Black silicon solar cells with black bus-bar strings

Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Frausig, Jesper; Nordseth, Ørnulf; Hansen, Ole

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Black silicon solar cells with black bus-bar strings

Rasmus Schmidt Davidsen*,a, Peter Torben Tangb, Io Mizushimab, Sune Thorsteinssonc, Peter Behrens-dorff Poulsenç, Jesper Frausidget, Ørnluf Nordsethe, Ole Hansena

*Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), 2800-Lyngby, Denmark, IPU, 2800-Lyngby, Denmark, Department of Photonics Technical University of Denmark (DTU), 4000-Roskilde, Denmark, Gaia Solar A/S, 2650-Hvidovre, Denmark, Institute for Energy Technology (IFE), Norway

rasda@nanotech.dtu.dk, Ørsteds Plads building 345East, 2800 Lyngby, Denmark

Concept

Black bus-bar strings are realized by four different wet-chemical, inorganic surface treatments:
- CuO on Cu without solder
- Etched solder on Cu
- NiZnS on solder
- NiCuCo on solder

Reflectance, black bus-bar strings

Measured reflectance as function of wavelength of bus-bar strings without (bare Cu, and Cu with solder) and with (NiCuCo, NiZnS, etched solder and CuO) black coatings.

First test panel

Photograph of a 4-cell panel based on screen-printed black Si solar cells and interconnected with black CuO-coated bus-bar strings.

Reflectance, black Si

Measured total (diffuse + specular) reflectance of RIE-textured Si with SiN₃:H averaged over the wavelength range 300-1000 nm as function of the distance from the center of a 156x156 mm² CZ wafer.

Current-voltage (I-V) Results

Current-voltage (I-V) and power measurement of two 9-cell test panels based on 100x100 mm² p-type CZ screen-printed black Si solar cells interconnected with (left) glued CuO coated strings and (right) soldered etched bus-bar strings.

Etched string + soldering

Industrial Application:

Inorganic, blackened bus-bar strings proposed for interconnection

All-black panels from conventional, front-contacted Si solar cells

Conclusion

We present black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels. Black silicon results in total, average reflectance below 0.5% in the wavelength range 300-1000 nm across a 156x156 mm² silicon wafer. Black bus-bar strings were realized by various inorganic methods e.g. oxidized copper resulting in reflectance below 3% in the entire visible wavelength range. The combination of these two technologies results in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells without compromising efficiency.