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INVESTIGATION

Identi � cation of a Classical Mutant in the Industrial
Host Aspergillus niger by Systems Genetics: LaeA Is
Required for Citric Acid Production and Regulates
the Formation of Some Secondary Metabolites
Jing Niu,* Mark Arentshorst,* P. Deepa S. Nair,* Ziyu Dai, † Scott E. Baker, ‡ Jens C. Frisvad,§

Kristian F. Nielsen, § Peter J. Punt,* ,** and Arthur F.J. Ram* ,1

*Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, The
Netherlands, †Chemical and Biological Process Development Group, and ‡Environmental Molecular Sciences Laboratory,
Paci� c Northwest National Laboratory, Richland, Washington 99352, §Department of Systems Biology, Technical
University of Denmark, 2800 Kgs Lyngby, Denmark, and** Dutch DNA Biotech, 3700 AJ Zeist, The Netherlands

ABSTRACT The asexual� lamentous fungus Aspergillus niger is an important industrial cell factory for citric acid
production. In this study, we genetically characterized a UV-generatedA. niger mutant that was originally isolated
as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed
that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying
phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful,
we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the muta-
tion responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used
to generate haploid segregants der ived from diploids by loss of whole chromosomes. We found that the non-
acidifying phenotype was caused by a point mutation in the laeA gene. LaeAencodes a putative methyltransferase-
domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in
other citric acid production strains. The unexpected link between LaeA and citric acid production could provide
new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly,
the secondary metabolite pro� le of a DlaeA strain differed from the wild-type strain, showing both decreased and
increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary
metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.
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Aspergillus nigeris a biotechnologically important� lamentous fun-
gus and is used as an industrial cell factory for the production of
organic acids and enzymes (Pelet al.2007; Andersenet al.2011). A
key characteristic ofA. nigeris the rapid acidi� cation of the culture

medium during exponential growth owing to the secretion of mainly
gluconic acid, citric acid, and oxalic acid, resulting in a pH below 2.0
in uncontrolled batch cultures. Medium acidi� cation has some im-
portant consequences for the behavior ofA. nigeras a cell factory
because both organic acid production and enzyme production are
highly dependent on the ambient pH. For further reading about the
metabolic pathways involved in organic acid biosynthesis we refer to
two recent reviews (Kubicek and Karaffa 2010; Li and Punt 2013).
The genome sequence of the citric acid production wild-type strain
(ATCC1015) has been determined, and a spontaneous mutant of this
strain (ATCC11414) was used for subsequent studies of citric acid
production (Perlmanet al.1946; Baker 2006; Andersenet al.2011).
Organic acid production is highly dependent on medium composi-
tion and, interestingly, also on the environmental pH. Under labo-
ratory conditions using bioreactor-controlled fermentation, the pH
can be maintained at a� xed value, and this has revealed that the
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production of speci� c organic acids is clearly pH-dependent. Citric
acid production is optimal at low pH (2.0) (Karaffa and Kubicek
2003; Magnuson and Lasure 2004), and requires high glucose and
low manganese concentrations (de Ruijteret al.1999; Andersenet al.
2009). Oxalic acid production is most ef� cient between pH 5.0 and
8.0, and absent at pH 3.0 (de Ruijteret al.1999; Andersenet al.2009).
Production of gluconic acid is also pH-dependent and optimal at pH
6.0, but absent at pH 2.5 (Andersenet al.2009). Gluconic acid and
citric acid can be metabolized byA. niger, while oxalic acid is not
taken up and metabolized and accumulates in the medium (Poulsen
et al.2012). Therefore, oxalic acid accumulation is the main cause of
acidi� cation of the medium during the late growth phases of batch
cultures. Indeed, anA. nigermutant in which oxalic acid synthesis
was abolished through inactivation of the oxaloacetate hydrolase
(oahA) gene behaves as a nonacidifying mutant (Pedersenet al.
2000; Andersenet al.2009; Liet al.2013).

Ambient pH is also an important environmental factor in� uencing
the expression of extracellular enzymes (van den Homberghet al.1996;
Peñalva and Arst 2002). As a saprophytic fungus,A. nigeris well known
for its ability to secrete enzymes that are required for the decay of
organic plant-derived polysaccharides and proteins. The in� uence on
ambient pH on protease production has been studied in more detail
and it has been shown that at pH 4.0 and lower, protease activity is high.
Protease activities are lower at pH 5.0 and decrease further at pH 6.0
(Braaksma and Punt 2008; Braaksmaet al.2009). The genes encoding
the major extracellular proteasespepAand pepBare induced under
acidic conditions (Jarai and Buxton 1994; van den Homberghet al.
1997a, 1997b). The regulation of proteases is not only dependent on
ambient pH but is also controlled by nutrient conditions, including
nitrogen source and carbon availability (Braaksmaet al. 2009; van
den Homberghet al.1997a). Several wide-domain transcription factors
are involved, including the nitrogen regulator AreA (MacCabeet al.
1998; Lenouvelet al.2001), the general repressor TupA (Schachtschabel
et al.2013), the carbon repressor protein CreA, and PacC (Fraissinet-
Tacheet al.1996). InA. nidulans, PacC is a transcriptional activator
of alkaline-induced genes and a repressor of acid-induced genes
(Peñalva and Arst 2002). Analysis of the expression of protease genes
in pacCmutants ofA. nigerhas indicated the involvement of PacC in
the regulation ofpepAand pepB(Fraissinet-Tacheet al. 1996). In
addition, a gene encoding a protease-speci� c, positive-acting tran-
scription factor required for the induction of several protease-encoding
genes, includingpepAandpepB, has been identi� ed. A strain carrying
a mutation in this gene,prtT, was identi� ed in a mutant screen for
protease-minus mutants (Puntet al.2008). TheprtT gene encodes a
Zn(II)2Cys6 transcription factor and controls (in combination with the
wide-domain regulators CreA, AreA, TupA, and PacC) the expression
of protease genes.

