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Abstract

We show how to solve a generalised version of the Multi-sequence Linear Feedback Shift-Register (MLFSR) problem using
minimisation of free modules over F[x]. We show how two existing algorithms for minimising such modules run particularly
fast on these instances. Furthermore, we show how one of them can be made even faster for our use. With our modelling of the
problem, classical algebraic results tremendously simplify arguing about the algorithms. For the non-generalised MLFSR, these
algorithms are as fast as what is currently known. We then use our generalised MLFSR to give a new fast decoding algorithm for
Reed Solomon codes.

I . I N T R O D U C T I O N

The Multi-sequence Linear Feedback Shift-Register (MLFSR) synthesis problem has many practical applications in fields such
as coding theory, cryptography and systems theory, see e.g. the references in [1]. The problem can be formulated as follows:
over some field F, given ` polynomials S1(x), . . . , S`(x) ∈ F[x] and ` “lengths” m1, . . . ,m` ∈ Z+, find a lowest-degree
polynomial Λ(x) such that there exists polynomials Ω1(x), . . . ,Ω`(x) satisfying

Λ(x)Si(x) ≡ Ωi(x) mod xmi

deg Λ > deg Ωi, i = 1, . . . , `

Several algorithms exist for solving this problem, some using Divide & Conquer (D&C) techniques and some not. Of the latter sort,
the fastest have running time O(`m2), where m = max{mi}: Schmidt and Sidorenko’s corrected version of Feng and Tzeng’s
Berlekamp–Massey generalisation [1], [2]; as well as Wang et al.’s lattice minimisation approach [3]. The best DC algorithm
is Sidorenko and Bossert’s variant of the corrected Feng–Tzeng BMA [4] and has running time O(`3m log2m log logm).
Obviously, whichever is fastest depends on the relative size of ` and m.

In this paper, we give algorithms that solve the following natural generalisation (MgLFSR): given S1(x), . . . , S`(x) ∈ F[x],
moduli G1(x), . . . , G`(x) ∈ F[x] as well as weights ν ∈ Z+ and w0, . . . , w` ∈ N0, find a lowest-degree polynomial Λ(x) such
that there exist polynomials Ω1(x), . . . ,Ω`(x) satisfying

Λ(x)Si(x) ≡ Ωi(x) mod Gi(x)

ν deg Λ + w0 > ν deg Ωi + wi, i = 1, . . . , ` (1)

We model the above problem as that of finding a “minimal” vector in a certain free F[x] module. Such a vector can be found
as an element of any basis of the module which satisfies certain minimality properties, and standard algorithms in the literature
can compute such a basis. We describe the Mulders–Storjohann algorithm [5] and give an improved complexity analysis for
our case, arriving at the running time O(`2m2), where m = maxi{degGi +wiν

−1}. We then demonstrate how this algorithm
is amenable to two distinct speed-ups:
• A D&C variant achieving O(`3m log2m log logm); for general module reduction, this algorithm is known as Alekhnovich’s

[6], but we point out it is a variant of Mulders–Storjohann.
• A new demand-driven variant utilising the special form of the module of the MgLFSR to achieve complexity O(`mP̃ (m)),

where P̃ (m) = m if all Gi are sparse (in particular, if they are powers of x) and P̃ (m) = m logm log logm otherwise.
These complexities match the best known ones for the MLFSR case. Our approach draws much inspiration from Fitzpatrick’s
module view on the classic Key Equation [7], and can be seen as a natural extension to this. Though our initial aim was a
solution to the MLFSR, the MgLFSR emerged as generalisations also easy handled; in Section VI we give an application of
this generality with a new algorithm for decoding Reed Solomon codes beyond half the minimum distance.

I I . P R E L I M I N A R I E S

A. Notation

In the sequel, we will refer to the Si, Gi as well as the weights ν, w0, . . . , w` as being from a particular instance of the
MgLFSR. We will use the term “solution” of this MgLFSR for any vector (λ, ω1, . . . , ω`) ∈ F[x]`+1 which satisfies the
equations of (1) for i = 1, . . . , `; a solution where deg λ is minimal is called a minimal solution, and we seek one such.



