symmetry). This study
has confirmed that substantial correlations between ages must be
expected (Francis, 2014), not only for surveys, but also for the com-
mercial fleets, and that the assessment output may be seriously
affected by assumptions of independence. This occurred, for
example, in the turbot case where accounting for correlations led
to more than a doubling of the estimated spawning-stock biomass
in the projection year. In addition, simple correlation structures
such as AR(1) or compound symmetry were found to be inadequate.
Our simulation study showed that there is a small increase in
root-mean-squared error from estimating correlations when these
are truly zero, but ignoring the correlations when they are present
is more critical. A similar result was found by Myers and Cadigan
(1995).

Figure 5. 95% contour ellipses for the joint distribution of log�F and log(SSB) in the last data year (2014, dashed) and after a 3-year projection (2017,
solid) for herring (top left), whiting (top right), haddock (bottom left), and turbot (bottom right). Light lines represent results from models
assuming independent observations (Model 1), whereas black lines come from the model with the best AICc (Model 4). Note that the total
uncertainties (mvar) of the projection from the best models are smaller than those from Model 1 in all cases.
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We still have independent N-process errors (equations 1–3),
which is probably not optimal. Cadigan (2015) estimates in a
model where process error is defined as deviations from a constant
natural mortality (M) with autocorrelation in the time and age
directions. High correlations in the M-process are found for nor-
thern cod. Since the M-process is governed by the environment,
which is naturally autocorrelated in time and space, this is a
natural extension to consider, and may in fact explain some of the
same co-variation over ages that in this study is ascribed to the
observation error. On the other hand, it is most likely that correla-
tions exist in both observations as well as the F and survival
processes. Further studies should investigate the identifiability of a
model that include correlations in all three, and the consequences
of model misspecification in this respect.

We did not consider correlated observation errors in the
time direction; only correlations between ages were considered.
Correlations in time could arise naturally in surveys where different
survey vessels with different catchabilities are covering different
periods of time. However, when aggregated data are used, it is
unlikely that it is possible to estimate different unconstrained
covariances over many time-blocks due to the large number of
parameters required for each block. In addition, introducing corre-
lations across time will seriously affect the estimation speed, as this
breaks the sparseness of the Hessian matrix, which is heavily
exploited in TMB (Kristensen et al., 2016). Using haul-by-haul
data to increase sample size may be the only feasible way to model
such effects. While Berg et al. (2014) found that the correlation
patterns in the IBTS surveys are rather constant over time, our use
of a time-constant correlation structure should viewed be as an
approximation to facilitate analysis and may not be optimal in
case of large changes in fishing practices or sampling procedures.

While we considered correlation structures for age-structured
data, there is no reason why the same methodology cannot be used
with length-structured data as well, in fact, the independence as-
sumption is probably even more critical for length data, since
there are typically many more length groups than age groups. The
IRAR(1) structure of the correlation matrix that we propose here
might also be applicable for lengths, although the IRAR(1) param-
eterization cannot capture the gradual change from negative to posi-
tive correlations that was found for several fleets in this study.
Further work is needed to find a parsimonious parameterization
of the covariance matrices that fits the observed patterns. An
approach similar to that of Nielsen et al. (2014) where covariance
matrices are partitioned into parametric and unconstrained blocks
might be useful considering the amount of structure observed in
our estimated covariance matrices. Miller and Skalski (2006) also
found strong patterns in correlation matrices for length data, but
less so for age data.

This study has underlined previous findings that catch-at-age
data should not be considered independent, although this is still a
very common assumption. At least such assumptions should be
validated through inspection of residuals. While it may not always
be possible to estimate the fully unconstrained covariance matrices
for all fleets, it will most likely be possible to estimate one of the
simpler alternatives with fewer parameters.

The source code for the model is made publicly available and
since it does not require extra data, it can easily be applied to all
existing SAM assessments, or other models using the TMB software
(Kristensen et al., 2016). Given our results we expect that better
assessments with more robust forecast will result from this,
especially if the number of age or size groups is large.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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