A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

A Razak, Aliff Hisyam

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

Aliff H. A Razak
Danish Polymer Centre (DPC)
Main supervisor: Anne Ladegaard Skov
Co-supervisor: Peter Szabo

Annual Polymer Day 2015
Motivation

Principle of dielectric elastomer (DE) as an actuator:

Requirement of compliant electrodes: 1) Inherently soft 2) conductivity
Stereotypes of electrodes

1) A conductive material is generally non-stretchable.

2) A stretchable material is usually non-conductive.

Our goal: soft-conductive polymer
Conventional electrodes for DEs

1) Losse carbon black
 - Samuel Rosset (EPFL)
 - Helmut Schlaak (University of Darmstadt)

2) Carbon grease
 - Samuel Rosset (EPFL)

Alternative electrodes:
1) Ionic conductor (hydrogel)
2) Silver nanowires
3) Conductive rubber
PDMS3-PEG copolymer

1. Hydrosilylation reaction of PDMS-PEG copolymer:

\[
\begin{align*}
\text{PDMS3-PEG} & \quad \rightarrow \quad \text{Stiff} \\
\text{at } 60^\circ \text{C} \\
\end{align*}
\]

2. Conductivity (PDMS-PEG copolymers)\(^1\)

PDMS3-PEG \rightarrow \text{high conductivity (}10^{-8}\text{ S/cm)}

3. Linear viscoelasticity-LVE (PDMS-PEG copolymers)\(^1\)

\[\text{Storage modulus, } G'(\text{Pa})\]

\[\text{Loss modulus, } G''(\text{Pa})\]

Compliant electrodes | PDMS-PEG | MWCNTs | Dielectric properties | Rheology | Stress-strain

5 DTU Chemical Engineering, Technical University of Denmark 30 June 2016
Chain-extended PDMS3-PEG copolymer

1. To obtain a soft-conductive polymer → Chain extended PDMS-PEG copolymer

2. Crosslinked copolymer: Chain-extended PDMS-PEG copolymer + 15-functional vinyl crosslinker + 30 ppm Pt catalyst
Multi-walled carbon nanotubes (MWCNTs)

1. \(\downarrow\) conductivity (PDMS3-PEG) \(\rightarrow\) add conductive nanofillers (MWCNTs)

2. Obstacle \(\rightarrow\) MWCNTs entangle

![SEM image of pure MWCNTs showing entanglements.](image)

3. Dispersion methods:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation process by acid e.g. (\text{HNO}_3) & solution of (\text{H}_2\text{O}_2/\text{NH}_4\text{OH})</td>
<td>1) Probe sonicator 2) Ball milling</td>
</tr>
<tr>
<td>Drawback: intrinsic properties of MWCNTs are destroyed due to structural defects</td>
<td>Drawback: rupture MWCNTs into smaller lengths</td>
</tr>
</tbody>
</table>

4. Non-covalent physical treatment

![Mechanism of flocculation of CNTs via surfactant molecules.](image)

Multi-walled carbon nanotubes (MWCNTs)

- Dispersion of MWCNTs → Rastogi et al.¹, Geng et al.² and Goswami et al.³

1. Dispersion of MWCNTs using surfactants. J Colloid Interface Sci 328:421–428

3. Dielectric properties of ultraviolet cured poly(dimethyl siloxane) sub-percolative composites containing percolative amounts of multi-walled carbon nanotubes. RSC Adv 5:12792–12799

Stability versus time for a reference method (MWCNT/NMP/Triton X-100) dispersed by a mechanical shaker at 23 °C: a) Immediately b) 5 min c) 30 min d) 60 min.

Stability versus time for MWCNT/NMP/Triton X-100 dispersed by water-bath ultrasonication at 23 °C for 6 hours: a) Immediately b) 5 min c) 30 min d) 60 min.

Optical microscope image of this film containing MWCNTs (0.07 phr) in PDMS-PEG matrix.
Conductivity & permittivity

Fig. 1

Conductivity (S/cm) vs. Frequency (Hz)

- 0CNT Si3PEG_H25
- 1CNT Si3PEG_H25
- 2CNT Si3PEG_H25
- 3CNT Si3PEG_H25
- 4CNT Si3PEG_H25
- LR 3162

Retest with normal force = 10N
Modulus

![Graph showing storage modulus and modulus loss factor vs frequency for different samples.](image)

- **Storage modulus (Pa):**
 - 0CNT Si3PEG_H25
 - 1CNT Si3PEG_H25
 - 2CNT Si3PEG_H25
 - 3CNT Si3PEG_H25
 - 4CNT Si3PEG_H25
 - LR 3162

- **Modulus loss factor:**
 - Same samples as above

X-axis: Frequency (Hz)
Y-axis:
- Storage modulus (Pa)
- Modulus loss factor
Stress-strain plots

![Stress-strain plots diagram](image)

- 0CNT Si3PEG_H25
- 1CNT Si3PEG_H25
- 2CNT Si3PEG_H25
- 3CNT Si3PEG_H25
- 4CNT Si3PEG_H25
- LR 3162

Y = 0.23 MPa
Y = 0.47 MPa
Y = 0.92 MPa
Y = 0.70 MPa
Y = 0.26 MPa
Y = 1.17 MPa
Conclusion

• The cross-linked conductive PDMS-PEG copolymers were successfully prepared with addition of different MWCNT concentrations.
• The conductivity of the chain-extended elastomers increases nearly to 10^{-3} S/cm;
 - $< \text{LR3162} = 10^{-1} \text{ S/cm}$
• The mechanical properties of chain-extended PDMS-PEG copolymers with MWCNTs (< 3 phr) indicate soft networks with low modulus losses.
• Future work:
 - The conductivity can be improved by adding silver nanoparticles in the system if properly designed.
 - Measure the conductivity of samples in “stretch” mode.
Acknowledgement