We will assume that degSi < degGi for each i; for otherwise replacing Si with (Si mod Gi) admits exactly the same
solutions to the MgLFSR. We also assume that w0 < maxi{degSi + wi} since otherwise (1, S1, . . . , S`) is the minimal
solution.

We extensively deal with vectors and matrices over F[x]. We use the following notational conventions:
• A matrix is named uppercase: V . Rows use the same letter lowercase and indexed: vi. If v is a vector, then vj are its

elements; the cells of matrices have double subscripts: vi,j . We’ll use zero-indexing, so if v has length `+ 1 its elements
are v0, . . . , v`.

• The degree of a non-zero vector v is deg v = maxi{deg vi}. The degree of a matrix V is deg V =
∑
i deg vi. The

max-degree of V is maxdeg V = maxi,j{deg vi,j}.
• Let the leading position of a non-zero vector v be LP(v) = max{j | deg vj = deg v}. The leading term is the polynomial

LT(v) = vLP(v).
In complexity estimates, we will let m = maxi{degGi + wi

ν }. P (m) will be the cost of multiplying two polynomials of
degree at most m; we can set P (m) = m logm log logm using Schönhage-Strassen, see e.g. [8, Theorem 8.23].

B. Satisfying the congruence equations

We can consider the space M of all vectors (λ, ω1, . . . , ω`) ∈ F[x]`+1 such that λSi ≡ ωi mod Gi for i = 1, . . . , `.
Solutions are thus those vectors such that ν deg λ+ w0 > ν degωi + wi.

All restrictions defining M are F[x]-linear so M is a module over F[x]. Shortly, we’ll see that M is free, so any finite basis
can be represented as a matrix where each row corresponds to a basis element. We will in the sequel often simply say “basis”
for such a matrix representation.

Lemma 1: The following is a basis for M:

M =


1 S1 S2 · · · S`

G1

0G2

0
. . .

G`


Proof: Clearly, each row of M is in M. Since any vector v ∈M satisfies v0Si ≡ vi mod Gi for i = 1, . . . , `, it means

there exists some p1, . . . , p` ∈ F[x] such that vi = v0Si + piGi. Therefore v = v0m0 + p1m1 + . . .+ p`m`.
To deal with the weights of the MgLFSR in an easy manner, we will introduce a mapping which will “embed” the weights

into the basis. Define Φ : F[x]`+1 → F[x]`+1 by(
a0(x), . . . , a`(x)

)
7→
(
xw0a0(xν), . . . , xw`a`(x

ν)
)

In the case of MLFSR, Φ is simply the identity function. Extend Φ element-wise to sets of vectors, and extend Φ row-wise
to (`+ 1)× (`+ 1) matrices such that the ith row of Φ(V ) is Φ(vi). Note that Φ(M) is a free F[xν ]-module of dimension
`+ 1, and that any basis of it is by Φ−1 sent back to a basis of M.

Lemma 2: A non-zero s ∈ M is a minimal solution to the MgLFSR if and only if LP(Φ(s)) = 0 and for all non-zero
Φ(b) ∈ Φ(M) with LP(Φ(b)) = 0 it holds that deg Φ(s) ≤ deg Φ(b).

Proof: s = (Λ,Ω1, . . . ,Ω`) ∈ M is a solution to the MgLFSR if and only if LP(Φ(s)) = 0, since ν deg Λ + w0 >
ν deg Ωi + wi ⇐⇒ deg(xw0Λ(xν)) > deg(xwiΩi(x

ν)). Since deg Φ(b) = ν deg b0 whenever LP(Φ(b)) = 0, s is then a
minimal solution if and only if deg(Φ(s)) is minimal for vectors in Φ(M) with leading position 0.

