Black silicon solar cells with black bus-bar strings

Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Frausig, Jesper; Nordseth, Ørnulf; Hansen, Ole

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Black silicon solar cells with black bus-bar strings

Rasmus Schmidt Davidsen*, a, Peter Torben Tang b, Io Mizushima b, Sune Thorsteinsson c, Peter Behrensンドff Poulsen c, Jesper Frausig d, Ørnulf Nordseth e, Ole Hansen a

a Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), 2800-Lyngby, Denmark, b IPU, 2800-Lyngby, Denmark,

c Department of Photonics Technical University of Denmark (DTU), 4000-Roskilde, Denmark, d Gaia Solar A/S, 2650-Hvidovre, Denmark, e Institute for Energy Technology (IFE), Norway

*rasda@nanotech.dtu.dk, Ørsteds Plads building 345East, 2800 Lyngby, Denmark

** This work was supported by the Danish Energy Agency (Project No. ELEKTRA 30-05-0201)

** The authors declare no conflicts of interest.

** The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

** This manuscript was edited for English by Editclear (https://www.editclear.com).

** We present black silicon texturing and blackened bus-bar strings of CuO on Cu and NiZnS on solder, and with Cu, and Cu without (bare bus strings) black silicon creates all-black panels based on conventional, front-contacted Si solar cells.

** Nanostructures are fabricated by maskless reactive ion etching (RIE) using SF 6 and O 2 plasma.

** Reflectance, black bus-bar strings

Measured reflectance as function of wavelength of bus-bar strings without (bare Cu, and Cu with solder) and with NiCuCo, NiZnS, etched solder and CuO) black coatings.

** Reflectance, black Si

Measured total (diffuse + specular) reflectance of RIE-textured Si with SiN 3:H averaged over the wavelength range 300-1000 nm as function of the distance from the center of a 156x156 mm 2 CZ wafer.

** CuO + adhesive glue

Current-voltage (I-V) and power measurement of two 9-cell test panels based on 100x100 mm 2 p-type CZ screen-printed black Si solar cells interconnected with (left) glued CuO coated strings and (right) soldered etched bus-bar strings.

** I-V Results

Current (I) and voltage (V) measurements for solar panels.

** Etched string + soldering

Current (I) and voltage (V) measurements for solar panels.

** Industrial Application:

Inorganic, blackened bus-bar strings proposed for interconnection.

** All-black panels from conventional, front-contacted Si solar cells

** Conclusion

We present black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels. Black silicon results in total, average reflectance below 0.5% in the wavelength range 300-1000 nm across a 156x156 mm 2 silicon wafer. Black bus-bar strings were realized by various inorganic methods e.g. oxidized copper resulting in reflectance below 3% in the entire visible wavelength range. The combination of these two technologies results in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells without compromising efficiency.