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ABSTRACT

To provide the census of the sources contributing to the X-ray background peak above 10 keV, Nuclear
Spectroscopic Telescope Array (NuSTAR) is performing extragalactic surveys using a three-tier “wedding cake”

approach. We present the NuSTAR survey of the COSMOS field, the medium sensitivity, and medium area tier,
covering 1.7 deg2 and overlapping with both Chandra and XMM-Newton data. This survey consists of 121
observations for a total exposure of ∼3 Ms. To fully exploit these data, we developed a new detection strategy,
carefully tested through extensive simulations. The survey sensitivity at 20% completeness is 5.9, 2.9, and 6.4 ×
10−14 erg cm s2 1- - in the 3–24, 3–8, and 8–24 keV bands, respectively. By combining detections in 3 bands, we
have a sample of 91 NuSTAR sources with 1042

–1045.5 erg s 1- luminosities and redshift z = 0.04–2.5. Thirty-two
sources are detected in the 8–24 keV band with fluxes ∼100 times fainter than sources detected by Swift-BAT. Of
the 91 detections, all but 4 are associated with a Chandra and/or XMM-Newton point-like counterpart. One source
is associated with an extended lower energy X-ray source. We present the X-ray (hardness ratio and luminosity)
and optical-to-X-ray properties. The observed fraction of candidate Compton-thick active galactic nuclei measured
from the hardness ratio is between 13%–20%. We discuss the spectral properties of NuSTAR J100259+0220.6
(ID 330) at z = 0.044, with the highest hardness ratio in the entire sample. The measured column density exceeds
1024 cm−2, implying the source is Compton-thick. This source was not previously recognized as such without the
>10 keV data.

Key words: galaxies: nuclei – X-rays: general

Supporting material: machine-readable table

1. INTRODUCTION

For more than 30 years, X-ray surveys have provided a unique
and powerful tool to find and study accreting supermassive black
holes (SMBHs) in the distant universe (Fabian & Barcons 1992;
Brandt & Hasinger 2005; Alexander & Hickox 2012; Brandt &
Alexander 2015). In the past decade alone, dozens of surveys
with XMM-Newton and Chandra have covered a wide range in
area and X-ray flux, corresponding to a similarly wide range in

luminosity and redshift. The luminosity function of active
galactic nuclei (AGNs) has thus been sampled over three
decades or more in X-ray luminosity and up to redshifts z = 5
(Ueda et al. 2003, 2014; La Franca et al. 2005; Hasinger 2008;
Brusa et al. 2009; Civano et al. 2011; Vito et al. 2013;
Kalfountzou et al. 2014), defining the evolution of unobscured
(NH < 1022 cm−2) and obscured (NH > 1022 cm−2) sources and
reaching fainter luminosities than optical surveys.
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However, these surveys are biased against the discovery of
heavily obscured accreting SMBHs enshrouded by gas with
column densities greater than the inverse of the Thompson
scattering cross-section, called Compton-thick AGNs (hereafter
CT; NH > 1024 cm−2), at z < 1.5, as Chandra and XMM-
Newton are most sensitive in the 0.5–8 keV energy range,
where the emitted X-rays can be absorbed by high column
densities of intervening matter. Non-focusing hard X-ray
satellites have performed population studies, such as those
obtained using data from RXTE (Sazonov & Revnivtsev 2004),
INTEGRAL-IBIS (Beckmann et al. 2006), and Swift-BAT
(Tueller et al. 2008; Burlon et al. 2011). However, other than
highly beamed blazars, sources found in the previous studies
were generally of moderate luminosities and restricted to the
nearby (z < 0.2) universe. The importance of this population is
recognized but the fraction of CT AGNs is still currently highly
uncertain, as is their contribution to the X-ray background
emission at its 20–40 keV peak. Three unequivocal signatures
of heavy obscuration in the X-rays are: (i) the presence of
absorption at low X-ray energies (E < 10 keV), (ii) high
equivalent width iron lines and edges (E = 6–7 keV), and/or
(iii) a Compton-scattered reprocessing hump in the E > 10 keV
X-ray spectrum. Therefore, observations at energies above
10 keV are essential to fully understand the intrinsic emission
of the most heavily obscured AGNs. The relative strength of
the various components and the effect of Compton scattering
on the absorbing column density are best studied at E > 10 keV.

The Nuclear Spectroscopic Telescope Array (NuSTAR,
Harrison et al. 2013) with its novel focusing capabilities at
>10 keV and angular resolution of 18� (FWHM) provides a
unique opportunity to detect and study obscured and CT AGNs
out to moderate redshifts (z ∼ 1). NuSTAR probes down to a
limiting flux more than two orders of magnitude fainter than
possible with previous (non-focusing) hard X-ray surveys by
Swift-BAT and INTEGRAL-IBIS (Krivonos et al. 2010; Burlon
et al. 2011; Baumgartner et al. 2013).

A “wedding cake” strategy for the NuSTAR surveys consist-
ing of different areas observed and different depths was
designed to unveil this heavily obscured population and to
determine the distribution of absorbing column densities in the
AGN population as a whole (F. A. Harrison et al. 2015, in
preparation). Three major components of this wedding cake
include: deep (3 × 10−14 erg cm s2 1- - in the 3–24 keV band)
surveys over the Extended Chandra Deep Field South
(ECDFS; Mullaney et al. 2015; ∼0.33 deg2) and the region
of deepest Chandra exposure (Goulding et al. 2012) in the
Groth Strip (J. Aird et al. 2015, in preparation; ∼0.25 deg2); a
medium depth survey over the Cosmic Evolution Survey field
(COSMOS; Scoville et al. 2007) reported here; and a large area
survey (currently covering ∼6 deg2) including all serendipitous
sources discovered in non-survey fields (Alexander et al. 2013;
G. B. Lansbury et al. 2015, in preparation). In the ECDFS
survey, NuSTAR was able to classify source J033202−274650
(Del Moro et al. 2014) as highly obscured and place better
constraints on the obscuring column and spectral shape. This
object was not clearly identified as having a high, but
Compton-thin, column density (5.6 × 1023 cm−2) using only
Chandra or XMM-Newton data. Also, NuSTAR observations of
SDSS selected candidate CT quasars robustly measured their
obscuration level (Lansbury et al. 2015).

Here we present the ∼1.7 deg2 NuSTAR COSMOS survey,
which overlaps the region covered by XMM-Newton and

Chandra at lower energies (XMM-COSMOS: Hasinger
et al. 2007; Brusa et al. 2010; C-COSMOS: Elvis et al. 2009;
Civano et al. 2012; Chandra COSMOS Legacy, F. Civano et al.
2015, in preparation; S. Marchesi et al. 2015, in preparation). In
this paper, we describe the NuSTAR observations (Section 2),
data processing (Section 3), extensive simulations carried to
assess the reliability of detected sources and the sensitivity of
the survey (Section 4), data analysis, and properties of the
detected sources (Section 5). In section Section 6, we present in
detail the spectral analysis of source ID 330 at z = 0.044, with
the most extreme hardness ratio in the whole sample. Source ID
330 is a new CT AGN in the local universe. In the Appendix, we
present the point source catalog.