TheprtT mutant was isolated by a classical forward genetic mutant
screen for protease mutants (Matternet al.1992). Such screens are still
powerful tools to identify new and unexpected gene functions. To
identify the gene mutated in a particular mutant, complementation
analysis with genomic libraries is traditionally used. Such a genomic
cosmid library is also available forA. nigerand has been successfully
used before (e.g., Puntet al.2008; Damveldet al.2008; Meyeret al.
2009). However, several problems are encountered in identifying com-
plementation mutants, either because the gene might be lacking in the
library or because of complications in screening thousands of trans-
formants for complementation. Whole genome sequencing is an alter-
native method for identifying the mutation that is responsible for a
particular phenotype. As classical mutagenesis might also result in
mutations unrelated to the phenotype, several researchers have used

bulk segregant analysis to identify the relevant mutations. This method
was� rst developed in plant genetics (Michelmoreet al. 1991) and,
subsequently, used in combination with next-generation sequencing
in various other organisms includingSaccharomyces cerevisiae
(Wengeret al.2010; Dunham 2012),� lamentous fungi (Pomraning
et al.2011; Nowrousianet al.2012; Boket al.2014), and insects (Park
et al.2014). In this approach, the mutant of interest is crossed to a
wild-type strain, haploid segregants displaying the phenotype of in-
terest are pooled, and DNA from this pool of segregants is sequenced
using deep sequencing (e.g., Illumina). In addition to the pooled seg-
regants, the two parental strains from the cross are sequenced, and
single-nucleotide polymorphism (SNP) analysis between the two pa-
rental strains is performed. The SNP that causes the phenotype will be
conserved in all the progeny displaying the phenotype (homozygous
SNP), while mutations that are not related to the phenotype will have a
50% chance to be present in the genomic DNA of the pool (heterozy-
gous SNPs). SNPs that are located close to the mutations of interest will
cosegregate and can only separate via recombination. SinceA. niger
lacks a sexual cycle, we have used the parasexual cycle ofA. niger
(Pontecorvoet al.1953; Boset al.1988) to generate a pool of segregants.
In this study, we have used bulk segregant analysis combined with
Illumina sequencing to characterize the nonacidifying D15 mutant of
A. niger. Here, we show that a mutation in thelaeAgene causes the
nonacidifying phenotype of the D15 mutant, and that the loss oflaeA
strongly affects the production of secondary metabolites inA. niger.

n Table 1 Aspergillus niger strains used in this study

Strain Description Reference

N402 cspA1 derivative of
ATCC9029

Bos et al. 1988

N879 fwnA1, argH12, pyrA5,
leuA1,pheA1, lysD25,
oliC2,crnB12

Bos et al. 1993

AB4.1 pyrG378 in N402 van Hartingsveldt
et al. 1987

AB1.13 prtT-13, pyrG378 Punt et al. 2008
AB1.13-pyrG+ prtT-13 Punt, unpublished
MA169.4 DkusA::DR_amdS_DR,

pyrG378
Carvalho et al.

2010
D15#26 prtT-13,, pyrG378,

nonacidifying
This study

D15#26-pyrG+ prtT-13, nonacidifying Punt, unpublished
MA273.1 prtT-13, pyrG378,

DfwnA::hygB,
nonacidifying

This study

JN26.1 prtT-13, pyrG378,
DfwnA::hygB
nonacidifying,
pAO4-13-LaeA

This study

AB1.13� oahA#76 DoahA::pyrG#76 in
AB1.13

Li et al. 2013

AW8.4 olvA::pyrG in MA169.4 Jørgensen
et al. 2011

JN3.2 argB::hygB in AW8.4 Jing, unpublished
JN20 Diploid

MA273.1 x JN3.2
This study

JN21.1 D15#26 pAO4-13 This study
JN22.7 D15#26 pAO4-13-LaeA This study
JN24.6 DlaeA in

AB4.1kusA::AfpyrG
This study

KB1001 kusA::pyrG Chiang et al. 2011
KB1001DlaeA DlaeA::hygB in KB1001 This study
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MATERIALS AND METHODS

Strains, media, and molecular methods
A. nigerstrains used in this study are listed in Table 1. Because of the
complexity of the strain background of the D15 mutant, a schematic
overview of the strain lineages is given in Figure 1. Strains were grown
on minimal medium (MM) (Bennett and Lasure 1991) containing
1% (w/v) glucose, or on complete medium (CM) containing 2% (w/v)
glucose, 0.5% (w/v) yeast extract, and 0.1% (w/v) casamino acids in
addition to MM. When required, plates or medium were supplemented
with 10 mM uridine or 0.2 mg/ml arginine. Plates were incubated at
30� . Skimmed milk, MacConkey agar plates to assay acidi� cation con-
tained MM + glucose medium without nitrate (ASP-N) (Arentshorst
et al. 2012) supplemented with 1% skimmed milk (Difco) and 2%
MacConkey agar. Preacidi� ed (pH 3.0) skimmed milk, MacConkey
agar plates were used to assay protease activity. The pH was set at 3.0
by the addition of hydrogen chloride. Citric acid production (CAP)
medium was prepared as described previously (Daiet al.2004).

