Low-sludge age EBPR process for resource recovery – microbial and biochemical process characterization

Valverde Pérez, Borja; Wágner, Dorottya Sarolta; Lóránt, Bálint; Gúlay, Arda; Radovici, Maria; Angelidaki, Irini; Smets, Barth F.; Plósz, Benedek G.

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Low-sludge age EBPR process for resource recovery – microbial and biochemical process characterization

Borja Valverde-Pérez*, Dorottya S. Wágner, Bálint Lóránt, Arda Gülay, Maria Radovici, Irini Angelidaki, Barth F. Smets, Benedek Gy. Plösz*

1. INTRODUCTION

Current research promotes resource recovery using different strategies:
- Energy recovery using A-stage systems [1]
- Phosphorus recovery using low-SRT EBPR systems [2,3]
- To minimize nitrification, thus producing ammonium rich medium for phototrophic organisms [2]
- Water reuse for “fertigation” [2,4]

2. OBJECTIVES

- To start-up a short-SRT EBPR system and describe process performance
- To define the microbial community, affecting the performance of the short-SRT EBPR system
- To quantify energy recovery

3. RESULTS

1. Process Performance:

- Nitrogen removal in EBPR effluent: from phase A to phase D
- Phosphate removal in EBPR effluent: from phase A to phase D

2. Microbial community:

- Order-level taxonomic classification of 16S rRNA amplicons at selected days of the reactor operation. Taxa abundance is expressed in percentage (left axis). Alpha-diversity at the order level measured as Shannon index (white dots, right axis).

3. Biomethane potential:

- Recalcitrant, assimilated into biomass

4. Highlights:

- EBPR effectively removed phosphorus at SRT=3 d and *Accumulibacter phosphatis* was the main PAO (based on qFISH)
- Bulking correlates with poor phosphate removal (highlighted in red, in Fig. 1)
 - High abundance of *Thiothrix* filamentous bacteria
 - Sulfate reduction during the anaerobic phase (about 30% of influent sulfate)
- Sulfate reducers outcompeted PAO by
 1. Competing for influent COD
 2. Inhibiting phosphorus release
- Phosphate removal restored by reducing the anaerobic phase length (highlighted in green in Fig. 1)
- Up to 40% of influent carbon is recovered as methane at SRT=3 d

ACKNOWLEDGEMENT

The research was financially supported by the Integrated Water Technology (InWaTech) project, a collaboration between the Technical University of Denmark (DTU) and the Korea Advanced Institute of Science and Technology (KAIST).

References: