

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

�x Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
�x You may not further distribute the material or use it for any profit-making activity or commercial gain
�x You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jan 23, 2019

Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control
using Machine Learning.

Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel; Ravn, Ole

Published in:
Proceedings of IEEE ICMLA'15

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Andersen, T. T., Amor, H. B., Andersen, N. A., & Ravn, O. (2015). Measuring and Modelling Delays in Robot
Manipulators for Temporally Precise Control using Machine Learning. In Proceedings of IEEE ICMLA'15 IEEE.

http://orbit.dtu.dk/en/publications/measuring-and-modelling-delays-in-robot-manipulators-for-temporally-precise-control-using-machine-learning(539bcee9-fce4-4cb2-b261-7f5db5217590).html

Measuring and Modelling Delays in Robot Manipulators for Temporally Precise
Control using Machine Learning

Thomas Timm Andersen� , Heni Ben Amory, Nils Axel Andersen� and Ole Ravn�
� Department of Automation and Control, DTU Electrical Engineering

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.f ttan, naa, org@elektro.dtu.dk
yInstitute for Robotics and Intelligent Machines, College of Computing

Georgia Tech, Atlanta, GA 30332, USA. hbenamor@cc.gatech.edu

Abstract—Latencies and delays play an important role in
temporally precise robot control. During dynamic tasks in
particular, a robot has to account for inherent delays to reach
manipulated objects in time. The different types of occurring
delays are typically convoluted and thereby hard to measure
and separate. In this paper, we present a data-driven methodol-
ogy for separating and modelling inherent delays during robot
control. We show how both actuation and response delays can
be modelled using modern machine learning methods. The
resulting models can be used to predict the delays as well as the
uncertainty of the prediction. Experiments on two widely used
robot platforms show signi�cant actuation and response delays
in standard control loops. Predictive models can, therefore, be
used to reason about expected delays and improve temporal
accuracy during control. The approach can easily be used on
different robot platforms.

Keywords-Robot control; Automation; Machine learning al-
gorithms;

I. I NTRODUCTION

For robots to engage in complex physical interactions with
their environment, ef�cient and precise action generation
and execution methods are needed. Manipulation of small
objects such as screws and bolts, for example, requires spa-
tially precise movements. However, in dynamically changing
environments, spatial precision alone is often insuf�cient
to achieve the goals of the task. In order to intercept a
rolling ball on the table, for instance, a robot has to perform
temporally precisecontrol—the right action command has
to be executed at the right time. Yet, by their very nature,
actuation commands are never instantaneously executed.

Delays and latencies, therefore, play an important role
in temporally precise control and can occur at different
locations in the robot control loop.Actuation delayis the
delay type that most roboticists are aware of. When an
action command is sent to the robot's controller, it takes
a short while to process the command and calculate the
required joint motor input. Imagine a welding robot with
an uncompensated actuation delay of 50 ms, working an
object on a fairly slow-moving conveyor belt with a speed
of 0.5 m/s. The incurred delay would result in a tracking
error of 2.5 cm, which could easily destroy a product, or at
the very least result in a suboptimal result.

Figure 1. Temporally precise control of an industrial robot is realized
by modelling the inherent delay in the system. The picture depicts a fast
robot movement during data acquisition. Recorded data is processed using
machine learning algorithms to generate predictive models for system and
response delay.

A different type of delay is theresponse delaywhich
measures the amount of time until a real-world event is
sensed, processed and updated in memory. Response delay
is usually assumed zero, as one would naturally assume that
this is sampled and transmitted instantaneously whenever a
motion occurs. However, since there is a sampling clock and
since the controller also needs some time to pack the data
for transmission, the response delay can be a non-negligible
amount of time. An important implication of the response
delay is the discrepancy between the robot's belief of its
own state and the true value of that state. When data is
received from the robot, indicating that the robot is at a
certain position moving with some velocity, the data is in
reality describing a state in the past.

In order to effectively act in dynamic environments and
reason about timing, a robot has to be aware of both the
actuation delay as well as the response delay. Sadly, such
information is not readily accessible form the robotics com-
pany, and no method is currently available for identifying
it. This has lead many researches to develop their own

controllers, but this is rarely an opportunity for industrial
users.