Ampli� cation of plasmid DNA was performed using the XL1-Blue
strain, which was transformed using the heat-shock protocol as de-
scribed (Inoueet al.1990). Transformation ofA. nigerwas performed
as described by Arentshorstet al.(2012), using 40 mg lysing enzyme
(L-1412, Sigma-Aldrich, St. Louis) per g wet weight of mycelium.A. niger
genomic DNA was isolated as described previously (Arentshorstet al.
2012). The (a-32P)dCTP-labeled probes were synthesized using the
Rediprime II DNA labeling system (Amersham Pharmacia Biotech,
Piscataway, NJ), according to the instructions of the manufacturer.
All molecular techniques were carried out as described previously
(Sambrooket al. 1989). Sequencing was performed by Macrogen
Europe (Amsterdam, The Netherlands).

Construction of plasmids and strains
D15#26 was transformed with thefwnA::hygB disruption plasmid
(Jørgensenet al. 2011) to generate MA273.1 (prtT-13, pyrG378,
DfwnA::hygB, nonacidifying). Strain JN3.2 (olvA::pyrG, argB::hygB)
was obtained by disrupting theargBgene ofA. niger(Lenouvelet al.
2001) in AW8.1 (Jørgensenet al.2011). Details for the disruption of
argBin JN6.2 will be published elsewhere (J. Niu and A. F. J. Ram,
unpublished results).

Disruption of thelaeAgene (An01g12690) in the N402 background
was carried out using the split-marker approach (Arentshorstet al.
2015). The 910 bp-long 59-� ank and 901 bp-long 39-� ank regions were
ampli� ed using the primers listed in Supporting Information,Table S1.
These PCR fragments were used in a fusion PCR with theA. oryzae
pyrG gene (pAO4-13) (de Ruiter-Jacobset al.1989) to generate the
split-marker fragments. After ampli� cation, the 59� ank-pyrG and
39� ank-pyrGfragments were puri� ed from the agarose gel and simul-
taneously transformed to the recipientA. nigerstrain AB4.1. Putative
laeAdisruption strains were puri� ed by two consecutive single colony
streaks. Genomic DNA was isolated as described (Arentshorstet al.
2012) and Southern blot analysis was performed to con� rm proper
deletion. JN24.6 was used for further experiments.

TheDlaeAmutant strain in the ATCC11414 background was gen-
erated by homologous replacement oflaeAin the ATCC11414DkusA
derivative (Chianget al. 2011). ThelaeAdeletion cassette was con-
structed by PCR ampli� cation of upstream and downstream regions
of theA. niger laeAgene using primers listed inTable S2. The hygrom-
ycin resistance marker was ampli� ed from pCB1003 (Fungal Genetics
Stock Center) by PCR using the oligonucleotides hph5 and hph3 (Table
S2). The DNA fragments were assembled into the backbone plasmid
vector of pBlueScript II SK(-), linearized with restriction endonucleases
HindIII and PstI using the Gibson assembly cloning kit (New England
Biolabs). The assembled plasmid DNA was transferred into Top10
Escherichia colicompetent cells by lithium acetate-mediated transfor-
mation (Life Technologies). The transformed bacterial colonies were
screened for DNA fragment insertion by restriction endonuclease di-
gestion withPvuII and XhoI. The DlaeA cassette was isolated from
plasmid DNA by digestion with endonucleasesHindIII and XbaI for
A. niger transformation. After puri� cation of hygromycin-resistant
transformants, properlaeAdeletion strains were identi� ed via diagnos-
tic PCR using primers laeAsc5 and laeAsc3 (Table S2).

The vector for complementing the nonacidifying phenotype of the
D15 mutant (pJN33) was made by amplifying thelaeAgene, including
promoter and terminator sequences, with primerslaeA(EcoRI)5f
andlaeA(EcoRI)6r. The 3139 bp-long PCR fragment was then cloned
into pJet1.2 (blunt-end cloning vector) and this was veri� ed by
DNA sequencing. Subsequently, the PCR fragment was excised from

Figure 1 Schematic overview of the lineage of the D15
mutant and its derivatives. The genotypes of the strains
are given in Table 1.
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pJet1.2-laeA using EcoRI and inserted intoEcoRI-digested plasmid
pAO4-13 to give pJN33 and transformed to the recipientA. niger
strains MA273.1 and D15#26. JN24.6 was complemented using the
same vector by performing cotransformation with the hygromycin re-
sistance gene-containing plasmid pAN7.1.

To sequence theoahAgene in the D15 mutants, two primers (Table
S1) were designed to amplify the open reading frame including 1 kb
� anking regions. The PCR fragment was cloned in pJet2.1 and fully
sequenced.

A. niger genetics and analysis of segregants
Parasexual crossings were performed as described (Boset al. 1988),
with minor modi� cations. Selecting of a balanced heterokaryon of a
cross between MA273.1 (prtT-13, pyrG378, DfwnA::hygB, nonacidify-
ing) and JN3.2 (olvA::pyrG, argB::nicB) was performed on MM after
pregrowth of both strains for 36 hr in 0.5 ml CM containing uridine
and arginine. The mycelial mat was fragmented using toothpicks and
incubated for 7 d on MM. Spores from heterokaryotic mycelium were
carefully isolated to prevent fragmentation of the mycelia,� ltered over
a double miracloth� lter and plated out on selective MM. Using two
color marker-containing, haploid strains, we could identify diploids
visually by selecting colonies that exclusively formed black spores. A
resulting diploid (JN20) was haploidized by adding benomyl (0.6mg/ml)
to CM supplemented with uridineand arginine. Haploid segre-
gants (fawn- or olive-colored sectors) were puri� ed and genotypically
analyzed for conidial spore color,pyrGandargBauxotrophies, acidi-
� cation, and protease production. Nonacidifying segregants were
collected and, in total, 140 nonacidifying segregants were obtained.
Seventy-eight segregants were individually grown in complete medium
and, from each strain, 200 mg fresh weight mycelia were collected for
genomic DNA isolation. Mycelia of� 20 strains (4 g of mycelia) was
mixed and ground, and genomic DNA was isolated. Equal amounts of
DNA of each of the four pools was pooled together to obtain the
genomic DNA pool for sequencing. Genomic DNA from D15#26
and JN3.2, and the pools was further puri� ed using Macherey-Nagel
NucleoBond Xtra columns and used for DNA sequencing.