C. Module minimisation

Definition 3: A full-rank matrix V ∈ F[x](`+1)×(`+1) is in weak Popov form if an only if the leading position of all rows
are different. The orthogonality defect of V is ∆(V ) , deg V − deg detV .
The concept of orthogonality defect was introduced by Lenstra [9] for estimating the running time of his algorithm on module
minimisation; we will use it to a similar effect. The following lemma gives the foundations for such a use; we omit the proof
which can be found in [10]:

Lemma 4 ( [10, Lemma 11]): If a matrix V over F[x] is in weak Popov form then ∆(V ) = 0.
Note that for any square matrix V , ∆(V ) ≥ 0; thus since the determinant is the same for any basis of the module for which
V is a basis, ∆(V ) measures how much deg V is greater than the minimal degree possible. Due to its special form, M has
particularly low orthogonality defect:

Lemma 5: ∆(Φ(M)) = max{wi + ν degSi(x)} − w0 ≤ νm− w0.
Proof: Since M is upper triangular det(Φ(M)) = xw0

∏`
i=1 x

wiGi(x
ν) and the lemma follows.

Lastly, a crucial property of matrices in weak Popov form:



Lemma 6: Let V ∈ F[x](`+1)×(`+1) be a basis in weak Popov form of a module V . Any non-zero b ∈ V satisfies deg v ≤ deg b
where v is the row of V with LP(v) = LP(b).

Proof: Since V is a basis of V , there exists p0, . . . , p` ∈ F[x] such that b = p0v1 + . . .+ p`v` where the vi are rows of
the V . But the vi all have different leading position, so the pivi must as well for those pi 6= 0. Therefore, there is exactly one
j such that LP(b) = LP(vj) = LP(pjvj) and deg b = deg(pjvj) = deg pj + deg vj .

Combining Lemma 2 and Lemma 6 we see that a basis for Φ(M) in weak Popov form must contain a row Φ(s) such that
s is a minimal solution to the MgLFSR. Any algorithm which brings F[x]-matrices to weak Popov form can thus be used to
solve the MgLFSR.

I I I . S I M P L E M I N I M I S AT I O N

Definition 7: Applying a row reduction on a full-rank matrix over F[x] means to find two different rows vi,vj , deg vi ≤ deg vj
such that LP(vi) = LP(vj), and then replacing vj with vj − αxδvi where α ∈ F and δ ∈ N0 are chosen such that the leading
term of the polynomial LT(vj) is cancelled.

Define a value function for vectors ψ : F[x]`+1 → N0:

ψ(v) = (`+ 1) deg v + LP(v) (2)

Lemma 8: If v′j is the vector replacing vj in a row reduction, then ψ(v′j) < ψ(vj).
Proof: We can’t have deg v′j > deg vj since all terms of both vj and αxδvi have degree at most deg vj . If deg v′j < deg vj

we are done since LP(v′j) < `+ 1, so assume deg v′j = deg vj . Let h = LP(vj) = LP(vi). By the definition of LP(·), all terms
in both vj and αxδvi to the right of h must have degree less than deg vj , and so also all terms in v′j to the right of h satisfies
this. The row reduction ensures that deg v′j,h < deg vj,h, so it must then be the case that LP(v′j) < h.

The following elegant algorithm for general F[x]-module minimisation is due to Mulders and Storjohann [5]. Correctness
and complexity is established in Lemma 9, whose proof is modelled over the proof in [5] but specialised for input of the form
of Φ(M).

Algorithm 1 Mulders–Storjohann
Input: V = Φ(M).
Output: A basis of Φ(M) in weak Popov form.

1 Apply row reductions on the rows of V until no longer possible.
2 return V .

Lemma 9: Algorithm 1 is correct. It performs less than (`+1)(m−w0ν
−1 +2) row reductions and has asymptotic complexity

O(`2m2).
Proof: Since the row reductions are performed over F[x], we first need to argue that we do not leave the F[xν ] module

for V to continue to be a basis of Φ(M) after each row reduction: however, since any u,v ∈ Φ(M) have deg ui ≡ deg vi
mod ν for all i, the xδ scalar in each row reduction is a power of xν ; thus, they are indeed F[xν ] row reductions. Since we
can apply a row reduction on a matrix if and only if it is not in weak Popov form, the algorithm must bring V to weak Popov
form in case it terminates.