We assume a cosmology with H0 = 71 km s−1 Mpc−1,
� M = 0.3, and � � = 0.7.

2. OBSERVATIONS

The NuSTAR survey of the COSMOS field consists of 121
overlapping fields with each tile (12� × 12�) shifted by half a
field, forming an 11 × 11 grid. This strategy of half shifts, used
also in C-COSMOS and in the Chandra COSMOS Legacy
survey, results in a relatively uniform exposure over the
observed area. The NuSTAR COSMOS survey was performed
during three different periods in 2013 and 2014: the first 34
observations were taken between the end of 2012 December
and the end of 2013 January, the next 30 observations were
taken during the months of 2013 April and May, and the last 57
observations were taken between 2013 December and 2014
February. Observation details, including pointing coordinates,
roll angles, observing dates and exposure times for both focal
plane modules A (FPMA) and B (FPMB; Harrison et al. 2013)
are reported in Table 5.26

The timing of the observations allowed the roll angle to be
kept nearly constant, differing by a maximum of 30 deg (and
flipped by 180 deg). The exposure time of each pointing ranges
between 20 and 30 ks, with three fields split into multiple
observations due to satellite scheduling constraints. The total
exposure allocated so far for the COSMOS field is ∼3.12 Ms.
This tiling strategy produces a deeper inner area of ∼1.2 deg2

with an average (vignetting corrected) exposure time of
∼50–60 ks for each module and an outer frame with half of
the inner exposure covering ∼0.5 deg2 (see Figure 1).

3. DATA PROCESSING

3.1. Data Reduction

We performed the NuSTAR data reduction using HEASoft
v.6.15.1 and the NuSTAR Data Analysis Software NuSTAR-
DAS v.1.3.1 with CALDB v.20131223 (Perri et al. 2013).27

We processed level 1 products by running nupipeline, a
NuSTARDAS module which includes all the necessary data
reduction steps to obtain a calibrated and cleaned event file
ready for scientific analysis. A further bad pixel file was also
used in the filtering to flag outer edge pixels with high noise.

Light curves were produced using nuproducts in the low‐

energy range (3.5–9.5 keV), with a 500 s interval binning.
Twenty-one observations (fields 13, 20, 21, 55 , 56, 57, 58, 70,
83, 87, 88, 89, 91, 92, 96, 97, 110, 111, 116, 119, 120) were

26 The exposure times reported here are those already cleaned and corrected
for high background events (see Section 3.1).
27 http://heasarc.gsfc.nasa.gov/docs/nustar/analysis/nustar_swguide.pdf
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affected by abnormally high background radiation due to solar
flares. Intervals with count rates >0.1 cnt s−1 were cleaned by
reprocessing the 21 observations, applying good time interval
files created using standard HEASoft tools. The resulting loss
of exposure time corresponds to 2%–9% of the exposure in
these twenty-one observations, for a total of 21 ks. This is less
than 1% of the total NuSTAR COSMOS exposure.

3.2. Exposure Map Production

Exposure maps were created using nuexpomap, which
computes the net exposure time for each sky pixel, for a given
observation. In order to reduce the calculation time, we binned
the maps using a bin size of 5 pixels. The exposure map
accounts for bad and hot pixels, detector gaps, attitude
variations and mast movements. Ideally, given the strong
energy dependence of the effective area, exposure maps at each
energy should be created and then summed together using
weights based on the effective area at each energy. This is more
complicated if the typical source spectrum is not constant with
energy. This procedure is computationally expensive and it can
be simplified by convolving the instrument response with a
specific model for the incident spectrum. The energies at which
the exposure maps were created were computed by weighting
the effective area with a power law spectrum with � = 1.8 (see
Section 4.1 for spectral choice motivation). The mean,
spectrally weighted energies are 5.42 keV for the 3–8 keV
band, 13.02 keV for the 8–24 keV band, and 9.88 keV for the
3–24 keV band.

The 121 vignetting corrected exposure maps were mosaicked
using the HEASoft XIMAGE tool. The effective exposure
time, corrected for vignetting, is plotted versus area in Figure 1.
A small difference of <5% in exposure per area is seen between
FPMA and FPMB, with FPMA being more sensitive.

3.3. Background Map Production

As described in detail in Wik et al. (2014), the
NuSTAR observatory has several independent background
components which vary spatially across the field of view.
The background spectrum can be decomposed into five
components of fixed spectral shape (excluding instrumental
line strengths) with individual normalizations that are position
dependent. Below 20 keV, the background is dominated by
stray light from unblocked sky emission leaking through the
aperture stop. This component is by nature spatially non-
uniform. Below 5 keV, there is a spatially uniform component
across all detectors, due to emission from unresolved X-ray
sources focused by the optics (denoted fCXB for focused
Cosmic X-ray Background). A further low-energy background
component is related to solar photons reflecting off the back of
the aperture stop, producing a time-variable signal related to
whether or not the instrument is in sunlight. Above 20 keV, the
background is dominated by the detector emission lines
produced by interactions between the spacecraft/detectors and
the radiation environment in orbit, as well as several
fluorescence lines.

We used nuskybgd (Wik et al. 2014) to produce accurate
background maps for each observations taking into account all
the components described above. Using this code, we extracted
spectra (and response matrices) in four circular regions,
covering each quadrant of the field of view (with radius of
2 �. 8) and avoiding the gaps between the detectors for both
FPMA and FPMB for each observation. The eight extracted
spectra were jointly fitted with XSPEC v.12.8.1 (Arnaud 1996)
to determine the normalization of all the above components in
each observation. Because the fCXB component is more than
10 times fainter than the aperture background component, we
first fit a fixed normalization to this component (using the
nominal value from HEAO-1 measured normalization,
Boldt 1987) and then we let it vary once the other components
were constrained. Given the overall small number of counts in
the background spectra (∼1000 counts), the Cash statistic
(Cash 1979) was used for the spectral fitting. Background
maps were then produced using the fitted normalizations.

To compare the generated background maps and the
background value measured in the data images, we extracted
the counts from the background maps to compare with the
counts extracted in the same regions from the observed data for
both FPMA and FPMB. We covered each field with 64 regions
of 45� radius. Figure 2 presents the normalized distribution of
relative differences between background and observed data
counts extracted in each region in each field (red: FPMA; blue:
FPMB). Given the absence of bright NuSTAR sources in the
COSMOS field, we find that removing detected sources when
computing the background maps does not significantly change
the overall background distribution. From Gaussian fitting
of the distributions of the difference between source and
background shown in Figure 2, we find centroids at
(Data Bgd) Bgd- = 0.0023 and 0.0047 and standard devia-
tions of 0.144 and 0.147 for FPMA and FPMB, respectively,
showing a remarkable agreement between the generated
background maps and the data.

