Entrained Flow Reactor Study of KCl Capture by Solid Additives

Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao; Jappe Frandsen, Flemming; Bøjer, M.; Glarborg, Peter

Publication date: 2016

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Entrained Flow Reactor Study of KCl Capture by Solid Additives
Guoliang Wang¹, Peter Arendt Jensen¹, Hao Wu¹, Flemming Jappe Frandsen¹, Martin Bejær², Peter Glarborg¹
¹Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
²DONG Energy, Nesa Alle 1, 2820 Gentofte, Denmark

Introduction – An option for abating deposition and corrosion caused by alkali species during biomass combustion is the introduction of additives into boilers for transforming harmful gaseous alkali compounds (e.g. KCl, KOH) into less corrosive ash species with a higher melting point. Kaolinite and coal fly ash have been proved to be very promising additives and have received extensive studies during the past decades. However, most previous studies were carried out in fixed-bed reactors where the reaction conditions are obviously different from that in suspension fired boilers. Detailed knowledge on the reaction between K-species and solid additives under suspension-fired conditions is still limited. In this study, a water slurry containing K-salt and solid additives was introduced into an entrained flow reactor (EFR) to study K-capture at suspension-fired conditions. A model will be developed based on experimental data and recommendations for optimal use of additives in full scale boilers will be provided.

Experimental setup

- Reactor length: 2 m
- Inner diameter: 79 mm
- Gas residence time: 0.8-0.9 s
- Maximum temp.: 1450 °C

Impact of temperature

- K-capture level of kaolin and coal ash does not change with increasing temperature (1100 - 1450 °C);
- The controlling mechanism of K-capture at suspension-fired conditions is different from that in fixed-bed reactor.

Impact of molar ratio of K/(Al+Si) in reactants

- K-conversion decreases with increasing molar ratio of K/(Al+Si) in reactants;
- Kaolin is more effective than coal fly ash for KCl-capturing;
- Finer coal fly ash captures K more effectively;
- K-conversion in full scale boilers is around 100% using coal fly ash, while in EFR it is lower probably due to relatively shorter residence time.

K-capture quantification

- Water-soluble K
- Water-insoluble K from K-capturing reaction
- Water-insoluble K brought in by additives

K-conversion fraction of KCl (%); the fraction of KCl transformed into water-insoluble K-species.

Conclusions

- A method for studying additive behaviors in an entrained flow reactor has been developed;
- KCl was effectively converted into water-insoluble K-aluminosilicate by kaolinite and coal ash;
- K-conversion increased when molar ratio of K/(Al+Si) in reactant decreased;
- K-capture level does not change obviously with increasing temperature (1100 - 1450 °C), which is different from that in fixed-bed reactor, indicating different controlling mechanism;

Ongoing and future work

- EFR experiments with different alkali species, like KOH, K₂CO₃, and K₂SO₄;
- Experiments with different coal fly ash to investigate the influence of ash properties;
- Experiments with mulite, quartz, metakaolinite to study the kinetics of K-capture;
- Developing a model based on experimental data for optimal utilization of solid additives in full-scale boilers;