Termination follows directly from Lemma 8 since the value of a row decreases each time a row reduction is performed. We
can be more precise, though. For any non-zero v ∈M:

ψ(Φ(v)) = (`+ 1)(ν deg vLP(Φ(v)) + wLP(Φ(v))) + LP(Φ(v))

≡ (`+ 1)wLP(Φ(v)) + LP(Φ(v)) mod (`+ 1)ν

So on any given interval of size (`+1)ν, ψ(Φ(v)) can attain at most `+1 of the values, depending on its leading position. Denote
now by Φ(U) the matrix in weak Popov form returned by the algorithm. Due to the above, the algorithm will perform a row
reduction on the ith row at most

⌈
`+1

(`+1)ν

(
ψ(Φ(mi))−ψ(Φ(ui))

)⌉
times. Since deg(Φ(U)) = deg det(Φ(U)) = deg det(Φ(M))

and the LP(Φ(ui)) are all different, the total number of row reductions is then upper bounded by:∑`
i=0

⌈
ν−1

(
ψ(Φ(mi))− ψ(Φ(ui))

)⌉
≤ `+ 1 + `+1

ν (deg(Φ(M))− deg(Φ(U))) + LP(Φ(m0))

≤ `+1
ν ∆(Φ(M)) + 2`+ 1 (3)

For the asymptotic complexity, note that during the algorithm, no polynomial in V will have larger degree than
maxdeg (Φ(M)) = νm. Since the polynomials in Φ(M) are sparse with only every νth coefficient non-zero, they can
be represented and manipulated as fast as usual polynomials of degree m. One row reduction consists of `+ 1 times scaling
and adding two such polynomials.



I V. T H E D I V I D E & C O N Q U E R S P E E D - U P

Algorithm 1 admits a D&C version which is due to Alekhnovich [6]. However, he seemed not to be aware of the work
of Mulders and Storjohann, and that his algorithm is indeed a variant of theirs. Since all the formal results we need are in
[6]—as well as the more general analysis in [11]—we will here only give an overview of the algorithm and its connection to
Algorithm 1, as well as the complexity result.

The algorithm works by structuring its row reductions in a tree-like fashion; more precisely it hinges on the following series
of observations, all of which are proved in [6]:

1) Imagine the row reductions bundled such that each bundle reduces maxdeg V by 1, where V is the result of applying
all earlier row reductions to the input.

2) To calculate the row reductions in one such bundle on V , one needs for each row vi of V to know only the monomials
in vi having degree deg vi.

3) Therefore, to calculate a series of t such bundles, one needs to know only monomials of degree greater than deg vi − t.
Call the matrix containing only these a t-projection of V .

4) Any series of row reductions can be represented as a matrix U ∈ F[x](`+1)×(`+1) where the product UV is then the
result of applying those row reductions to V .

5) Thus, we can structure the bundles in a binary tree, where to calculate the row reduction matrix for some node, representing
say t bundles, given the matrix V , one first recursively calculates the left half of the bundles on a t/2-projection of V to
get a row reduction matrix U1. Then recursively calculate the right half of the bundles on a t/2-projection of U1V to
get U2, and the total row reduction matrix becomes U2U1.

We have exactly the same choice of row reductions as in Algorithm 1, but the computations are now done on matrices where
each cell contains only one monomial (since, in the leaves of the tree, we work on 1-projections), speeding up those calculations
by a factor m. Collecting the row reductions is then done using matrix multiplications.

That Alekhnovich’s algorithm can bring Φ(M) to weak Popov form follows immediately from its general correctness;
however, for a better estimate on its running time, we need to correctly consider the effects of weights. This is not done in [6],
but it was done by Brander in [11]. With observations similar to those in Section III, for our case we get:

Lemma 10: Alekhnovich’s algorithm on Φ(M) has asymptotic complexity O(`3P (m) logm)
Proof: Inserting into [11, Theorem 3.14], we get complexity O(`2t) for computing the row reductions, added with

O(`3P (ν−1t) log(t)) for all matrix multiplications, where t = deg(Φ(M))− deg(Φ(U)) and Φ(U) is the output. In our case,
we set t = ∆(Φ(M)) ≤ νm to ensure Φ(U) is in weak Popov form. However, Brander used in both estimates that the number
of row reductions was bounded by O(`t); since we showed in Lemma 9 that it was indeed only O(`m), we can compute the
row reductions in only O(`2m) and the matrix multiplications in O(`3P (m) logm).