3.4. Astrometric Offsets

Any errors in the astrometric solution for the different
exposures can introduce a loss of sensitivity due to the decrease

Figure 1. Survey area coverage as a function of the effective, i.e., vignetting-
corrected, exposure time for FPMA (red), FPMB (blue), and the sum of the
two (black) in three energy bands: 3–24 keV (solid line), 3–8 keV (short
dashed line), and 8–24 keV (long dashed line).
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of angular resolution when summing the observations into the
mosaic. We therefore tested whether significant astrometric
offsets are affecting our observations. The catalogs of detected
Chandra sources in COSMOS (Elvis et al. 2009, F. Civano
et al. 2015 submitted) was used as the reference for computing
astrometric offsets. However, given the lack of multiple
bright sources in individual observations required to perform
accurate alignments, we used a stacking technique applied to
FPMA and FPMB separately. At first, Chandra sources in each
individual NuSTAR observation were stacked (by removing
neighbors and keeping brighter sources) but the resulting
signal in most fields had insufficient signal-to-noise ratio
(S/N<1) to provide an accurate astrometric correction. We then
stacked Chandra sources in contemporaneous and contiguous
NuSTAR observations, i.e., during which the telescope did not
move to observe another target between one COSMOS field
and the next. This procedure assumes a stable alignment of the
observatory. The astrometric offsets measured for stacked
sources with high S/N (>3) were in the range 1� –7� ,
comparable to the NuSTAR pixel size and consistent with
expected uncertainties (see also Section 4.3). Therefore we
decided not to perform any astrometric corrections to our data.
No significant offsets were found between FPMA and FPMB.

3.5. Mosaic Creation

The 121 observations were merged using the HEASoft tool
XSELECT into three mosaics: FPMA, FMPB, and the summed
FPMA+B. Following Alexander et al. (2013), the FPMA,
FMPB, and FPMA+B event mosaics were filtered in energy
using the CIAO (Fruscione et al. 2006) tool dmcopy into three
bands, 3–8, 8–24, and 3–24 keV. The high energy limit of
24 keV for the analysis has been imposed by the presence of
relatively strong instrumental lines at 25–35 keV, whose
parametrization is uncertain which can lead to spurious high
residuals during the modeling of the background. Source

detection at energies above 35 keV is possible but is beyond the
scope of our paper, and will be the subject of a future work. In
order to achieve the deepest sensitivity, we performed detection
and analysis on the merged FPMA+B mosaic, as we are
confident of the alignment of the two detectors (Section 3.4).
The 3–8 and 8–24 keV band mosaics are shown in Figure 3
compared to the area covered by Chandra and XMM-
Newton on the same field. The NuSTAR COSMOS survey is
fully covered by both lower energy X-ray telescopes.

4. SIMULATIONS

Extensive simulations were performed in order to develop,
test and optimize the source detection methodology. Moreover,
the simulations were used to estimate the level of significance
of each detected source, to determine the level of completeness
of the source list as a function of source flux, the reliability of
sources as a function of source significance, and the detected
source position accuracy.

4.1. Generation of Simulated Data

To generate simulated maps, mock sources were assigned
fluxes drawn randomly from the number counts estimated
assuming the Treister et al. (2009) model in the 3–24, 3–8, and
8–24 keV bands, using an online number count Monte Carlo
calculator.28 Given that we are simulating the total population
and not a sub sample of sources, we can assume that the
number count model used in this work is consistent with other
models available in the literature as Gilli et al. (2007), Akylas
et al. (2012), and Ballantyne et al. (2011).

The minimum flux for the input catalog was
5 × 10−15 erg cm s2 1- - in the 3–24 keV band, which is a factor
of ∼10 below the expected NuSTAR COSMOS limit. Hence,
background fluctuations due to unresolved sources are
included in the simulations. Fluxes for the 3–8 and 8–24 keV
bands were computed using a power-law model with slope
� = 1.8, the typical value for AGNs in this energy range
(Burlon et al. 2011; Alexander et al. 2013), and Galactic
column density NH = 2.6 × 1020 cm−2 (Kalberla et al. 2005).
The counts-to-flux conversion factors (CF) adopted here,
computed using the response matrix and ancillary file
available in the adopted CALDB, are CF = 4.59, 3.22 and
6.64 × 10−11 erg cm counts2 1- - in the 3–24, 3–8 and 8–24 keV
bands, respectively.

These sources were randomly added to a background map
produced as described in Section 3.3, though without the fCXB
component included. The point-spread function (PSF) used to
add sources to the background map is taken from the
NuSTAR PSF map available in the CALDB. It changes as a
function if the off-axis angle (and azimuthal angle), and is the
sum of the PSFs for all the observations covering any certain
position. Then, to match the total number of counts in the
observed NuSTAR mosaic, additional background counts (4%–

6% of the total) were added by scaling a background map with
only the fCXB component for which the normalization has
been averaged over all the fields. These additional counts are
due to the fact that we averaged the fCXB component
normalization, to sources fainter than 5 × 10−15 erg cm s2 1- -

which are not included in the simulation, and also to different
spectral shapes of the true source population. A Poisson

Figure 2. Normalized distributions of relative differences between counts
extracted from observed data and background maps in each tile for FPMA
(red) and FPMB (blue).

28 http://agn.astro-udec.cl/j_agn/main.html
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realization of the final map (sources plus background) was
made. With the above procedure, we simulated a set of 400
mosaics in three bands (3–24, 3–8, and 8–24 keV) for both
FPMA and FPMB, which were then summed to create
simulated FPMA+B mosaics.

4.2. Simulation Source Detection and Photometry

In order to fully exploit the large area and depth of the
NuSTAR COSMOS survey, a dedicated analysis procedure for
detection and source reliability was developed and applied to
the simulated data set with the aim of validating it. The same
procedure, described below, was then applied to the real data
(see Section 5) as well as to the ECDFS data in Mullaney
et al. (2015).

Following Mullaney et al. (2015), we used SExtractor
(Bertin & Arnouts 1996) to obtain a large catalog of potential
sources. The source detection was performed on false
probability maps generated by convolving the data mosaic
(either simulated or observed) and the corresponding back-
ground map (the mosaic where the normalization of the fCXB
component has been averaged over all the fields) using a
circular top-hat function with two smoothing radii (10� , 20� ) to
detect sources with different sizes, i.e., to take into account
overlapping point sources across the mosaic. To convert the
convolved maps into Poisson probability maps, we used the
incomplete gamma function, igamma (available in IDL), so
that P igamma(Sci, Bgd)random = , where Sci and Bgd are the
smoothed science and background mosaics. These probability
maps give the likelihood that the signal at each position in the
mosaic is due to random background fluctuations. We
computed the logarithm of these maps and inverted them so
that significant fluctuations are positive. These maps were then
input to SExtractor using a detection significance of 10−4.5, set
to avoid the loss of any real but faint detection.