DNA sequencing and data analysis
Illumina paired-end sequencing was performed by ServiceXS using
Illumina kits (cat# 1001809 and 1005063) and protocols according to
the instructions provided by the supplier. The quality and yield after
sample preparation were checked and were consistent with the expected
size of 300 bp after excision from the gel. Clustering and DNA
sequencing using Illumina cBot and HiSequation 2000 were performed
according to manufacturer’s protocols. Two sequencing reads of 100
cycles each using Read1 and Read2 sequencing primers were performed
with the � ow cell. For strains MA273.1 and JN3.2, 4.0 Gb of DNA
sequence were obtained. Two separate pools of segregant DNA, con-
sisting of 10.3 and 13.4 Gb of DNA sequence, respectively, were sepa-
rately sequenced. All raw high-throughput sequence data will be
deposited in the SRA database. Image analysis, base calling, and quality
check were performed with the Illumina data analysis pipeline RTA
v1.13.48 and/or OLB v1.9/CASAVA v1.8.2. Based on the mapped
reads, variants in the sample data were detected by comparison with
the reference genome of ATCC1015 (http://genome.jgi-psf.org/pages/
search-for-genes.jsf?organism=Aspni5), and between the samples by
using an in-house SNP pipeline v3.2 (ServiceXS). Validated variants
must be consistently found in one location in at least one sample with a
frequency of 0.7 or higher, in at least 20 overlapping reads (minimum
coverage) with no quality� ltering, before it is reported as a SNP. The
combined pool sample (23.7 Gb) was processed with a minimal variant
frequency of 0.3. For each SNP, it was veri� ed whether the SNP was in a
predicted protein-encoding region using theA. niger3.0 genome at JGI
and the SNP coordinates.

Culture conditions and metabolite analysis
Controlled bioreactor cultivations forA. nigerN402 and D15#26 were
performed as previously described, using� xed pH values varying from
pH 2 to pH 7 (Braaksmaet al. 2009). Organic acid analyses were
performed as described previously (Liet al.2013). Shake� ask cultures
containing 50 ml of MM were inoculated with 5· 107 spores and
incubated at 30� at 150 rpm. For each sampling time point, an indi-
vidual � ask was inoculated to determine biomass accumulation, and

Figure 2 MacConkey agar milk plates for assaying
medium acidi � cation. The milk powder in MacConkey
agar milk plates remains soluble at pH . 5.0. Acidi� ca-
tion around the colony results in precipitation of the
skimmed milk.
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culture pH, and to sample medium for acid and metabolite analysis.
Protease activities of culture medium samples were measured using the
P-check assay at pH 2.7 according to the supplier’s instructions (Jena
BioScience). Broth samples of N402, AB1.13, D15 andDlaeAtaken at
96 hr were analyzed for secondary metabolite production. A 5.0 ml
sample of fermentation broth (including biomass) was diluted with
5.0 ml isopropanol (LC-MS grade, Sigma-Aldrich), placed in an ultra-
sonication bath for 20 min, and centrifuged at 4000· g for 5 min. A 1ml
subsample was transferred to a 2 ml HPLC vial. For secondary metab-
olite analysis, N402, AB1.13, D15 andDlaeAwere grown on YES or
CYA agar in darkness at 25� for 7 d, 3 plugs of approx. 0.6 cm2 culture
were sampled and extracted using ethyl-acetate-dichloromethane-
methanol, evaporated to dryness, and redissolved in methanol (Nielsen
et al.2009).

Samples were then analyzed by liquid chromatography-high reso-
lution mass spectrometry on Agilent 1290 in� nity UHPLC (Agilent
Technologies, Torrence, CA) equipped with an Agilent Poroshell 120
phenyl-hexyl column (250 mm· 2.1 mm, 2.7mm particles), running an
acidic water/acetonitrile gradient. This was coupled to an Agilent 6550
Q-TOF-MS equipped with an ESI source and operated in positive
polarity, and sampling m/z 50-1700 in full scan and auto MS/MS mode
(Kildgaardet al.2014). Compounds were then identi� ed by MS/HRMS
spectra and retention time (Kildgaardet al.2014), and peaks integrated
using Agilent Quant Analysis 6.0 as described (Nielsen and Larsen
2015).

Cultivation to measure citric acid production under citric acid
production conditions were performed in glass baf� ed shake� asks of
250 ml, which were silanized with 200 ml of a 5% solution of dichlor-
odimethylsilane in heptane to minimize leaching of metals.A. niger
strains were grown in 75 ml CAP media containing 10 ppb Mn2+at 30�
and 200 rpm. Samples for citric acid analysis were taken after 5 d of
growth. Citric acid concentrations were determined with an end-point
spectrophotometric enzyme assay as described previously (Bergmeyer
1985) using 5ml of each culture supernatant.

Data availability
Strains and DNA sequence data are available upon request.