Safety during operation is the most crucial issue for robot
controllers, but each robotic company may has different
strategies which affect the architecture of the robot con-
troller. It is therefore necessary to consider the controller
as a black box from which we must learn the controller-
dependent delay characteristics. Direct measurement of these
delays is typically dif�cult, since the different delay types are
convoluted and hard to separate. An important challenge is
therefore the question of how to separate these two delays as,
depending on the executed task, a robot has to compensate
for a different type of delay.

In this paper, we present a methodology for measuring
and modelling the inherent delays during robot control. We
introduce an experimental setup which allows us to collect
evidence for both the actuation delay, as well as the response
delay. The collected data is then used to learn controller-
dependent predictive models of each type of delay. The
learned predictive models can be used by a robot to reason
about timing and perform temporally precise control.

The contributions of this publication are three-fold. First,
we provide a generic method for measuring the actuation
and response delay of a robot manipulator. Due to its data-
driven nature, the method can be used on a variety of
actuators. Second, we show how existing machine learning
methods can be used to model and predict the inherent delay.
Finally, we show modelling results for two widely used robot
platforms, namely the Kuka KR 5 Sixx and the Universal
Robots' UR10 robot. The acquired data is made publicly
available to the robotics community [1].

II. RELATED WORK

Modelling time delays is a vital research topic in computer
network engineering. In order to ensure fast communication
over large computer networks, various models have been put
forward to model the mean delay experienced by a message
while it is moving through a network [15]. These analytic
models typically require the introduction of assumptions,
e.g. Kleinrock's independence assumption [11], to make
them tractable. Yet, since the network communication is
based on a limited number of communication protocols, it
is reasonable to use and constantly re�ne such analytic ap-
proaches. Another domain in which latencies and delays play
a vital role isvirtual reality (VR). As noted in [6], latencies
lead to a sensory mismatch between ocular and vestibular
information, can reduce the subjective sense of presence, and
most importantly, can change the pattern of behavior such
that users make more errors during speeded reaching, grasp-
ing, or object tracking. In VR applications, measuring and
modelling delays can be very challenging, since the delay
can heavily vary based on the involved software components,
e.g., rendering engine, as well as highly heterogeneous
hardware components, e.g., data gloves, wands, tracking

devices etc. In [6] a methodology for estimating delays is
presented, which focuses on VR application domains.

In robotics, the delay inherent to control loops can have
a detrimental impact on system performance. This is par-
ticularly true for sensor-based control used in autonomous
robots. Visual servoing of a robot, for example, can be
sensitive to the delays introduced through image acquisition
and processing [9]. Similarly, delays in proprioception can
produce instabilities during dynamic motion generation. In
[2], a dynamically smooth controller has been proposed that
can deal with delay in proprioceptive readings. However,
the approach assumes constant and known time-delay. A
major milestone in robot control with time-delay was the
ROTEX experiment [8]. Here, extended Kalman �lters and
graphical representation were used to estimate the state of
objects in space, thereby enabling sensor-based long-range
teleoperation. How to effectively deal with such communi-
cation delays has been a central research question in robotic
tele-operation. Delays in robot control loops are not limited
to sensor measurements only. A prominent approach for
dealing with actuation delays is the Smith Predictor [17].
The Smith Predictor assumes a model of the plant, e.g.
robot system, and can become unstable in the presence of
model inaccuracies. A different approach has been proposed
in [3]. A neural network was �rst trained to predict the state
of mobile robots based on positions, orientations, and the
previously issued action commands. The decision making
process was, then, based on predicted states instead of per-
ceived states, e.g. sensor readings. The approach presented in
our paper follows a similar line of thought. However, instead
of predicting speci�c states of the robot, we are interested
in predicting the delay occurring at different parts of the
control loop.

III. M ETHODOLOGY

In this section, we describe a data-driven methodology
for modelling delays in robotic manipulators. We show how
to acquire evidence for different types of delays and how
this information can be used in conjunction with machine
learning methods to produce predictive models for control.

A. Measuring the delay

The purpose of the presented method is to establish
the actuation and response delay that a high-level control
program can expect when issuing commands to a robotic
controller. To measure these delays, we need to synchronize
the issuing of commands with the control loop of the robot
controller. To this end, we use the published current state of
the robot, which most controllers send out in each control
cycle.