We performed aperture photometry at the positions obtained
by SExtractor for each detected source. Total source counts

were extracted from the data mosaic and background counts
were extracted from the background mosaic in the 3–24, 3–8,
and 8–24 keV bands, using a circular aperture of 20� radius.
With total and background counts, we computed the maximum
likelihood (DET_ML) for each source (see Cappelluti et al.
2009; Puccetti et al. 2009; LaMassa et al. 2013 for similar
approaches). The DET_ML is related to the Poisson
probability that a source candidate is a random fluctuation of
the background (Prandom): DET_ML = −ln Prandom. Sources
with low values of DET_ML, and correspondingly high values
of Prandom, are likely to be background fluctuations. Detection
and photometry were both computed in the three different
bands separately.

The sources detected in each probability map were merged
into a single list, and duplicate sources were removed using a
matching radius of 30� , i.e., if there are two sources with a
separation smaller than 30� only the one with the higher
DET_ML is kept in the catalog. Given the size of the PSF, a
30� matching radius should not produce a large number of false
matches (<few %). The mean number of sources detected in
each of the probability maps (in each band) and the final
number of sources after cleaning the list of multiple detections
of the same source are reported in Table 1.

We then used the procedure described by Mullaney et al.
(2015; their Section 2.3.2) to deblend the counts of sources
that have been possibly contaminated by objects at
separations of 90� or lower. Deblended source and background
counts were used to compute new DET_ML values for each
source.

We thus obtained for each band a catalog of detected sources
which was then matched to the list of input mock sources using
a positional cross-correlation, with a maximum separation of
30� . We report the mean number of detected sources matched
to an input catalog source for each band in the fourth line of
Table 1. The fraction of matched sources with respect to

Figure 3.Combined FPMA+B 3–24 keV (left) and 8–24 keV (right) band mosaics with the positions of the 91 detected sources on the left and the 8–24 keV detected
sources on the right, as black circles. The Chandra and XMM-Newton surveys area are marked as green solid and black dashed polygons, respectively.
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detected sources is ∼66%, 72% and 60% in the 3–24, 3–8, and
8–24 keV bands, respectively.

In Figure 4, we plot the distribution of the separation
between input source positions and detected source
positions for the three bands. These distributions are flux
dependent: the distribution of bright sources (green lines,
� 10−13 erg cm s2 1- - ) peaks at ∼5� , while the one of fainter
(<10−13 erg cm s2 1- - ) sources peaks at 8� . In the 3–24 and
3–8 keV bands, ∼55% of the matches are within 10� and ∼90%
within 20� . These numbers are slightly lower in the 8–24 keV
band, where ∼45% of the matches are within 10� and ∼85%
within 20� , because of the lower number of counts in this band,
however the fraction of sources within 20� is still very high.
The 30� matching radius was chosen a posteriori to avoid
losing the tail of sources at large separations.

4.3. Reliability, Completeness and Survey Sensitivity

The threshold for source detection must be set by balancing
reliability and completeness. Reliability, which is an indicator
of the number of spurious sources in the sample, is computed
using the ratio between the number of detected sources
matched to an input source and the total number of detected
sources. Completeness is instead the ratio between the number
of detected real sources and the number of input simulated
sources. The analysis of the simulations allows us to choose a
threshold in source significance, or DET_ML, to maximize the
reliability of the sources in the sample, while simultaneously
maximizing completeness. A lower DET_ML threshold gives
higher completeness at the cost of lower reliability.

Figure 5 shows the cumulative distribution of reliability as
function of DET_ML in three bands for the FPMA+B
simulations. The horizontal lines represent 97% and 99%
reliability (e.g., 3% and 1% spurious sources). For what
follows, we use the significance level corresponding to 99%
reliability: DET_ML(99%) = 15.27, 14.99, and 16.17 for the
3–24, 3–8, and 8–24 keV bands, respectively, corresponding to
Poisson probabilities of log10Prandom = −6.63, −6.51, −7.
Figure 6 shows the completeness in the three bands as a
function of X-ray flux at the DET_ML threshold correspond-
ing to 99% reliability. Table 2 gives the flux limits
corresponding to four completeness fractions in the three
bands. The mean numbers of detections above the 99%
reliability DET_ML threshold found in the simulations are
listed in Table 1 (last row). The fraction of detected sources
above this threshold is between 35%–40% in all bands.

The “sky-coverage” is the integral of the survey area covered
down to a given flux limit. If at the chosen detection threshold
the completeness is sufficiently high (with reliability also
high), the number of detected sources should correspond to the

number of input sources with DET_ML higher than the
threshold value. In this case, the curves in Figure 6 represent
normalized sky-coverages. The survey “sky-coverage” in the
three bands is plotted in Figure 7.

In Figure 4 (dashed lines), we plot the distribution of the
separation between input and detected source positions
restricted to the matches above the DET_ML threshold, for
the three bands. The fraction of matches within 10� and 20� is
significantly improved when considering only sources with
DET_ML above the 99% reliability threshold, increasing for
all the bands to 68% and 98%, respectively. Comparing to the
distribution of the whole sample (solid line) it is possible to see
that the tail at large separations is made by sources at low
DET_ML values. By performing a two-dimensional Gaussian
fitting of the distributions, we find a consistent width in all
bands, and at both bright and faint fluxes of 6�. 6, which can
therefore be associated with the positional uncertainty of the
detections. This value is consistent with what is expected for
the source positional uncertainties according to the minimum
resolvable separation Rayleigh criterion, assuming instead of
the first diffraction minimum of a point source, the size
corresponding to 20% of the encircled energy fraction (∼10� ).

4.4. Flux Analysis

To validate the aperture photometry performed and the count
deblending applied, we computed the 3–24 keV (and 3–8 and
8–24 keV) band fluxes for all detected sources. We use the
counts-to-flux CF reported in Section 4.1, computed using a
power law model with � = 1.8 and Galactic column density.
We then convert the fluxes from aperture (in 20� ) to total
assuming a factor, derived from the NuSTAR PSF, such that
Faperture/Ftotal = 0.32. We find that this value is approximately
constant across the field of view (with only a few percent
variation) because the size of the PSF core is constant.
Therefore, this factor can be applied to all the sources to
convert the aperture counts computed from the mosaic, i.e.,
using the counts from different positions on the detector, to
total counts. The difference of the aperture correction between
FPMA and FPMB is of the order of 4%, and would affect the
flux estimates at the level of the statistical uncertainties.
Moreover, this aperture correction factor is energy independent
and can be applied to convert from aperture to total fluxes in
the 3 bands used here.

In Figure 8, we present the input versus output fluxes in the
3–24 keV band for all sources above the detection threshold in
all 400 simulations. The agreement at bright fluxes validates
the aperture correction. The fluxes are within a factor of 1.5 of
the input value down to the flux corresponding to almost 90%
completeness (10−13 erg cm s2 1- - ). The spread of the distribu-
tion increases toward lower fluxes, becoming a factor of 2.5
wider at the flux corresponding to 50% completeness of the
survey (7 × 10−14 erg cm s2 1- - ). The spread at low fluxes, in
particular at the flux limit, is expected, and is due to
Eddington bias.

