Enhancing storage permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends

A Razak, Aliff Hisyam

Publication date: 2015

Document Version
Peer reviewed version

Citation (APA):
Enhancing storage permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends

Nordic Polymer Days 2015
IDA Copenhagen

Aliff H. A Razak
Supervisors: Anne L. Skov & Peter Szabo
Danish Polymer Centre (DPC)

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
Background of dielectric elastomer (DE)

DE - changes size/shape (presence of electrical field)
- compliant capacitor (electrostatic stress > elastic stress)

DEs: silicones, acrylates, polyurethanes and thermoplastic elastomer copolymer.

Actuator
Herbert Shea – EPFL Switzerland

Generator
Roy Kornbluh et al - SRI International, USA

Sensor
Ben O’Brien – University of Auckland
DE as an actuator

[Diagram showing expansion and compression of a dielectric elastomer block copolymer]
DE as a generator

- High mechanical potential
- Low electrical potential

- Low mechanical potential
- High electrical potential

Deflation
DE as a sensor

Reference state

Dielectric elastomer → *Compliant electrodes*

Pressure mode

Stretch mode

Shear mode

Proximity mode

Touch mode

\[
C = \varepsilon_0 \varepsilon_r \frac{A}{t} + C_{parasitic}
\]

Proximity → *Touch*

Pressure, stretch & shear
Morphology in block copolymers

Multiblock copolymer

\[(AB)_n\]

Common morphologies of block copolymers

- Spheres
- Cylinders
- Gyroids
- Lamellar

Increasing volume fraction \(f_A\)

Domain spacings

PDMS versus PEG

Polydimethylsiloxane (PDMS)

- Low modulus
- Low conductivity
- Low permittivity (net dipole moment, $\mu = 0.6 - 0.9$ D)4

Polyethyleneglycol (PEG)

- High Permittivity (a dipole moment, $\mu = 3.91$ D)5
- High conductivity
- Not flexible

Experimental

Sample details for PDMS-PEG multiblock copolymers

<table>
<thead>
<tr>
<th>PDMS-PEG block copolymer</th>
<th>Number average molecular weight of H-PDMS ((M_{n,PDMS})) [g/mol]</th>
<th>Number of repeating units in PDMS ((m))</th>
<th>Theoretical number of repeating units in ((PDMS-PEG)_X) ((X))</th>
<th>Stoichiometric ratio ((r_1))</th>
<th>Volume fraction of PDMS ((f_A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDMS81-PEG</td>
<td>6000.00</td>
<td>81</td>
<td>5</td>
<td>1.21</td>
<td>0.94</td>
</tr>
<tr>
<td>PDMS14-PEG</td>
<td>1050.00</td>
<td>14</td>
<td>23</td>
<td>1.04</td>
<td>0.75</td>
</tr>
<tr>
<td>PDMS7-PEG</td>
<td>550.00</td>
<td>7</td>
<td>37</td>
<td>1.03</td>
<td>0.62</td>
</tr>
<tr>
<td>PDMS3-PEG</td>
<td>208.00</td>
<td>3</td>
<td>56</td>
<td>1.02</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Note: \(M_n\) of PEG in PDMS-PEG block copolymer is 250 g/mol
The blends and sample preparation

1. Synthesis PDMS-PEG prepolymer

2. 1) Crosslink PDMS-PEG block copolymer (BCP) with 9-functional (9-f) crosslinker
 2) Blend the block copolymer with commercial PDMS (MJK) and crosslink with 9-f crosslinker

3. 1) 1 mm film – rheology & permittivity
 2) 100 μm film – dielectric breakdown strength
Relative permittivity VS dielectric loss factor (BCP)

- Relative permittivity, ε'_r
- Dielectric loss factor, $\tan(\delta)$

Methodology

Results (block copolymer)

Results (binary polymer blends)

Conclusion
Conductivity and shear modulus (BCP)

- **Conductivity, σ (S/cm)**

- **Storage modulus, G' (Pa)**

- **Loss modulus, G'' (Pa)**
Relative permittivity VS Dielectric loss factor (MJK/PDMS7)

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Relative permittivity, ε'</th>
<th>Dielectric loss factor, $\tan(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>10^3</td>
<td>4</td>
<td>0.01</td>
</tr>
<tr>
<td>10^4</td>
<td>5</td>
<td>0.02</td>
</tr>
<tr>
<td>10^5</td>
<td>6</td>
<td>0.03</td>
</tr>
<tr>
<td>10^6</td>
<td>7</td>
<td>0.04</td>
</tr>
<tr>
<td>10^7</td>
<td>8</td>
<td>0.05</td>
</tr>
</tbody>
</table>

PDMS Elastomer (MJK)
5wt% MJK/PDMS7
10wt% MJK/PDMS7
15wt% MJK/PDMS7
20wt% MJK/PDMS7
PDMS7-PEG
Conductivity & shear modulus (MJK/PDMS7)

Conductivity (S/cm)

Frequency (Hz)

Storage modulus, G' (Pa)

Loss modulus, G'' (Pa)

PDMS Elastomer (MJK)

$5\text{wt}\%$ MJK/PDMS7

$10\text{wt}\%$ MJK/PDMS7

$15\text{wt}\%$ MJK/PDMS7

$20\text{wt}\%$ MJK/PDMS7

PDMS7-PEG
Dielectric breakdown (E_{BD}) strength (MJK/PDMS7)

<table>
<thead>
<tr>
<th>MJK/PDMS7</th>
<th>Dielectric breakdown E_{BD} (V/µm)</th>
<th>Weibull η-parameter</th>
<th>Weibull β-parameter</th>
<th>R^2 of linear fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJK</td>
<td>93 ± 7</td>
<td>98</td>
<td>17</td>
<td>0.92</td>
</tr>
<tr>
<td>5 wt%</td>
<td>103 ± 4</td>
<td>105</td>
<td>31</td>
<td>0.84</td>
</tr>
<tr>
<td>10 wt%</td>
<td>92 ± 3</td>
<td>94</td>
<td>31</td>
<td>0.93</td>
</tr>
<tr>
<td>15 wt%</td>
<td>93 ± 8</td>
<td>96</td>
<td>13</td>
<td>0.99</td>
</tr>
<tr>
<td>20 wt%</td>
<td>101 ± 5</td>
<td>103</td>
<td>25</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Figure of merit (F_{OM}) - actuator

<table>
<thead>
<tr>
<th>MJK/PDMS</th>
<th>Young's modulus, Y* (kPa)</th>
<th>Normalised F_{OM} (DEA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 wt% (MJK)</td>
<td>205</td>
<td>6.1</td>
</tr>
<tr>
<td>5 wt%</td>
<td>123</td>
<td>17.2</td>
</tr>
<tr>
<td>10 wt%</td>
<td>169</td>
<td>9.6</td>
</tr>
<tr>
<td>15 wt%</td>
<td>238</td>
<td>8.0</td>
</tr>
<tr>
<td>20 wt%</td>
<td>203</td>
<td>11.2</td>
</tr>
</tbody>
</table>

* Y = 3G’

\[F_{OM}(DEA) = \frac{3\varepsilon_r\varepsilon_0 E_{BD}^2}{Y} \]
Conclusion

• Incorporating conducting PDMS-PEG block copolymer with non-conducting PDMS elastomer:
 • Improve relative permittivity up to 60% with low loss permittivity and non-conducting.
 • Maintain low modulus (obtain soft elastomer).
 • Based on FOM, the actuation improves by 17-fold compared to reference material (Elastosil RT625).
Thank you & questions

DPP Group

Current members

Previous members