RESULTS

Isolation of a nonacidifying A. niger strain D15#26
In a gene-expression study aimed at overproduction of bacterial levan-
sucrase using cotransformation of low-proteaseA. nigermutant AB1.13
(Mattern et al.1992; Puntet al.2008) with theA. niger pyrGgene, a
nonacidifyingA. nigertransformant showing increased growth on me-
dium with inulin as a sole carbon source was isolated (E. Wanker and
P. Punt, unpublished results). Acidi� cation of the medium byA. niger
can be easily visualized using MacConkey agar milk plates. These plates
contain dissolved milk powder; they are clear at the initial pH of about
5, but form a white precipitate when the pH in the plate decreases to

below 4.0. Growth of the wild-type strain and accompanying acidi� ca-
tion of the medium results in a white precipitate around the colony
while no precipitate is formed in the D15 mutant (Figure 2).

The mutant, displayinga nonacidifyingphenotype, wascrossed toA.
nigerstrain N879 and a nonacidifyingpyrG-, prtT- segregant (D15#26)
was selected for further studies. Southern analysis of this segregant
showed that this segregant did not carry any additional remnants of
thepyrGgene copies used in the transformation experiment that gave
rise to strain D15 (data not shown). Another effect of the reduced
acidi� cation of this strain was that the total protease activity was further
reduced compared to the low-protease host strain AB1.13. Culture pH
and total proteolytic activities of batch-cultured N402, AB1.13 and D15
strains were analyzed in time. As shown in Table 2, the pH of the
culture medium of the D15 strain remained around 6.5, whereas the
N402 and the AB1.13 strains showed typical acidi� cation of the me-
dium. Proteolytic activity in the culture medium was assayed using the
P-check assay. Proteolytic activity was reduced in the AB1.13 mutant
and further reduced to about 10% of the wild-type level in the D15
mutant (Table 2).

The nonacidifying phenotype in D15 is not caused by a
mutation in the oahA gene
A low-protease, nonacidifyingA. nigermutant was previously isolated
by van den Hombergh and coworkers (van den Homberghet al.1995).
This mutant, namedprtF, lacks oxaloacetate acetylhydrolase activity,
and it was shown that this strain was mutated in theoahAgene (Ruijter
et al. 1999). Linkage analysis assigned theprtF mutation to linkage
group V (van den Homberghet al. 1995). Linkage analysis of the
D15 mutant, by carrying out a parasexual cross with tester strain
N879 (Table 1), revealed that the nonacidifying phenotype was linked
to theargH12 marker on linkage group II (12.5% recombination) (P. J.
Punt, unpublished results), indicating that the two mutants are affected
in different loci. To make sure that theoahAgene was not mutated in
the D15 mutant, theoahAgene (An10g00820), including 1000 nucle-
otide-� anking regions, was PCR-ampli� ed from D15 and sequenced.
No mutation in the gene was found, indicating that the mutation in
D15 is not located in theoahAlocus.

Physiological analysis of the D15 mutant
The nonacidifying phenotype of the D15 mutant was compared with
N402 and aDoahAmutant (Liet al.2013) during batch growth using
shake� ask cultures. During growth, the unbuffered medium of the
wild-type strain acidi� ed quickly to reach a pH value of 3.5. At later
time points (72 hr after inoculation), the pH of the wild-type strains
stabilized around 5.4. The pH of the culture medium of the D15 mutant
remained between 5.5 and 6.5 during the cultivation period (Table 2),
while the pH of theoahAmutant strain increased from pH 4.5 to pH 8
(data not shown). HPLC analysis of the medium samples at different
time points con� rmed that the levels of citric acid and oxalic acid were
reduced at the different time points in the D15 strain, whereas in the

n Table 2 Culture pH and relative protease activity during batch growth

24 hr 48 hr 72 hr 96 hr 120 hr

Strain Phenotype pH
Relative

Protease Activitya pH
Relative

Protease Activity pH
Relative

Protease Activity pH
Relative

Protease Activity pH
Relative

Protease Activity

N402 — 3.7 39% 4.4 57% 4.6 89% 5.2 79% 5.3 100%
AB1.13a prtT2 3.5 23% 4.1 25% 4.0 38% 4.3 38% 4.8 48%
D15#26a prtT2 , nac2 6.3 5% 6.6 5% 6.3 9% 6.6 16% 6.8 10%
a

Relative protease activity expressed as percentage of the protease activity in the culture � uid of wild-type (N402) after 120 hr of growth. Protease acidity was
determined using the P-check assay. For the growth experiments,pyrG+ (uridine-prototrophic strains) were cultivated. nac- = nonacidifying.
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oahAstrain citric acid was produced at even higher levels than in N402,
and no oxalic acid was produced (data not shown). These physiological
results also show that the genotype of D15 differs from theoahA
mutant.

To analyze the pro� le of organic acids produced during controlled
batch growth, the N402 strain and the D15 strain were cultivated in
bioreactors at� xed pH values under the conditions described in the
Materials and Methods. Since gluconic acid, oxalic acid, and citric acid
are the main organic acids secreted into the medium, these acids were
quanti� ed by HPLC analysis. As shown in Table 3, the production of
organic acids in the D15 mutant was strongly reduced. Production of
citric acid was low in all samples and probably caused by high manga-
nese concentrations and low glucose concentrations, both of which are
known to diminish citrate production (Daiet al. 2004). Citric acid
secretion was observed in N402 at all pH values, whereas no citric acid
could be detected in the medium of the D15 mutant. At pH 3 and 4,
oxalic acid was not detected in D15 medium, whereas gluconic acid
levels were either similar (at pH 3.0) or reduced (at pH 4.0) compared
to the wild-type (N402). At pH 5.0, 6.0, and 7.0, oxalic acid was again
reduced in D15 medium compared to N402 medium. At these higher
pH values, the D15 mutant produced similar amounts of gluconic acid.
Growth of the N402 strain was severely reduced at pH 5.0 (2.8 g biomass/
liter) in comparison to D15. At pH 5.0, the N402 strain produced
high amounts of gluconic acid, and the base had to be added to main-
tain the pH at 5.0. At pH 5.0, the D15 mutant still grew relatively well
(13 g biomass/liter) and did not secrete high amounts of gluconic acid.
It should be noted that at pH 4.0 and 5.0, both strains also produced
detectable levels of other unidenti� ed acids. Based on these results, it is
clear that the mutation in D15 caused considerable and complex phys-
iological alterations in organic acid production, suggesting a mutation
in a regulatory circuit governing primary metabolism. This hypothesis
encouraged further research to elucidate the genetic background of the
mutant strain.