5. DATA ANALYSIS AND POINT SOURCE CATALOG

5.1. Source Catalog Creation

Once we tested and optimized the source detection procedure
on simulated data and defined all the matching radii on the
basis of the highest rate of detected and significant sources, we
applied the same procedure to the NuSTAR COSMOS data.

Table 1
Mean Number of Detected Sources with SExtractor in Simulated Smoothed
(10� and 20� Radii) Maps (line 1 to 3), of Detected Sources Matched to an

Input Catalog Source within 30� (Line 4), of Detected Sources with
DET_ML > Threshold (Line 5)

3–24 keV 3–8 keV 8–24 keV

10� smoothed maps 259 219 152
20� smoothed maps 227 193 123
Combined 269 230 173
Matched to input 179 (66%) 167 (72%) 103 (60%)
DET_ML> DET_ML(99%) 77 62 27
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Summarizing, for each band, we first ran SExtractor using the
parameters defined in Section 4.2 and we obtained a catalog of
detected sources merging all the outputs. We then extracted 20�
source and background counts at the detection position and
corrected these counts for contamination of neighbors. Using
the deblended counts, we computed DET_ML values for all
sources. We define as detected all those sources found by
SExtractor and detected above threshold those for which the
DET_ML is above the threshold.

There are 81, 61, and 32 sources above the 99% reliability
detection thresholds in the 3–24, 3–8, and 8–24 keV bands,
respectively. These numbers agree, to within a few percent,
with the numbers of detections expected from the simulations

as presented in the last line of Table 1. We compared the
number of detections to those predicted by the X-ray
background synthesis models described in Ballantyne et al.
(2011), which consider several luminosity functions (Ueda
et al. 2003; La Franca et al. 2005; Aird et al. 2010) as well as
the most recent one by Ueda et al. (2014). We combined the
luminosity functions with the spectral model of Ballantyne
(2014), and folded the results with the COSMOS sensitivity
curves. The models under-predict the actual number of detected
sources by 20%–30% in both the 3–8 keV and 8–24 keV bands,
though it is still consistent within the uncertainties. We also
compared with the number counts presented in Ajello et al.
(2012) in the 15–55 keV band, properly converting the flux to

Figure 4. Normalized distributions of the separations, in the simulations, between the detected positions obtained with SExtractor and the input positions in the
3–24 keV (top), 3–8 keV (middle) and 8–24 keV (bottom) bands. Solid and dashed lines refer to the whole sample and only to sources above the 99% reliability
DET_ML thresholds in each band. The black lines represent the total distribution. The red lines represent the separations for bright sources with 3–24 keV flux
� 10−13 erg cm s2 1- - and the green lines represent sources with fluxes <10−13 erg cm s2 1- - .
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the 8–24 keV band (assuming a � = 1.8 slope). Also in this
case, the predicted counts (17–34 sources) is in agreement with
the observed data. A more extended analysis of the
NuSTAR number counts bands is described in F. A. Harrison
et al. (2015, in preparation).

We then generated a master catalog by performing a simple
positional matching (30� matching radius) between the catalog
of sources detected in the 3–24 keV band and in the 3–8 keV
band, and then matched the resulting catalog (including
matches but also unmatched sources in both bands) to the
8–24 keV band catalog. From the master catalog, we determine
the number of significant sources (with DET_ML above the
threshold) in the total sample. Table 3 lists the number of

Figure 5. Reliability as a function of DET_ML from FPMA+B simulation
analysis. Solid line: 3–24 keV band; short dashed line: 3–8 keV band; long
dashed line: 8–24 keV band. The horizontal dot dashed lines represent the 99%
and 97% reliability thresholds.

Figure 6. Completeness as a function of X-ray flux at 99% reliability
DET_ML threshold. Solid line: 3–24 keV band; short dashed line: 3–8 keV
band; long dashed line: 8–24 keV band.

Table 2
Completeness as Function of Flux (for 99% Reliability Catalog)

Completeness F(3–24 keV) F(3–8 keV) F(8–24 keV)
(erg cm s2 1- - ) (erg cm s2 1- - ) (erg cm s2 1- - )

90% 1.1 × 10−13 6.1 × 10−14 1.3 × 10−13

80% 1.0 × 10−13 5.3 × 10−14 1.1 × 10−13

50% 7.6 × 10−14 3.9 × 10−14 8.6 × 10−14

20% 5.9 × 10−14 2.9 × 10−14 6.4 × 10−14

Figure 7. Sky coverage at 99% reliability DET_ML level. Top: 3–24 keV
band; middle: 3–8 keV band; bottom: 8–24 keV band.

Figure 8. Comparison between 3–24 keV input fluxes and measured total
fluxes in the simulations for all the sources with DET_ML above the 99%
reliability threshold in the 3–24 keV band. Black contours show the source
density.
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different combinations of sources above the threshold in at least
one band. We include the combination of sources detected and
above the threshold (labeled with capital F, S, and H) and
detected but below the threshold (labeled with lower case f, s,
and h). By summing all the possible combinations, the total
number of sources above the threshold in at least one band
is 91.

The counts for each detected source in a given band were
computed by performing photometry in a 20� radius aperture in
the FPMA+B mosaic as well as in the background mosaic and
then correcting the counts using the deblending code as per the
simulations. If the source was either detected, but below the
threshold, or undetected in a given band, we computed upper
limits by extracting the counts (in the same 20� radius aperture)
at the position of the detected (but below threshold) source, or
at the position of the significant detection in another band if the
source was undetected. The method adopted for error
determination is Gehrels (1986; 1� equivalent errors are used).
For non detections, 90% confidence upper limits were
computed by following standard approach (see Narsky 2000).

Vignetting-corrected count rates for each source are obtained
by dividing the best-fit counts derived from aperture photo-
metry for each band by the net exposure time, weighted by the
vignetting at the position of each source. Total fluxes were
obtained by converting the count rates, assuming a power-law
model with � = 1.8 and Galactic column density, using the
conversion factor in each band and applying the aperture
correction factor. The energy CF, and therefore the fluxes, are
sensitive to the spectral shape: a flatter spectral slope (� = 1)
would produce a difference of ∼20%, <5% and <15% in the
3–24, 3–8, and 8–24 keV fluxes, respectively. The energy
conversion factor for the 3–24 keV band depends most strongly
on the spectral shape because of the wider band considered. In
Figure 9, the histograms of count rates and total fluxes in each
band are presented (90% confidence upper limits have been
included).

