Black silicon solar cells with black bus-bar strings

Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, I.; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Frausig, Jesper; Nordseth, Ørnulf; Hansen, Ole

Publication date:
2016

Document Version
Publisher’s PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Black silicon solar cells with black bus-bar strings

Rasmus Schmidt Davidsen*,a, Peter Torben Tangb, Io Mizushimab, Sune Thorsteinssonc, Peter Behrensдорff Poulsen,c, Jesper Frausigd, Ørnulf Nordsethe,e, Ole Hansena

*a Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), 2800-Lyngby, Denmark, bI PU, 2800-Lyngby, Denmark, cDepartment of Photonics Technical University of Denmark (DTU), 4000-Roskilde, Denmark, dGaia Solar A/S, 2650-Hvidovre, Denmark, eInstitute for Energy Technology (IFE), Norway

*rasda@nanotech.dtu.dk, Ørsted Plads building 345East, 2800 Lyngby, Denmark

Conclusion

We present black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels. Black silicon results in total, average reflectance below 0.5% in the wavelength range 300-1000 nm across a 156x156 mm² silicon wafer. Black bus-bar strings were realized by various inorganic methods e.g. oxidized copper resulting in reflectance below 3% in the entire visible wavelength range. The combination of these two technologies results in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells without compromising efficiency.