FumR of Aspergillus niger is involved in production of fumonisin and secreted proteins

Aerts, David; Haeur, E.; Aerntshorts, M.; Teertstra, W.R.; Phippen, Christopher; Nielsen, Kristian Fog; Ram, Arthur F. J.; Frisvad, Jens Christian; Wosten, H.

Published in:
Book of abstracts from the 13th European Conference on Fungal Genetics

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Tuesday 5th April
14:00 - 16:00

AERTS David (1), HAEUR E (1), AERNTSHORTS M (2), TEERTSTRA WR (1),
PHIPPN C (3), NIELSEN KF (3), RAM AFJ (2), FRISVAD JC (3), WOSTEN HAB (1)
(1) Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
(2) Department of Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University,
Leiden, The Netherlands
(3) Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark

FumR of *Aspergillus niger* is involved in production of fumonisin and secreted proteins

The sporulation pathway of *Aspergillus niger* represses protein secretion. Colonies of this filamentous
fungus secrete proteins throughout the colony except for the sporulating zone. Inactivation of the
sporulation gene flbA results in colonies that are unable to reproduce asexually and that secrete
proteins throughout the mycelium. In addition, the ∆flbA strain mutant strain shows cell lysis and has
thinner cell walls. This pleiotropic phenotype is associated with differential expression of 38
transcription factor genes. Here, one of these regulatory genes, fumR, was inactivated. Whole
genome expression analysis revealed that 8 out of 63 downregulated genes in ∆fumR are implicated
in amino acid metabolism. In addition, 11 out of 15 genes of the fumonisin biosynthetic gene cluster
were strongly downregulated in ∆fumR. This was accompanied by absence of fumonisin production
in the deletion strain. When grown dispersed in liquid shaken cultures with xylose as a carbon source,
the fumR deletion mutant showed reduced protein secretion and a different secretion profile when
compared to the wild-type. This phenotype was complemented by adding amino acids to the medium.
Taken together, it is concluded that fumR is involved in fumonisin production and amino acid
production, the latter facilitating protein secretion. As such, fumR is an interesting lead for improving
*A. niger* as a cell factory.