The overall system setup which will be used in the
remainder of the paper is depicted in Figure 2 (left). A high-
level control program is running on a computer, which sends
the commands to the robot control box. The control box,

Computer Control Box Robot Gyro/IMU

Transmission
Delay

Transmission
Delay

Actuation
Delay

Response
Delay

Processing Delay

Figure 2. Left: Delays during the control of a robot manipulator. Transmission delay affects information �ow between main control computer and the
robot control box. Actuation delay and response delay are introduced in the communication between the control box and the physical robot. Right: For
delay modelling an external sensor is mounted, e.g. a gyroscope, to measure discrepancies between command times and execution times.

in turn, calculates and issues the low-level commands that
drive the robot. The delay between the high-level controller
and the control box will be referred to as thetransmission
delay. The transmission delay has already been extensively
studied in computer networking [15] and will thus not be
treated in this paper. It is particularly crucial in tele-operation
scenarios, in which the high-level controller and the robot
control box may be separated by thousands of kilometers.

In this paper, however, we focus on the delays incurred
between the control box and the robot manipulator. A com-
mand that is received by the control box from the high-level
program at timet = 0 is typically only executed after a delay
of � 1. This is the actuation delay. Similarly, once a command
is executed by the robot at timet = � 1, it takes another delay
of � 2 until the motion is re�ected in the controllers memory
and transmitted to the high-level program running on the
central computer. This is the response delay.

The fundamental idea of our approach is to compare time
stamps at the moment a command is issued, the moment the
command is executed, and the moment the command gets
re�ected in the published state of a robot. To this end, it is
important to know the ground truth about the true timing
of the robot movement. This is realized using an external
apparatus in our setup, e.g., a gyroscope or accelerometer,
see Figure 2 (right).

1) Determining ground truth:Since we want to measure
the delay of the robot, we need a reliable and accurate
method of measuring robot motion. The method needs to
measure the current motion without adding a signi�cant
delay of its own. This can be achieved by imposing a
signi�cantly higher sampling rate than the robot controller.

We use microelectromechanical (MEMS) gyroscopes, or
angular rate sensors, for the revolving joints, and MEMS
accelerometers for prismatic joints. They offer very high
sampling rates of several orders of magnitude higher than
many robot controllers publish (e.g. several kHz for af-
fordable sensors), and practically no delay from motion
to available measurement. Such sensors cannot readily be

used to infer where in the kinematical chain a motion
has occurred, hence measurements have to be performed a
single joint at a time. Gyroscope measurements often come
with signi�cant noise, while accelerometer measurements
suffer from drift. However, both of these issues can be
compensated for using simple of�ine �ltering in-between
measurement and training the model.

2) Acquiring measurements:As mentioned before, our
approach is based on comparing time stamps throughout the
robot control loop. To this end, we use the published state
from the robot as the main sample clock and reference.
An experimental trial starts att = 0 upon reception of a
�rst package from the controller. The system time stamp
is recorded as soon as data is read, and the byte-encoded
package is stored for later parsing to extract the current joint
state. Upon reception, a command is sent instructing the
robot to start moving a single joint, which we monitor with
our angular rate sensor or accelerometer. The commanded
movement consists of a rapid acceleration in one direction,
followed by a fast deceleration before returning to return
to the starting pose. The entire motion trial takes about a
second, and all packages received until the robot stands
still are stored. Sensor readings from the external sensor
are stored by the central computer in order to identify the
ground truth time stamp of the moment in which the robot
moved.

There are several perturbations that can lead to variations
in the incurred delays, in particular physical perturbations.
For instance, the force resulting from the gravitational pull
on the robot varies with the joint con�guration of the robot,
just as the direction of motion effects whether the motor
needs to work against or along gravity. The different size of
motors and gearing in the robot also yields varying results.
These perturbations lead to varying static and kinetic friction
in the moving parts of a robot. This variation in turn leads
to a varying actuation delay.

As the magnitude of the static friction is usually larger
than that of the kinetic friction, we assume that the delay is

mostly affected by the robot's joint con�guration when the
motion starts. We assume that the effect by the other joints
during a motion after the static friction has been overcome
can be neglected. A similar assumption of joint indepen-
dence if often employed on the joint position controller when
using Independent joint control [14].

To acquire a representative data set for modelling delays,
we therefore need to map out the delay of each joint for
all the different joint combinations, moving in both positive
and negative direction. To capture variance in the delay, each
combination of joint con�guration and direction should be
measured several times.

