A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

A Razak, Aliff Hisyam

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

Aliff H. A Razak
Danish Polymer Centre (DPC)
Main supervisor: Anne Ladegaard Skov
Co-supervisor: Peter Szabo

Annual Polymer Day 2015

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
Motivation

Principle of dielectric elastomer (DE) as an actuator:

Requirement of compliant electrodes: 1) Inherently soft 2) conductivity
Stereotypes of electrodes

1) A conductive material is generally non-stretchable.

2) A stretchable material is usually non-conductive.

Our goal: soft-conductive polymer
Conventional electrodes for DEs

1) **Losse carbon black**
 - Samuel Rosset (EPFL)
 - Helmut Schlaak (University of Darmstadt)

2) **Carbon grease**
 - Samuel Rosset (EPFL)

Alternative electrodes:
1) Ionic conductor (hydrogel)
2) Silver nanowires
3) Conductive rubber
PDMS3-PEG copolymer

1. Hydrosilylation reaction of PDMS-PEG copolymer:

\[
\begin{align*}
\text{PDMS3-PEG} & \rightarrow \text{Stiff} \\
\end{align*}
\]

2. Conductivity (PDMS-PEG copolymers)

PDMS3-PEG \(\rightarrow \) high conductivity (10\(^{-8}\) S/cm)

3. Linear viscoelasticity-LVE (PDMS-PEG copolymers)

PDMS3-PEG \(\rightarrow \) Stiff

Compliant electrodes PDMS-PEG MWCNTs Dielectric properties Rheology Stress-strain
Chain-extended PDMS3-PEG copolymer

1. To obtain a soft-conductive polymer → Chain extended PDMS-PEG copolymer

\[
\text{PDMS - PEG (vinyl terminated)} + \text{PDMS232 (hydride terminated)} \xrightarrow{23 \text{ deg. C}, \text{Pt}^2+} \text{(PDMS - PEG) - PDMS232 (hydride terminated)}
\]

2. Crosslinked copolymer:
Chain-extended PDMS-PEG copolymer + 15-functional vinyl crosslinker + 30 ppm Pt catalyst

\[\text{Mn} = 38 \text{ kg/mol}\]
Multi-walled carbon nanotubes (MWCNTs)

1. ↓ conductivity (PDMS3-PEG) → add conductive nanofillers (MWCNTs)
2. Obstacle → MWCNTs entangle

SEM image of pure MWCNTs showing entanglements.

3. Dispersion methods:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation process by acid e.g. HNO₃ & solution of H₂O₂/NH₄OH</td>
<td>1) Probe sonicator 2) Ball milling</td>
</tr>
<tr>
<td>Drawback: intrinsic properties of MWCNTs are destroyed due to structural defects</td>
<td>Drawback: rupture MWCNTs into smaller lengths</td>
</tr>
</tbody>
</table>

4. Non-covalent physical treatment

Mechanism of flocculation of CNTs via surfactant molecules.

30 June 2016
Multi-walled carbon nanotubes (MWCNTs)

- Dispersion of MWCNTs \rightarrow Rastogi et al.\(^1\), Geng et al.\(^2\) and Goswami et al.\(^3\)

1. Stability versus time for a reference method (MWCNT/NMP/Triton X-100) dispersed by a mechanical shaker at 23 °C: a) Immediately b) 5 min c) 30 min d) 60 min.

2. Stability versus time for MWCNT/NMP/Triton X-100 dispersed by water-bath ultrasonication at 23 °C for 6 hours: a) Immediately b) 5 min c) 30 min d) 60 min.

3. Optical microscope image of this film containing MWCNTs (0.07 phr) in PDMS-PEG matrix.

Conductivity & permittivity

![Graph showing conductivity and frequency for different samples with legends and data points.]

- **0CNT Si3PEG_H25**
- **1CNT Si3PEG_H25**
- **2CNT Si3PEG_H25**
- **3CNT Si3PEG_H25**
- **4CNT Si3PEG_H25**
- **LR 3162**

Conductivity (S/cm) vs. Frequency (Hz)
Modulus

![Graph showing storage modulus and modulus loss factor vs. frequency for different samples of Compliant electrodes with PDMS-PEG-MWCNTs. The graph includes data for 0CNT Si3PEG_H25, 1CNT Si3PEG_H25, 2CNT Si3PEG_H25, 3CNT Si3PEG_H25, 4CNT Si3PEG_H25, and LR 3162.]
Stress-strain plots

Stress (MPa) vs Strain (%)

- 0CNT Si3PEG_H25
- 1CNT Si3PEG_H25
- 2CNT Si3PEG_H25
- 3CNT Si3PEG_H25
- 4CNT Si3PEG_H25
- LR 3162

Y = 0.23 MPa
Y = 0.47 MPa
Y = 0.70 MPa
Y = 0.92 MPa
Y = 1.17 MPa
Y = 0.26 MPa
Conclusion

- The cross-linked conductive PDMS-PEG copolymers were successfully prepared with addition of different MWCNT concentrations.
- The conductivity of the chain-extended elastomers increases nearly to 10^{-3} S/cm;
 - $< \text{LR3162} = 10^{-1}$ S/cm
- The mechanical properties of chain-extended PDMS-PEG copolymers with MWCNTs (< 3 phr) indicate soft networks with low modulus losses.
- Future work:
 - The conductivity can be improved by adding silver nanoparticles in the system if properly designed.
 - Measure the conductivity of samples in “stretch” mode.
Acknowledgement