Isolation of segregants for bulk segregation analysis
using next generation sequencing
To facilitate the isolation of a diploid strain to generate segregants for
bulk sequencing analysis,mutantD15#26was� rst transformedwith the
fwnA::hygBdeletion cassette (Jørgensenet al.2011). ThefwnA gene
encodes the polyketide synthase involved in conidial melanin synthesis,
and a fawn-colored transformant was puri� ed. This strain (MA273.1)
produces fawn-colored conidiospores and also contains thepyrGauxo-
trophic marker. MA273.1 was crossed with JN3.2 (olvA::pyrG, argB::hygB).

Using the complementary color markers (fwnA and olvA) and the
complementary auxotrophies (pyrGandargB), a diploid was isolated
from heterokaryotic mycelium. The resulting black-conidiating, proto-
trophic, diploid strain (JN20) acidi� ed the medium, showing that the
nonacidifying trait in D15 was recessive (Figure 2).

To obtain a collection ofD15-derived segregants, diploid strain JN20
was point-inoculated on complete medium, supplemented with uridine
and arginine, in the presence of benomyl. Benomyl affects microtubule
dynamics, and growth of anA. nigerdiploid strain in the presence of
sublethal concentrations of benomyl results in spontaneous haploidiza-
tion by the loss of one of each pair of the eight chromosomes. The use of
complementary spore color mutants allows easy identi� cation of hap-
loid sectors as these sectors display the spore color marker (Boset al.
1988). From each point-inoculated diploid, a maximum of two segre-
gants with different colors (fawn or olive) were puri� ed. In total, 140
segregants were collected, puri� ed, and analyzed for their spore color,
pyrGand argBauxotrophies, acidi� cation phenotype, and their pro-
tease production phenotype (Table S2). The possible genotypes of seg-
regants and the number of segregants with the same genotype are
presented inTable S3. First, we determined if all markers were more
or less equally represented in the segregants. As shown in Table 4,
roughly equal numbers of segregants were found for both alleles of
the markers. The conidial color markersfwnAandolvAwere localized
on different arms of linkage group I, and no haploid recombinants
producing black spores were isolated in our segregants. Two possible
fwnA/olvAdouble mutants were detected in the segregants since such
fwnA mutants arepyrG+, indicating that they might also harbor the
olvA::pyrGdisruption (Table S2). Table 5 presents the results from the
marker linkage analysis. Because theolvAgene is disrupted by thepyrG
gene, allolvAstrains arepyrG+. TheargBgene is on the same linkage
group as theolvA marker (linkage group I), explaining the observed
linkage ofolvA andargB. We also noticed the strong coupling of the
fwnA::hygBdisruption with thepyrGgene. ThepyrGis reported to be
localized on the left arm of linkage group III, but our data show strong
linkage between thepyrG marker and thefwnA marker (Table 5).
Possibly, thepyrGgene in our strain is translocated to linkage group
I, which could explain the linkage. Further research is required to clarify
this, but the possible translocation has no effect on linkage analysis of
the nonacidifying mutation in D15. The linkage analysis also showed
that the nonacidifying phenotype is not linked to linkage group I (fwnA,
olvA, andargB) and is not linked to theprtT mutation (linkage group
VI) (Punt et al.2008), as expected. From the 140 segregants, 78 dis-
played the nonacidifying phenotype, indicating that this phenotype is

n Table 3 Physiological parameters of pH-controlled bioreactor cultivations of A. niger strains, and medium levels of the main three
organic acids (gluconic, oxalic, and citric acid)

pH Control End of Glucose Consumption Phase

Cultivation Use of EFT dwt Gluconic Oxalic Citric
Strain pH Acid/Base hr g/L Acid g/L Acid g/L Acid g/L

D15 3 Acid 45 15 1.3 n.d n.d
N402 3 Acid 42 10.9 3.1 1.2 0.16
D15 4 Acid 49 17 1.0 n.d n.d
N402 4 Acid 79 15 0.9 1.9 0.7
D15 5 Acid 42 13 12.6 0.5 n.d
N402 5 Base 49 2.8 30.5 4.3 1.6
D15 6 Base 42 2.4 36.4 0.8 n.d
N402 6 Base 48 1.8 32.2 4.4 0.16
D15 7 Base 48 2 39.0 1.6 n.d
N402 7 Base 63 1.7 43.2 3.4 1.2

EFT, elapsed fermentation time; dwt, dry weight; n.d, not detected.
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caused by a single mutation. These 78 segregants were individually
grown and fresh weight mycelium of each strain was collected. Pooled
mycelium of about 20 strains was used for genomic DNA puri� cation.
An equal amount of DNA from each of the four pools was combined to
obtain the genomic DNA pool for sequencing.