3) Filtering data and computing delays:When extracting
the delays, we evaluate the difference between the recorded
data. Before doing that, thought, we use a high order low-
pass FIR �lter (Figure 3) on the data from the angular rate
sensor and correct for any drifting of the accelerometer,
based on data recorded while the sensor was held stationary
on the robot.

Figure 3. Gyroscope readings are �ltered using a FIR �lter. A 60 second
datastream (green), recorded without moving the robot, is passed through
the �lter to remove noise (blue). The frequency component of the data
before and after �ltering is shown in red and black, calculated using Welch's
Power Spectral Density (PSD) estimate [18]

To calculate the delay, we evaluate our two data series
generated in each trial; the speed output from the robot
controller and the �ltered sensor data. The actuation delay is
the difference between the moment a command is sent to the
robot and the moment a sensor registers the motion, while
the response delay is the difference between the moment a
sensor registers motion and the moment it is re�ected in the
robot's current speed data. Both are calculated while taking
into account the transmission delay from Figure 2 (left).
Even when �ltering out the noise, it can be challenging
to establish the exact moment in time when the sensor
determines that a motion has started as the measured speed is
hardly ever zero. Instead we identify extrema of our recorded
data to detect the time difference between the set target
speed, the measured speed, and the reported current speed.

B. Learning Predictive Models of Delay

Next, we want to use the recorded data in order to
learn predictive models of robot latencies. Once a predictive
model is learned, it can be used by a robot to infer the most
likely delay in a given situation. A common approach in
robot control is to use a path planner running on the central
computer to generate a starting joint con�guration and an
execution time of the trajectory. To �nd the actual real time
that the robot will use to get to the goal state, we can query
the learned predictive models for each moving joint. The
individual delay is then added to the execution time of each
joint to identify the real execution time.

As input features for the model we use the starting joint
con�guration of the robot. As mentioned before, forces
acting on the robot vary depending on the joint con�guration
and impact in particular the actuation delay. The output of
the model is the expected delay. We learn individual models
for the actuation delay and the response delay, since these
two delays are unrelated. In line with the assumption of
independence between the joints, a separate model is learned
for each joint. Introducing the above structured approach,
allows for accurate predictions of the delay. To evaluate how
a uni�ed model, predicting the delay of all joints, performs,
such a model is also trained.

The goal of learning is to generate predictive models
that can generalize to new situations and lead to accurate
predictions of the expected latencies. To this end, we use
three different machine learning methods, namely neural
networks (NN) [4], regression trees (RT) [5], and Gaussian
processes (GPR) [12]. We use these methods as they can
all effectively recover nonlinear relationships between input
and output data.

In our speci�c implementation, we used a feed-forward
neural network with 30 neurons in a single hidden layer.
Learning was performed using the Levenberg-Marquardt
[10] algorithm. In contrast, the regression tree method hier-
archically partitions the training data into a set of partitions
each of which is modelled through a simple linear model.
Both NNs and the RTs produce a single result and do not
provide information about the uncertainty in the predicted
value. In contrast to that, GPR can learn probabilistic, non-
linear mappings between two data sets. Due to the inherent
noise and related phenomena, uncertainty handling is a
crucial issue when dealing with delays.

By providing the mean and the variance of any prediction,
the GPR approach allows us to reason about uncertainty of
our prediction. Together, mean and variance form Gaussian
probability distribution indicating the expected range of
predictions. This information can potentially be exploited to
generate upper- and lower-bounds for the expected delays,
which is in contrast to both NN and RT.

As both NN, RT, and GPR are well known machine
learning methods and we do not add anything to these

Figure 4. The Universal Robot UR10 with mounted measuring equipment.
The enclosure keeps the sensor at a stable temperature thus avoiding
temperature-related drift in measurements.

methods, the theory behind them will not be covered further
in this paper.

IV. RESULTS

A. Experimental setup

In our experiments, we model the performance of both a
Kuka KR 5 sixx (Figure 1) and a Universal Robot UR10
(Figure 4). To generate the training data, we mounted a
MPU6000 combined angular rate sensor and accelerometer
to the end-effector. To avoid temperature-related drifts, we

Figure 5. Typical plot of logged data from a single trial. 33,500 trials
were completed on each robot.

mount the sensor on the robot in an enclosure with low
heat conductivity and then let the sensor warm up before
measurements. Since these robots only have revolute joints,
only the angular rate sensor is used, which outputs data at
a rate of 8 kHz.