5.2. Match to Chandra and XMM-Newton Catalogs

The 91 NuSTAR detected sources were matched to both the
Chandra (Civano et al. 2012) and XMM-COSMOS point-
source catalogs (Brusa et al. 2010) to obtain lower energy

counterparts and multiwavelength information. We use the
nearest neighbor matching approach, as done in the simulations
(Section 4.2), with a 30� matching radius. Given that the
NuSTAR survey overlaps also with the new Chandra COSMOS
Legacy survey (F. Civano et al. 2015, in preparation), we also
used the Chandra catalog for this project (S. Marchesi et al.
2015, in preparation). We applied a flux cut to both catalogs at
5 × 10−15 erg cm s2 1- - (2–10 keV), consistent with the limit in
flux used in the simulations. At this flux, the number density of
sources in the 2–10 keV band is 600 deg−2, therefore the
number of Chandra or XMM-Newton sources found by chance
in the searching area around each NuSTAR source is <0.13. All
the matches are therefore very likely to be real associations.

The cross-correlation returned 87 matches within 30� . The
distribution of separations between the Chandra or XMM-
Newton and the NuSTAR positions is presented in Figure 10.
The fraction of matches within 10� and 20� are 56% and 97%,
respectively, both consistent with the simulations (see Figure 4,
dashed lines). Among the 87 sources with a Chandra and/or
XMM-Newton counterpart, 14 have multiple matches within 30� .
The distribution of separations considering the secondary
counterpart (defining as secondary the source at larger separa-
tion) is shown in Figure 10 as a dashed line. In this case, the
fraction of matches within 10� drops to 52%, and to 90% for
matches within 20� . Two of the NuSTAR sources with a multiple
match show a significant iron K� line in the NuSTAR spectrum at
the energy as expected from the redshift of the primary
Chandra and/or XMM-Newton counterpart, therefore these
sources (NuSTAR J100142+0203.8 and J100259+0220.6,
source ID 181 and ID 330 in the catalog) can be securely
associated with their lower energy counterpart. Of the 12
remaining NuSTAR sources with multiple lower X-ray
energy counterparts, only two (NuSTAR J095845+0149.0 and
J095935+0241.3, source ID 134 and ID 257) have a primary
and secondary counterpart with separations and fluxes in the
2–10 keV Chandra/XMM-Newton band within 3% one of the
other; therefore both primary and secondary could be
considered a possible association. For ten of the 14 sources
with two possible counterparts, the separation between the
NuSTAR position and the secondary candidate is 30% larger
than the separation between the NuSTAR position and the
primary. The flux of the secondary is also significantly fainter
(50% or more) than the primary, making the primary
association stronger. Hereafter, we consider the primary match
to be the Chandra and/or XMM-Newton counterpart. We flag
those NuSTAR sources with secondary counterparts, providing
a supplementary catalog of matches.

Of the 87 matched sources, 79 are associated with a
Chandra and XMM-COSMOS source (41 to a C-COSMOS
source and 38 to a Chandra COSMOS Legacy source), 7 with a
Chandra only source (of which 4 are from the new
Chandra COSMOS Legacy survey), and only 1 is matched
with an XMM-COSMOS source outside the Chandra COSMOS
Legacy survey area (see also Figure 3). Although the
Chandra COSMOS Legacy survey overlaps with the XMM-
COSMOS area, we consider here fluxes from the already
published XMM-COSMOS catalog for the 38 sources detected
in both. All 87 sources are detected in the 2–10 keV band in at
least one of the three low energy surveys. When considering the
Chandra and XMM-Newton sources in the central area of
the NuSTAR survey that has uniform and deepest exposure,
all those with 2–10 keV (Chandra or XMM-Newton) fluxes

Table 3
Number of Sources with DET_ML above the Defined Threshold in at Least

One Band

Band Number of sources

F + S + H 23
F + S + h 14
F + S 15
F + s + h 7
F + s 8
F + h 4
F 2
F + s + H 6
F + H 2
f + S 9
H 1

Note.F, f: 3–24 keV, S, s: 3–8 keV, H, h: 8–24 keV. Capital F, S, and H refer
to sources detected and above the threshold in that band, while lower case f, s,
and h refer to sources detected in a given band but below the detection
threshold.
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larger than 10−13 erg cm s2 1- - are also detected by NuSTAR.
At fluxes in the range 5 × 10−14−10−13 erg cm s2 1- - , the
fraction of Chandra and XMM-Newton sources detected by
NuSTAR drops to 60% and becomes lower than 10% at fluxes
below 2 × 10−14 erg cm s2 1- - . These fractions are in full
agreement with the NuSTAR survey completeness presented in
Table 2 and Figure 6. In Figure 11, we compare the 3–8 keV
NuSTAR fluxes with the Chandra or XMM-Newton fluxes in the
same band. We converted count rates from both the
C-COSMOS and XMM-COSMOS catalogs in the 2–7 and
2–10 keV bands respectively into 3–8 keV fluxes, accounting

for the slightly different energy range covered and the spectral
model assumed here. In Figure 11, downward arrows are 90%
confidence upper limits on the NuSTAR flux . Black contours
represent the locus occupied by the simulated sample when
comparing input and measured fluxes in the simulations in the
3–8 keV band (as shown in Figure 8 for the 3–24 keV band).
The scatter around the 1:1 line is similar to that observed in the
simulations, keeping in mind that flux variability could affect
the real source distribution. The break observed at ∼10−13

erg cm s2 1- - and the flattening of the distribution are both
consistent with the simulation results and with Eddington bias

Figure 9. Count rate (top) and flux (bottom) distributions for detected sources in the 3–24, 3–8, and 8–24 keV bands from top to bottom. Upper limits at 90%
confidence have been included for sources below threshold or undetected as dashed histogram.

Figure 10. Histogram of separations between the NuSTAR and Chandra or
XMM-Newton positions of the primary (solid) and secondary (dashed)
counterparts.

Figure 11. Comparison between the Chandra (full square symbols) or
XMM-Newton (empty circle symbols) and the NuSTAR 3–8 keV fluxes.
NuSTAR 90% upper limits are plotted in red as downward arrows. Black
contours show the density of sources in the simulated sample when comparing
3–8 keV input fluxes and measured/deblended fluxes as in Figure 8.
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affecting the sources at the flux limit. Similar behavior is found
by Mullaney et al. (2015) in the ECDFS NuSTAR survey and
also in the serendipitous source sample presented by Alexander
et al. (2013).

The redshift distribution of the 87 NuSTAR sources asso-
ciated with a lower energy counterpart is presented in Figure 12.
Spectroscopic redshifts and optical spectral classifications are
available for 80 matched sources and photometric redshifts
(and spectral energy distribution classifications) for 87 sources
from either the XMM or C-COSMOS catalogs. According to
the spectroscopic classifications, the sample is equally divided
between broad line AGNs and narrow line AGNs. For the
remaining seven sources without optical spectra, the spectral
energy distribution fitting suggests six are best fitted by a
narrow line AGN-like template and one is best fit by a broad
line AGN-like template. Although we detect both broad line
and narrow line AGNs up to z ∼ 2, the mean redshift of the
broad line AGN is z ∼ 1, while the narrow line AGN and
narrow line AGN-like sources peak at lower redshift (z ∼ 0.6).
Narrow line AGNs and/or obscured sources are on average
fainter (and less luminous) than broad line AGNs and/or
unobscured ones, and therefore are generally detected at lower
redshifts, explaining the different redshift distributions and
implying that the volume sampled when surveying obscured
sources is smaller than that sampled by unobscured sources.