V. T H E D E M A N D - D R I V E N S P E E D - U P

We will show how to obtain a faster variant of Algorithm 1 using the following observation: it is essentially sufficient to
keep track of only the first column of V during the algorithm, and then calculate the other entries when the need arise. The
resulting algorithm bears a striking resemblance to the Berlekamp-Massey for MLFSR [1], though of course the manner in
which these algorithms are obtained differs.

Overload ψ to N0 ×{0, . . . , `} → N0 by ψ(θ, i) = (`+ 1)θ+ i, i.e. for any non-zero v ∈ F[x]`+1, ψ(v) = ψ(deg v, LP(v)).
Define the helper function

previous(θ, i) = arg max
θ′,i′
{ψ(θ′, i′) | ψ(θ′, i′) < ψ(θ, i) ∧ θ′ ≡ wi′ mod ν}

previous gives the degree and leading position a vector in Φ(M) should have for attaining the greatest possible ψ-value less
than ψ(θ, i).

We will prove the correctness of the algorithm by showing that the computations correspond to a possible run of a slight
variant of Algorithm 1; first we need a technical lemma:

Lemma 11: Consider a variant of Algorithm 1 where we, when replacing some vj with v′j in a row reduction, instead replace
it with v′′j = (v′j,0, v

′
j,1 mod G̃1, . . . , v

′
j,` mod G̃`). This does not change correctness of the algorithm or the upper bound on

the number of row reductions performed.
Proof: Correctness follows if we can show that each of the ` modulo reductions could have been achieved by a series

of F[xν ] row operations on the current matrix V after the row reduction producing v′, since then V would remain a basis of
Φ(M).

Consider the modulo reduction on the hth position. This could be achieved by adding a multiple of gh = (0, . . . , 0, G̃h, . . . , 0),
with position h non-zero, to v′. That this multiple is in F[xν ] follows from the fact that any u ∈ Φ(M) has deg uh ≡ wh
mod ν. Since gh is a row in Φ(M), then as long as this has not yet been row reduced, the hth position reduction is allowed.
Notice that if ψ(v′) < ψ(gh) then the reduction using gh is void.



Algorithm 2 Demand–Driven MgLFSR Minimisation

Input: S̃i = xwiSi(x
ν), G̃i = xwiGi(x

ν) for i = 1, . . . , `
Output: Λ(x), a minimal solution to the MgLFSR

1 (θ, i) = (deg, LP) of (xw0 , S̃1, . . . , S̃`)
2 if i = 0 then return 1
3 (λ0, . . . , λ`) = (xw0 , 0, . . . , 0)
4 αjx

θj = the leading monomial of G̃j for j = 1, . . . , `
5 while deg λ0 ≤ θ do
6 α = coefficient to xθ in (x−w0λ0S̃i mod G̃i)
7 if α 6= 0 then
8 if θ < θi then swap (λ0, α, θ) and (λi, αi, θi)
9 λ0 = λ0 − α

αi
xθ−θiλi

10 (θ, i) = previous(θ, i)
11 if i = 0 then (θ, i) = previous(θ, i)

12 return x−w0λ0(x1/ν)

Introduce now a loop invariant involving Jh = {gh}, a subset of the current rows in V having two properties: that gh
can be constructed as an F[xν ]-linear combination of the rows in Jh; and that each v ∈ Jh has ψ(v) ≤ ψ(gh). After row
reductions on rows not in Jh, the hth modulo reduction is therefore allowed, since gh can be constructed by the rows in Jh.
On the other hand, after a row reduction on a row v ∈ Jh by some vk resulting in v′, the hth modulo reduction has no effect
since ψ(v′) < ψ(v) ≤ ψ(gh). Afterwards, Jh is updated as Jh = Jh \ {v} ∪ {v′,vk} and the loop invariant is kept since
ψ(vk) ≤ ψ(v).

Since ψ(v′′j ) ≤ ψ(v′j) the proof of Lemma 9 shows that the number of row reductions performed is not worse than in
Algorithm 1.