To collect the data used for training the model, we perform
a series of short trials, wherein the robot is commanded
to perform a fast acceleration and deceleration motion. For
controlling the Kuka robot, the Kuka RSI [7] protocol is
used. It operates with a sample rate of 83.3 Hz (12 ms).
As argued in [13], the UR10 is controlled using URScript
SpeedJ commands. It operates with a sample rate of 125 Hz
(8 ms).

An example trajectory, along with typical outcome of
a trial, can be seen on Figure 5. The plots clearly show
a signi�cant time difference in the commanded speed, the
reported speed and the measured speed. To capture the varia-
tions of the delays, we performed trials on 4 different joints,

moving 10 times in both positive and negative direction
in 1,920 different joint con�gurations. A total of 33,500
trials were performed on each robot in order to generate
a comprehensive dataset, to be released to the public [1].
For purposes of machine learning, only a subset of the data
was later used.

To be able to compare the performance of the two robots,
we used the same 1,920 physical joint con�guration (i.e.
all links vertical) for both robots rather than using the
same joint values. This is a necessity since the Denavit-
Hartenberg parameters of the robots are not identical and
the home position varies, thus positive joint rotation on one
robot might lead to negative joint rotation on the other.
Sampling only a subspace of the robots' total workspace
does not introduce bias in the data, but rather limits the
model to predict delays within that subspace. By sampling
more poses, the model can routinely be extended to cover
the entire workspace if needed.

B. Delay output

As explained in Section III-A3, delays are determined
by evaluation of the extrema of the recorded motions. An
example of how the delays vary for the two robots can be
seen on Figure 6. The distribution of the actuation delays can
be seen on Figure 7, while a boxplot showing the individual
delays per joint is shown on Figure 8. The same plots for
the reaction delays can be seen on Figure 9 and Figure 10,
respectively.

C. Model comparison

The extracted delays were used to train and validate
models based on different machine learning algorithms,
namely NN, RT, and GPR. For the NN and RT algorithms,
we used the standard MatLab implementation, while we used
GPstuff [16] for the GPR implementation. The starting joint
con�guration, the actuated joint, and the rotational direction
were used as input. The delays that were measured at each
input combination were used for training and testing, using
k-fold cross validation with 10 folds to limit over�tting
the data and to give an insight on how the model will
generalize to an independent dataset. The mean squared error
(MSE) from each fold were averaged together and used as
a measure of how well the model predicts delays. Models
for predicting both the delay of individual joints, as well as
a combined model that can predict the delay of all joints
were trained. The mean error of each model is derived by
taking the square root of the MSE and is shown in Table I
and II. The tables also shows the resulting mean error if the
delay was assumed that of the median of the corresponding
boxplots. This gives an indication of the performance of the
trained models. Lower values indicate better generalization
capabilities, while larger mean error values indicate poor
prediction performance.

Figure 6. Actuation and response delay for joint 3 moving in positive direction as a function of varying joint 2 and 3. The red graph is the mean and the
gray area is� 2 standard deviations, corresponding to a 95% con�dence interval. Note the different y axis interval. Left: Kuka. Right: Universal Robot.

Figure 7. Combined distribution of the actuation delay of all joints. Note the different x axis interval. Left: Kuka. Right: Universal Robot.

Figure 8. Boxplot of individual joint's actuation delay. Note the different y axis interval. Left: Kuka. Right: Universal Robot.

Figure 9. Combined distribution of the response delay of all joints. Left: Kuka. Right: Universal Robot.

Figure 10. Boxplot of individual joint's response delay. Left: Kuka. Right: Universal Robot.

Table I
MEAN ERROR IN MILLISECONDS OF MODEL FIT FOR ACTUATION DELAY.