SNP analysis of parental strains and bulk segregants
The genomes of parental strains (MA273.1 and JN3.2) were sequenced
and SNP analysis was performedas described inMaterials and Methods.
The reads were mapped to the genome sequence of theA. nigerstrain
ATCC1015, as this strain is most similar to the N400/N402 background
(Andersenet al.2011). In total, 52 SNPs were identi� ed between the
two parental strains. We also expected to identify the mutation in the
prtTgene, which was previously shown to be a single point mutation (T
to C), causing an amino acid change [leucine (CTA) to proline (CCA)]
in the PrtT protein (Puntet al.2008). Indeed, as indicated inTable S4,
we again found the SNP in the D15 mutant that is responsible for the
prtT phenotype. Subsequently, we looked for homozygous SNPs within
the pool of segregants. Theoretically, the mutation responsible for the
phenotype should be completely conserved in the pools of segregants,
whereas SNPs not related to the phenotype should have a 50% chance
to be present. As shown inTable S4, three SNPs were found to be
completely conserved. All three mapped to the right arm of linkage
group II. Three other SNPs in linkage group II showed a high (� 98%),
but not absolute conservation. Apparently, these SNPs are linked to our
trait of interest, but a few segregants have been recombined between the
SNP and our gene of interest and have, therefore, lost complete con-
servation. The linkage of the conserved SNPs to linkage group II is
consistent with the observed linkage to linkage group II when crossed
to marker strain N879 (see above). Further examination of the three
SNPs that were fully conserved showed that only a single SNP at posi-
tion 1762101 (G to C) was present in a protein-encoding region, cor-
responding to gene An01g12690. The protein encoded by this gene is
the predicted ortholog of LaeA, a well-studied putative methyltransfer-
ase in several fungal species (seeDiscussion). The mutation results in an
amino acid change at position 327 [alanine (GCC) to proline (CCC)] in
the A. nigerLaeA protein. The alanine residue at this position is con-
served among 20Aspergillusspecies (www.aspgd.broadinstitute.org).

Complementation and disruption analysis
Toshowthat thenonacidifyingphenotypeof theD15mutantwascaused
by the mutation inlaeA, the D15#26 mutant was complemented with
thelaeAgene. ThelaeAgene, including a� 1000-nucleotide promoter
and terminator region, was PCR-ampli� ed and cloned into pAO4-13
containing thepyrGgene fromA. oryzae. Transformation of the plas-
mid to MA273.1 or D15#26 restored the ability to acidify the medium,
indicating thatlaeAcomplements the nonacidifying phenotype of the
D15 mutant (Figure 2).

The laeAgene was also inactivated by targeted deletion. Bipartite
gene deletion fragments were generated as described inMaterials and
Methodsand transformed to AB4.1. Transformants were puri� ed and
analyzed for their acidi� cation phenotype on MacConkey agar plates.
Several transformants were isolated that did not acidify the medium,
and these mutants were shown to be deleted in thelaeA gene by
Southern blot (Figure S1). The DlaeAmutant was also cultivated in
shake� ask cultures as described for the D15 and the N402 strains (see
above). Similar to the D15 mutant, the pH of theDlaeA culture
remained between 5.5 and 6.5 during the entire cultivation period.
Organic acid analysis of the medium samples of theDlaeAmutant also
con� rmed that the levels of citric and oxalic acid were reduced (data not
shown). Both the complementation experiment and the targeted de-
letion of laeAshow that the mutation inlaeAin the D15 mutant is
responsible for the acidi� cation defect in the D15 mutant.

In order to assess the effect oflaeAdeletion under classical citric acid
production conditions, we used strain ATCC11414, which is a sponta-
neous derivative of ATCC1015 (Daiet al.2004; Baker 2006). Proper
deletion oflaeAin the ATCC11414 background was veri� ed via di-
agnostic PCR (data not shown). Under low-manganese, high-glucose
conditions, the parent strain can produce signi� cant amounts of citrate.
Deletion oflaeAin this background resulted in a complete absence of
citrate production in comparison to the parental strain, which made
30 g/l citric acid, indicating that LaeA is also required under high-citrate
production conditions (Figure 3A). Deletion oflaeAin the ATCC11414
background grown under citric acid-producing conditions altered the
morphology of the culture. Whereas ATCC11414 formed pellets, which
is the typical morphology during citric acid-producing conditions, pel-
lets in theDlaeAstrain were smaller and the mycelium was much more
dispersed (Figure 3B).

Secondary metabolite pro � le of the laeA mutant in
A. niger
Previous studies have shown that the putative protein methyltransferase
LaeA affects the expression of multiple secondary metabolite gene
clusters in several fungi (Bok and Keller 2004; Suguiet al.2007; Perrin

n Table 4 Distribution of marker alleles among the 140
segregants

Marker # of Segregants # of Segregants

fwnA-/olvA-a 64 fwnA- 76 olvA-

pyrG 78 pyrG+ 62 pyrG-

argB 64 argB+ 76 argB-

Nonacidifying 62 Acidifying 78 Nonacidifying
prtT 68 prtT+ 72 prtT-

a
Segregants are either fwnA- or olvA- due to the tight coupling of both markers
even though the markers are located on two different sides of the centromere
of chromosome III.

n Table 5 Pairwise marker analysis of the diploid strain JN20
(MA273.1 ( fwnA -, pyrG -, argB+, nac-, prtT -) x JN3.2 (olvA -, pyrG +,
argB-, nac+, prtT +))

