Effects of fillers on the properties of liquid silicone rubbers (LSRs)

Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin; Skov, Anne Ladegaard

Publication date: 2014

Document Version
Peer reviewed version

Citation (APA):
Effects of Fillers Depend On

Particle Size
- >10μm: Degradants
- 1-10μm: Diluents
- 0.1-1μm: Semi-reinforcing
- 0.01-0.1μm: Reinforcing

Particle Surface Area
- Bigger is Better

Particle Shape
- Broader (and Longer) is Better
 - Platy
 - Isometric
 - Fiber
 - Acicular
 - Cluster

Particle Surface Activity
- More is Better
 - Poor contact
 - Good contact
 - Bonded
 - Matrix wetting
 - Matrix adhesion

Particle Size
- Smaller is Better

Particle Shape
- Broader (and Longer) is Better

Particle Surface Activity
- More is Better

Particle Surface Area
- Bigger is Better

L.Y. Yu, S. Vudayagiri, S. Zakaria, A.L. Skov*
Technical University of Denmark
al@kt.dtu.dk
SiO$_2$ reinforces the networks with no increase in permittivity ($\varepsilon_{r,\text{SiO}_2} \sim 3.9$).

The inhomogeneous compatibility of the unmodified multiwalled carbon nanotubes (MWCNTs) causes the risk of conductivity.

Micron-sized CaCu$_3$Ti$_4$O$_{12}$ \textbf{CCTO} ($\varepsilon_{r,\text{CCTO}} \sim 10000$) decreases the mechanical properties of the composites.
1.2.3 Effects of fillers on the properties of liquid silicone rubbers (LSRs)

L.Y. Yu, S. Vudayagiri, S. Zakaria, A.L. Skov*
Technical University of Denmark
al@kt.dtu.dk

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial supports from the InnovationsFonden and Danfoss Polypower A/S. Participation to this conference was partially supported by COST (European Cooperation in Science and Technology) in the framework of ESNAM (European Scientific Network for Artificial Muscles) - COST Action MP1003, which is also acknowledged.

<table>
<thead>
<tr>
<th></th>
<th>Tear strength (N/mm)</th>
<th>Relative permittivity ε_r @ 0.1Hz</th>
<th>Young’s modulus Y (MPa)</th>
<th>Breakdown strength (V/μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSR</td>
<td>6.6</td>
<td>2.8</td>
<td>0.8</td>
<td>130</td>
</tr>
<tr>
<td>LSR/TiO$_2$</td>
<td>20</td>
<td>5.5</td>
<td>1.0</td>
<td>150</td>
</tr>
</tbody>
</table>

Nano-sized: 25-250nm
Spherical particle

Rutile ε_r: 114-180
Hydrophobic: modified polysiloxane

TiO$_2$ Rutile
ε$_r$: 114-180

Nano-sized: 25-250nm
Spherical particle

TiO$_2$ Rutile
ε$_r$: 114-180

Hydrophobic: modified polysiloxane