Kuka Joint 1 Joint 2 Joint 3 Joint 5 Combined Average
Median 2.27 2.68 4.61 3.51 3.67 3.35
NN 1.79 2.55 4.74 3.37 3.21 3.13
RT 1.99 2.48 3.74 3.76 3.33 3.06
GPR 1.85 2.27 4.30 3.39 3.48 3.06
UR Joint 1 Joint 2 Joint 3 Joint 5 Combined Average
Median 6.18 4.64 6.08 2.59 5.33 4.96
NN 4.08 5.32 3.86 2.49 3.12 3.77
RT 4.63 5.41 4.28 2.72 3.42 4.09
GPR 5.01 4.89 3.68 2.47 3.36 3.88

Table II
MEAN ERROR IN MILLISECONDS OF MODEL FIT FOR REACTION DELAY.

Kuka Joint 1 Joint 2 Joint 3 Joint 5 Combined Average
Median 2.13 2.37 4.30 3.09 3.33 3.05
NN 1.70 2.32 4.68 2.22 2.36 2.65
RT 1.86 2.21 3.62 2.31 2.37 2.47
GPR 1.63 2.17 4.23 3.11 2.63 2.75
UR Joint 1 Joint 2 Joint 3 Joint 4 Combined Average
Median 4.82 2.00 4.08 4.90 5.09 4.18
NN 4.11 2.48 4.24 5.22 4.84 4.01
RT 4.66 2.44 4.47 5.84 5.33 4.35
GPR 3.88 2.44 3.75 5.20 5.05 3.82

V. D ISCUSSION

A. Evaluating the two robots' delays

As it can be seen on Figure 7, the actuation delay of the
Kuka is signi�cantly higher than on the Universal Robot,
even factoring in the higher sample period; the average delay
for the Kuka is 7.5 sample periods vs. 2.5 sample periods
for the UR. If we relate the �gure to the example from the
introduction, where a welding robot need to weld an object
on a conveyor belt moving at 0.5 m/s, our claim that it is im-
portant to compensate for the delay is clearly justi�ed. The
Kuka robot would, without compensation, make a welding
seam displaced4:5cm � 0:5cm from the target, while the
Universal Robot would miss with0:75cm � 1:25cm.

A deeper look into the actuation delays, which is on
Figure 8, shows that the delays in general only vary with
a few ms for each joint. Using our method for measuring

the delay and assuming the delay constant at the median of
each boxplot would thus decrease the error to within 0.3
cm for a delay within� 6 ms. If we include the whiskers
of the boxplot, corresponding to� � 2:7� or 99:3% of the
data, the worst case error would within 0.85 cm for a delay
within � 17 ms.

Figure 8 also shows that on both robots, it is joint 2 that
has the highest delay. This is the shoulder joint, and the
one that lifts the most. This supports our theory that gravity
in�uences the actuation delay. Figure 10 suggests that the
response delay on the other hand is not varying between
the joints. This is not surprising, as the response delay, as
mentioned previously, is largely incurred by the sampling
clock, packing of data and transmission. This most likely
happens simultaneously for each joint.

The seemingly correlation between actuation and response
delay on Figure 6 is a consequence of the relatively low
temporal resolution of the robot controller data. This is also
why it is more dominant on the Kuka robot. As the sum of
the actuation and response delay will always be a multiple
of the sample period, an actuation delay a few ms below the
mean at a speci�c pose will result in a response delay a few
ms above the mean at that pose.

A surprising �nding on Figure 9 is that the response delay
for the Kuka robot is more than one sample period, which
suggests that sampling and transmission of data takes place
in separate sample clock cycles.

B. Evaluating the models' performance

All of the models are able to predict the delays very
accurately to within a mean error of5ms and it is thus
dif�cult to say anything conclusive about which model is
best. Though all of the models would have a mean error
less than 0.35 cm if used for a typical task like welding,
which is an improvement of more than a factor 12 for the
Kuka robot and almost a factor 3 for the Universal Robot,
compared to using the controllers and not assuming any
delay. Comparing the learned models with measuring the
delay and assuming it to be static shows an improvement

between 6 and24%.

The response delay for the Universal Robot shows the
least bene�t from modeling. This is most likely due to the
fact that the spread of the delays are so small. The missing
improvement with machine learning is thus a result of the
median delay yield a very good guess, and not a result of
the models being poor at learning those delays.

It is worth noticing that the mean error in some cases
are signi�cantly higher for the Universal Robot models
than those of the Kuka robot. This correspond with Figure
6, where the con�dence interval is much broader for the
Universal Robot than for the Kuka.