Lemma 12: Algorithm 2 is correct.
Proof: Let V be the matrix continually changing in Lemma 11’s variant of Algorithm 1. Let us say for a matrix U that

there is a “conflict on (i, j)” if LP(ui) = LP(uj) and degui ≤ deguj , i.e. one could perform a row reduction on ui,uj .
Observe that initially V = Φ(M) has exactly one conflict, and that after every row reduction, either there is only one conflict
and it involves the replaced row, or there are zero conflicts and the algorithm is finished. Thus for notational convenience, we
consider a further variant of Algorithm 1 where we possibly swap the two rows after a row reduction such that the reduced is
the zeroth row afterwards. Note furthermore that initially LP(vi) = i for i ≥ 1, and that the above swapping strategy would
keep also this invariant during Algorithm 1.

We will demonstrate the following additional invariants:
1) Each iteration of Algorithm 2 where lines 7–8 are run correspond to one row reduction on V ;
2) (λ0, . . . , λ`) will correspond to the first column of V ;
3) αjx

θj will be the leading monomial of LT(vj) for j ≥ 1;
4) ψ(v0) ≤ ψ(θ, i)

These invariants are clearly true after initialisation; assume now they are true on entry to the loop body, and we will show they
are true on exit. Once Algorithm 2 terminates, v0 will have LP(v0) = 0, so by Lemma 2, λ0 will be a minimal solution to the
MgLFSR.

In Lemma 11’s variant of Algorithm 1, note that for any row v of V , vj = (x−w0v0S̃j mod G̃j) for j ≥ 1. Thus, in Line
6, αxθ will be the leading monomial of v0,i if and only if ψ(v0) = ψ(θ, i), and otherwise, due to Invariant 4, α = 0. In the
latter case, we simply update (θ, i) to reflect our improved knowledge, keeping the invariants.

However, if α 6= 0, there is a conflict on (0, i). Since there are no other conflicts, Algorithm 1 will perform the next row
reduction on this. We perform a swap such that the row to be updated, i.e. the one with greatest degree, is the zeroth; this
corresponds to line 7 (if their degrees are equal, there is a choice on which of rows 0 or i to reduce, and we choose 0). Note
that Invariants 3–4 are still true after the possible swap.

Algorithm 1 will update v0 exactly as v′0 = v0 − α
αi
vi, due to the above and Invariant 3. Modulo reductions are possibly

applied afterwards. Thus the update in Line 9 ensures that (λ0, . . . , λ`) is the first column of V after the row reduction.
For complexity estimates, define P̃ (t) as the complexity of calculating Line 6 and Line 9, with t being the maximal degree
of the in-going polynomials. We could calculate Line 6 as a polynomial multiplication followed by a division, so at least
P̃ (t) ⊂ O(P (t)). However, sometimes we can do better: if all Gi(x) are powers of x, the modulo reduction in Line 6 is free,
and we can perform the remaining computation in only O(t). In general, if the number of non-zero monomials of each Gi(x)
is upper-bounded by some constant, the computation can be done in O(t).



Lemma 13: Algorithm 2 has complexity O(`mP̃ (m)).
Proof: Each iteration through the loop costs at most P̃ (m) since all polynomials are sparse of degree at most νm. Due to

Invariant 4 and Line 10, each iteration decreases the upper bound on one of V ’s row’s value. We counted in (3) that this can
done at most O(`m) times.

V I . P O W E R - G A O D E C O D I N G G R S C O D E S

Schmidt et al. demonstrated how one can decode low-rate Generalised Reed-Solomon (GRS) codes beyond half the minimum
distance by solving an MLFSR [12]. This “Power decoding” works by noting that the classical Key Equation can be extended
to several ones. The resulting MLFSR problem could of course be solved using the algorithms of this paper.

We will briefly present a similar decoding strategy which instead extends what one could call the Key Equation of Gao’s
decoding algorithm [13]. It should be noted that this algorithm could also be used for decoding Interleaved GRS codes, just as
the one by Schmidt et al. [14], [15].