We refer to L. Zappacosta et al. (2015, in preparation) and
A. Del Moro et al. (2015, in preparation) for a detailed X-ray
spectral analysis of both bright and faint sources and for the
absorption distribution in the sample. Here, to obtain a rough
estimate of the obscuration level characterizing the COSMOS
NuSTAR sources, we computed the hardness ratio, defined as
HR = H S

H S
-
+

, where H and S are the number of net counts in the
8–24 keV and 3–8 keV bands, respectively. We used the
Bayesian Estimation of Hardness Ratios method (BEHR, Park
et al. 2006) which is the most suitable tool to compute hardness
ratios and uncertainties in the Poisson regime of low counts,

whether the source is detected in both bands or not. The HR
reported in the catalog is the mode value computed by BEHR.
To compare the HR (in the 3–8 and 8–24 keV bands)
computed above with X-ray spectral models, and to character-
ize the level of intrinsic obscuration, the redshift of each source
needs to be taken into account. In Figure 13, the HR values are
plotted for each source versus redshift. If the upper or lower
value of the HR is at its maximum value (1 or −1,
respectively), the HR values are considered to be lower or
upper limits. The error computed with BEHR were estimated
using the Gibbs sampler (a special case of the MCMC) to
obtain information on the posterior distribution of the 3–8 and
8–24 keV counts and therefore on the HR (see Park et al. 2006
for more details). The errors and the upper and lower limits on
the HR are derived from the MCMC draws. The limits do not
necessarily correspond to a non detection in a given band,
because BEHR computes HR directly using total counts and
background counts, and relies on the combined statistics of
both sub-bands.

Even though spectral complexity is likely present in these
sources (see Section 6 as an example), we compared the HRs
with two sets of spectral models: a power law model with slope
of � = 1.8 and column densities 1022, 1023, 5 × 1023, and
1024 cm−2 (dotted lines, from bottom to top) and the more
complex MYTorus model (Murphy & Yaqoob 2009). For the
latter, we assumed a uniform torus with opening angle with
respect to the axis of the system fixed to 60 deg, corresponding
to a covering factor of 0.5, and column densities of 1024 cm−2

and 3 × 1024 cm−2 (dashed lines, from bottom to top).
Balokovi� et al. (2014) used the latter model in spectral
analysis of particular heavily obscured AGNs observed with

Figure 12. Redshift distribution: black solid line = total sample; blue solid
histogram = broad line and unobscured AGN; red dashed histogram = narrow
line and obscured AGN.

Figure 13.Hardness ratio (with 1 � errors) distribution vs. redshift for all the
sources matched to a Chandra or XMM-Newton counterpart. Blue downward
arrows represent 1 � upper limits on the HR value as computed by BEHR. Red
upward arrows represent lower limits. Dotted lines show power law models
with � = 1.8, Galactic column density and intrinsic column densities of 1022,
1023, 5 × 1023, and 1024 cm−2 (from bottom to top) as function of redshift.
Dashed lines show the HR predicted using the more complex MYTorus model
with column densities of 1024 and 3 × 1024 cm−2 (from bottom to top). The red
solid line represents the HR evolution of NGC 1320 best spectral model from
Balokovi� et al. (2014). The green circles label the candidate obscured sources
by Lanzuisi et al. (2015).
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NuSTAR (NGC 1320), and found hardness ratios calculated
from the best-fit models which are consistent with those
considered here. As for comparison we also report in Figure 13
the hardness ratio evolution computed for the best fit spectra
model of NGC 1320 (with 4 × 1024 cm−2, red solid line) from
Balokovi� et al. (2014).

As shown in Figure 13, if we choose HR = −0.2,
corresponding to the commonly adopted definition of obscured
X-ray AGNs (1022 cm−2), to divide the sample in obscured and
unobscured, we find that 50% of the NuSTAR sources are
obscured. We caution that in the 3–24 keV NuSTAR passband,
the HR for a modestly obscured AGN is very close to that
expected for completely unobscured AGN (HR = −0.3) and so
it is difficult to estimate the reliability and statistical uncertainty
in this measure of the obscured fraction from NuSTAR HR
alone. A more robust and accurate measure of the fraction
including modestly obscured AGNs (down to 1022 cm−2)
will require X-ray spectral analysis to measure NH directly
and comparison with lower-energy Chandra and XMM-
Newton data, which will be addressed in future work (L.
Zappacosta et al. 2015, in preparation). NuSTAR HR is more
sensitive to higher obscuration (>1024 cm−2), and can therefore
be used to identify candidate CT sources. We refer to these
sources as candidates as confirming their CT nature requires
detailed analysis of their X-ray spectra to measure NH directly
or other independent means, which is again beyond the scope
of this paper. We compute the fraction of candidate CT sources,
defined as the number of sources with HR and redshift
combination above the >1024 cm−2 line obtained using the
MYTorus model (the magenta line in Figure 13), using the
results from the BEHR MCMC analysis29 and thus allowing
for the uncertainties in the individual HR estimates. We also
compute the fraction using the 1024 cm−2 line obtained with an
obscured power law model (the red dashed line in Figure 13).
The fraction of candidate CT AGN obtained is 13% ± 3% with
the MYTorus model and 20% ± 3% with the obscured power-
law model. These estimates are consistent with the fractions
based simply on the best estimates (posterior mode) for HR
(9% and 19%, respectively). We note that these values
correspond to the observed fraction of CT candidates,
combined over the entire luminosity and redshift range of our
sample.

Two sources have lower limits on their HR:
NuSTAR J100204+0238.5 (ID 557) is only detected above
the threshold in the 8–24 keV band (and it is the solo source
with only an 8–24 keV band detection in the whole sample)
while source NuSTAR J100229+0249.0 (ID 249) is also
detected above the threshold in the 3–24 keV band. Their
HRs suggest high levels of obscuration, above 5 × 1023 cm−2.
Source ID 249 is also part of a sample of candidate highly
obscured AGNs from the XMM and C-COSMOS spectral
analysis (Lanzuisi et al. 2015). A total of six sources detected
by NuSTAR, highlighted in green in Figure 13 (NuSTAR ID
107, 249, 299, 129, 181, 216), are identified as candidate
obscured AGN by the same Lanzuisi et al. (2015) spectral
analysis. For all of them, the NuSTAR HR suggests columns
densities exceeding 5 × 1023 cm−2, considering also the 1�
error bars.