It should also be noted that GPR does not only supply
a prediction of the delay, but also outputs a measure of
uncertainty, which is not re�ected in the tables. For the
Universal Robot's large variance, this is certainly an added
bonus.

VI. CONCLUSION

In this paper we presented a methodology for measuring
and separating actuation and response delays in robot control
loops. In addition, we introduced a data-driven approach
for modelling inherent delays using machine learning al-
gorithms. We showed that the introduced models can be
ef�ciently used to predict occurring delays during temporally
precise control.

Real world experiments were used to identify latencies
in two widely used robot platforms. The measured delay
showed a large potential for improving temporal precision,
with more than a factor 12 improvement for one of the
robots.

All the employed machine learning algorithms showed
similar abilities to further improve the accuracy, with no
algorithm showing signi�cantly better accuracy than the
others. Still, Gaussian processes seem to be better suited
for this task, since they provide a probability distribution
over the expected delay. In turn, such a distribution can be
used to reason about upper- and lower-bounds in temporal
precision.

In our future work we will investigate how inverse models
of time delay can be learned. Given a speci�c time constraint
during a control task, an inverse model can be queried for
the most appropriate action which will meet the goals of the
task while ensuring time constraints.

REFERENCES

[1] http://aut.elektro.dtu.dk/staff/ttan/delay.html.

[2] S. Bahrami and M. Namvar. Motion tracking in robotic
manipulators in presence of delay in measurements. In
Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 3884–3889, May 2010.

[3] S. Behnke, A. Egorova, A. Gloye, R. Rojas, and M. Simon.
Predicting away robot control latency. InRoboCup 2003:
Robot Soccer World Cup VII, Lecture Notes in Computer
Science, pages 712–719. Springer Berlin Heidelberg, 2004.

[4] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, Inc., New York, NY, USA, 1995.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone.Classi�ca-
tion and Regression Trees. Wadsworth and Brooks, Monterey,
CA, 1984.

[6] M. Di Luca. New method to measure end-to-end delay of vir-
tual reality. Presence: Teleoper. Virtual Environ., 19(6):569–
584, December 2010.

[7] KUKA Robot Group. KUKA.Ethernet RSI XML 1.1, kst
ethernet rsi xml 1.1 v1 en edition, 12 2007.

[8] G. Hirzinger, K. Landzettel, and Ch. Fagerer. Telerobotics
with large time delays-the rotex experience. InIntelligent
Robots and Systems '94. 'Advanced Robotic Systems and
the Real World', IROS '94. Proceedings of the IEEE/RSJ/GI
International Conference on, volume 1, pages 571–578 vol.1,
Sep 1994.

[9] A.J. Koivo and N. Houshangi. Real-time vision feed-
back for servoing robotic manipulator with self-tuning con-
troller. Systems, Man and Cybernetics, IEEE Transactions on,
21(1):134–142, Jan 1991.

[10] D. W. Marquardt. An algorithm for least-squares estimation of
nonlinear parameters.SIAM Journal on Applied Mathematics,
11(2):431–441, 1963.

[11] A. Popescu and D. Constantinescu. On kleinrocks indepen-
dence assumption. In DemetresD. Kouvatsos, editor,Network
Performance Engineering, volume 5233 ofLecture Notes in
Computer Science, pages 1–13. Springer Berlin Heidelberg,
2011.

[12] C. E. Rasmussen and Ch. K. I. Williams.Gaussian Processes
for Machine Learning. The MIT Press, 2005.

[13] O. Ravn, N. A. Andersen, and T. T. Andersen. Ur10
performance analysis. Technical report, Technical University
of Denmark, Department of Electrical Engineering, 2014.

[14] M. W. Spong, S. Hutchinson, and M. Vidyasagar.Robot
modeling and control. John Wiley & Sons New York, 2006.

[15] A. S. Tanenbaum and D. J. Wetherall.Computer Networks.
Prentice Hall, 5th edition, 2011.

[16] Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi
Jylänki, Ville Tolvanen, and Aki Vehtari. Gpstuff: Bayesian
modeling with gaussian processes.The Journal of Machine
Learning Research, 14(1):1175–1179, 2013.

[17] P.D. Welch. A controller to overcome dead time.ISA Journal,
6(2):28–33, 1959.

[18] P.D. Welch. A direct digital method of power spectrum
estimation. IBM Journal of Research and Development,
5(2):141–156, 1961.