Let C = {
(
f(α0), . . . , f(αn−1)

)
| f ∈ F[x],deg f < k} be a (simple) [n, k, d = n − k + 1] GRS code with evaluation

points α0, . . . , αn−1 ∈ F. Consider a sent codeword c ∈ C which comes from evaluating some f(x). Let c be subjected to an
unknown error pattern e ∈ Fn such that r = c+ e is received. Define the (unknown) error locator as Λ(x) =

∏
ej 6=0(x− αj).

Define now also the known G(x) =
∏n−1
j=0 (x− αj) as well as R(x) by R(αj) = rj for j = 0, . . . , n− 1.

Lemma 14: Λ(x)Ri(x) ≡ Λ(x)f i(x) mod G(x), i ∈ Z+

Proof: Polynomials are equivalent modulo G(x) if and only if they have the same evaluation at α0, . . . , αn−1. For αi
where ei 6= 0, both sides of the above evaluate to zero, while for the remaining αi they both give Λ(αj)r

i
j = Λ(αj)c

i
j .

This leads us to consider the following MgLFSR: choose some ` ∈ Z+. Let Gi = G and Si = (Ri mod G), as well as
ν = 1, w0 = `(k − 1) + 1 and wi = (`− i)(k − 1) for i = 1, . . . , `. The vector s = (Λ,Λf, . . . ,Λf `) will then be a solution
to the MgLFSR.

To find s with the algorithms of this paper, we need it also to be minimal, and that any other minimal solution is a constant
multiple of s. We can estimate an upper bound on the degree of a minimal solution (λ, ω1, . . . , ω`) as follows: since λSi ≡ ωi
mod Gi implies that there exists pi ∈ F[x] with deg pi = deg(λSi) such that λSi − piGi = ωi, we can consider the MgLFSR
as a homogeneous linear system of equations in the coefficients of λ, p1, . . . , p`, such that λSi− piGi should have coefficient 0
for xbdeg Λ−ν−1(wi−w0)c, . . . , xdeg(ΛSi). This linear system has non-zero solutions whenever deg λ ≥ `

`+1n−
`
`+1 −

1
2`(k− 1).

Thus, whenever the error locator Λ has degree at least this, we cannot hope that s is a minimal solution. For fewer errors than
the above, we need a deeper analysis to estimate the probability that s is the minimal solution; such an analysis is done for
the original Power decoding [12], where they find the same upper bound for error correction.

Using Algorithm 1, we could solve this MgLFSR in O(`2n2), while Alekhnovich’s algorithm could do it in
O(`3n log2 n log log n). Algorithm 2 would be O(`n2 log n log log n). One of the two latter will be fastest, but it will depend
on the relation between n and `. Note that the pre-processing of calculating R and G can be done in O(n log2 n log log n),
see e.g. [8, p. 235].

V I I . C O N C L U S I O N

We have introduced the generalisation MgLFSR of the well-studied problem of synthesising shift-registers with multiple
sequences, and shown how this can be modeled as that of finding “minimal” vectors in certain F[x] modules. There are
off-the-shelf algorithms in the literature for solving this, and we demonstrated how a particularly simple of those—the Mulders–
Storjohann algorithm [5]—runs faster on MgLFSR instances than on general F[x]-matrices.

We then described how this algorithm is amenable to two speed-ups: firstly, a D&C-approach leads to the known Alekhnovich’s
algorithm [6] which we also showed has better than generic running time for MgLFSRs. Secondly, by observing that for MgLFSRs
we can postpone calculations in a demand-driven manner, we reach an algorithm resembling the Berlekamp-Massey for MLFSRs
[1], [16].

The two presented variants are as fast as the best existing algorithms for the usual MLFSR, but they are more flexible and
have easy proofs of correctness due to the algebraic foundations from module minimisation. The two speed-ups, unfortunately,
seem incompatible.

The utility of the MgLFSR generalisation was demonstrated by a new decoding algorithm for GRS codes: a variant of
the “Power decoding” approach by Schmidt et al. [12]. Though this did not need the generalisation of the ν-weight, that was
included with the outlook of decoding Algebraic Geometric codes, inspired by the approach of Brander [11].
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