Two sources (ID 330 and ID 557, labelled in the figure)
have HR > 0.5 strongly suggesting obscuration exceeding
1024 cm−2 with both an obscured power law model and
the MYTorus model. Both of these are candidate CT
AGN. A more detailed analysis of ID 330 is presented in
Section 6.

NuSTAR fluxes in the 3–24 keV band, where we have the
highest number of detections, have been converted into
10–40 keV rest frame luminosities, assuming a power law
model with � = 1.8 and a standard k-correction of (1 + z)(� −2)

to take into account the different bandpasses. The luminosities
here are not corrected for absorption, although, the 10–40 keV
band is not sensitive to obscuration up to columns
of < few × 1024 cm−2. In Figure 14, the X-ray luminosity for
the NuSTAR COSMOS sources is plotted versus redshift.
Upper limits for eight sources not detected in the 3–24 keV
band have been included as downward arrows. The COSMOS
sample is compared here with the Swift-BAT 70 month all-sky
survey sample (Baumgartner et al. 2013). The flux limit of the
ECDFS survey (Mullaney et al. 2015) is also presented as a
long-dashed line. The COSMOS NuSTAR survey reaches
luminosities two orders of magnitude fainter than the Swift-
BAT sample and extends to significantly higher redshift. Broad
line and unobscured sources (blue squares) have on average
higher luminosities, while the faint end of the luminosity
distribution is dominated by narrow line or obscured AGNs.
Given the large area covered by the COSMOS survey, we are
able to sample also rare sources at very low redshift and faint
luminosity, such as source ID 330, a spiral galaxy at z = 0.044
(see Section 6).

Figure 14. 10–40 keV rest frame luminosity vs. redshift for COSMOS
NuSTAR sources (square symbols): in blue the sources classified as broad line
or unobscured AGNs and in red the sources classified as narrow line or
obscured AGNs. COSMOS upper limit are presented as downward black
arrows. Short and long dashed lines represent the flux limit of the COSMOS
survey (at 20% completeness) and of the ECDFS survey. The serendipitous
NuSTAR sources presented in Alexander et al. (2013) and Swift-BAT 70 month
sample (Baumgartner et al. 2013) are shown as triangles and circles,
respectively.

29 We used each of the 5000 MCMC draws for each of the 87 detected source
as a independent HR value for each source and we combined the draws for each
source and treat them as “new” sample of sources to estimate the fraction of
candidate CT sources.
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5.3. X-ray to Optical Properties

To further study the nature of the NuSTAR sources, we
compare the X-ray fluxes to the optical magnitudes of their
counterparts. The X/O ratio (Maccacaro et al. 1988) is defined
as X O f f f C mlog( ) log( ) 2.5X opt X opt= = + + , where fX
is the X-ray flux in a given energy range, mopt is the magnitude
at the chosen optical band, and C is a constant which depends
on the specific filter used in the optical observations. Usually,
the r- or i-band flux is used (e.g., Brandt & Hasinger 2005).
Originally, a soft X-ray flux was used for this relation, and the
majority of luminous spectroscopically identified AGNs in the
Einstein and ASCA X-ray satellite surveys were characterized
by X/O = 0 ± 1 (Stocke et al. 1991; Schmidt et al. 1998;
Akiyama et al. 2000; Lehmann et al. 2001). Harder X-ray
surveys, performed with Chandra and XMM-Newton, found
that a large number of X-ray detected sources have high (>10)
X/O values, and later studies showed that high X/O is
associated with large obscuration (Alexander et al. 2001;
Hornschemeier et al. 2001; Fiore et al. 2003; Perola et al. 2004;
Civano et al. 2005; Eckart et al. 2006; Brusa et al. 2007;
Cocchia et al. 2007; Laird et al. 2009; Xue et al. 2011). High
X/O sources are extreme in that their optical magnitude is faint
due to a combination of high redshift and/or obscuration. At
low X/O, the optical emission is dominated by the host galaxy.
Given the correlation of X/O with redshift, sources with low
X/O are also typically at low redshift. In Chandra and XMM-
Newton surveys, low X/O sources have been dubbed optically
dull or X-ray Bright Optically Normal Galaxies (XBONGs).
Several studies have shown that these XBONGs could harbor
highly obscured AGNs (Comastri et al. 2002; Civano et al.
2007), but so far no clear case has been reported.

Figure 15 presents the i-band magnitude plotted against
the 3–8 keV (left) and 8–24 keV (right) fluxes for all
NuSTAR detected sources. For both bands, the X/O = ±1 locus
(yellow area) has been defined using C = 5.91, computed
taking into account the width of the i-band filters in COSMOS
(Subaru, CFHT, or for bright sources SDSS). The locus takes

into account the spectral slope used to compute the X-ray
fluxes (� = 1.8). The long dashed lines represent the region
including 90% of the AGN population as derived in the
2–10 keV band in the C-COSMOS survey (Civano et al. 2012).
The four sources not matched to a Chandra or XMM-
Newton counterpart are plotted as upper limits with i < 27
(see Section 5.4). Even though this is the first time such a locus
is presented above 10 keV, the agreement between detections
and the AGN locus is remarkable. About 10% of the sources in
both the 3–8 and 8–24 keV bands lie outside the locus,
consistent with what was found in the Chandra 2–10 keV band
(see, e.g., Civano et al. 2012). Flux upper limits are consistent
with the locus moving to the left of the plot, and could increase
the number of sources at high X/O. It is interesting that the two
sources with HR > 0.5 (starred symbols in Figure 15) are
located at extremes of the diagram, one with high X/O (ID 557)
and z > 1, the other at very low redshift and very low X/O. Both
are candidate highly obscured and perhaps CT AGNs (see
Section 6).

5.4. NuSTAR Sources without a Chandra or
XMM-Newton Match

As mentioned in the Section 1, lower energy X-ray missions
like Chandra and XMM-Newton are not sensitive to very
obscured AGN at redshift z < 1.5. Therefore, any 8–24 keV
detected NuSTAR source not associated with a low energy
counterpart could harbor a CT AGN. Four sources (NuSTAR
J100047+0139.2, J095820+0149.3, J095831+0150.1, and
J095930+0250.1; ID 111, 135, 141, 245 in our catalog) are
not matched with a Chandra or XMM-Newton point source
within a 30� radius. Given the 99% reliability cut applied to the
sample, we expect ∼2 spurious sources in the sample out of 91
detected sources (summing the number of spurious sources
expected in each band). The two spurious detections could be
found among the sources with a lower energy counterpart or
those without a counterpart. The probability of spurious
associations is determined by the number density of
sources above the 2–10 keV flux limit used for the matching,

Figure 15.X-ray flux (soft-top, hard-bottom) vs. the i-band magnitude. The yellow shaded region represents the classic locus of AGNs along the correlation X/O = 0 ± 1.
The long-dashed curves represent the locus occupied in the 2–10 keV band by the C-COSMOS sources. The star symbols represent source ID 330 and ID 557.
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