markers fwnA olvA pyrG- + + argB- nac- + prtT +

fwnA 64 0 1%
0%

1% 38% 47%
olv 0 76

pyrG- 62 0 2% 39% 48%
+ 2 76

+ 63 1 61 3 37% 47%
argB- 1 75 1 75

nac- 37 41 35 43 38 40 31%
+ 27 35 27 35 26 36

prtT 26 46 24 48 26 46 47 25 PS NPS
+ 38 30 38 30 38 30 31 37 NPS PS

The frequencies of pairwise gene combination are shown in the lower left half of
the table. For each gene combination the number of parental segregants (PS) or
nonparental segregants (NPS) are indicated in the top left/bottom right (PS) or
top right/bottom left (NPS), respectively. In the upper right half, the recombi-
nation frequencies are given. Recombination frequencies are calculated as the
number or nonparental segregants / total number of segregants · 100%; 140
segregants were analyzed.
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et al.2007; Boket al.2009; Butchkoet al.2012; Karimi-Aghchehet al.
2013). We observed, when working with the D15 orDlaeAstrains, that
plate-grown mycelium was yellowish and not greyish as seen in the
wild-type, and that in submerged cultures of theDlaeA mutant the
medium turned purple (Figure 4). It is also apparent from Figure 4
that deletion oflaeAdid not result in an obvious growth defect under
these conditions. To determine the role oflaeAin A. nigerin relation to
secondary metabolite production, the production of secondary metab-
olites in wild-type andlaeA mutants on three different media and
culture conditions was analyzed. These conditions include submerged
cultivation in nitrate-based minimal medium (subMM), and cultiva-
tion on solid media: Yeast Extract Sucrose (YES) agar and Czapek Yeast
Autolysate (CYA) agar (seeMaterial and Methods). We tested different
media because it has been shown that these can have a pronounced
effect on the production of secondary metabolites (Nielsenet al.2011;
Andersenet al.2013). From this analysis, we could consistently identify
seventeen compounds in the wild-type strains (Table 6). Nine of the
seventeen compounds were detected under all three growth conditions,
� ve compounds were detected on both YES and CYA agar, two com-
pounds were detected on YES agar only, and one compound was only
detected in subMM (Table 6). After establishing the secondary metab-
olite pro� le in the wild-type, it was possible to identify secondary
metabolites whose production is affected by the absence oflaeA, by
comparing the pro� les of the D15 strain and theDlaeAstrain (both
laeA-) to the pro� les of the original parental strain (N402) and the

AB1.13 strain (laeA+). As indicated in Table 4, the presence or abun-
dance of the majority of the secondary metabolites (11 out of 17) was
not dramatically altered in theDlaeAor D15 strain compared to the
wild-type strains.Table S5presents the identi� ed compounds, includ-
ing peak areas for each compound. Two compounds, BMS-192548 and
aspernigrin A, were produced in much higher amounts in thelaeA
mutants compared to the wild-type strains, indicating thatlaeAhas a
repressive function for the expression of genes related to the production
of these secondary metabolites. Three compounds, asperrubrol, atro-
mentin and JBIR86, require LaeA, indicating that LaeA is involved in
activating expression of the gene clusters responsible for the synthesis
of these compounds. Interestingly, the requirement of LaeA for the
production of these compounds is conditional and growth on YES agar
medium bypasses the requirement of LaeA, as also observed by us for
A. fumigatus(K. F. Nielsen and J. C. Frisvad, unpublished results). The
production of tensidol B on CYA was absent in theDlaeA mutant,
while in the D15 mutant, which contains a point mutation in thelaeA
gene, tensidol B was still produced. The results indicate that the LaeA
protein ofA. nigercan affect the expression of secondary metabolite
gene clusters both positively and negatively.

DISCUSSION
Owing to its low production of proteases, theA. nigerD15 mutant has
been used in various studies of the production of heterologous proteins
(Gordonet al.2002; Rose and van Zyl 2002; Recordet al.2003; Benoit

Figure 3 Citric acid levels of ATCC11414 and the
ATCC11414DlaeA strain. (A) Bar graph showing the results
of citric acid production after 5 d in citric acid-production
culture medium of the parent strain (ATCC11414-kusA),
and the laeA� mutant. The data for each strain are the
average of at least three biological replicates. (B and C)
The effects of laeA deletion on A. niger morphology. The
conidia (1 · 106 conidia/ml) were inoculated into 75 ml of
citric acid-production medium in 250 ml silanized baf � ed
� asks and shaken at 200 rpm at 30� for 5 d. Pellet forma-
tion from each culture was determined microscopically
after 5 d of growth.

Figure 4 Secretion of secondary metabolites by the A.
niger laeA mutant on minimal medium (MM) agar plates
and MM-shake � ask cultures. Spores of the wild-type
and mutant were streaked to single colonies on MM
agar plates and incubated at 30� for 5 d. For batch
cultures, spores were inoculated at a density of 1 ·
106 spores/ml and grown at 30� for 5 d.
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et al.2007; Chimphangoet al.2012; Turbe-Doanet al.2013; Benghazi
et al.2014; Piumiet al.2014; Zwaneet al.2014). The D15 strain does
not only contain a mutation in the protease regulator gene (prtT) (Punt
et al.2008) but also a mutation leading to a nonacidifying phenotype
and, consequently, low levels of acid-induced proteases in the medium.
Several attempts have been made to identify the mutation in the D15
mutant by complementation analysis, using a speci� cA. nigergenomic
cosmid library that has been successfully used before (Puntet al.2008;
Damveldet al.2008; Meyeret al.2009). However, complementation of
the D15 nonacidifying phenotype was not successful, partly due to the
problems involved in screening for complementation. We therefore
decided to use whole genome sequencing to identify the responsible
mutation. The strain lineage of the D15 mutant is rather complex
(Figure 1), therefore, we used a bulk segregant approach, which nar-
rows down the genomic region responsible for the phenotype. Whole
genome sequencing in combination with genetic crosses to reduce the
number of SNPs for further investigation has recently been used for
mutant identi� cation in Neurospora crassa(Pomraninget al.2011),
Sordaria macrospora(Nowrousianet al.2012), andA. nidulans(Bok
et al.2014), either via a pooled-segregant approach (Pomraninget al.
2011; Nowrousianet al.2012), or via successive backcrossings (Bok
et al.2014) using the sexual cycle. SinceA. nigerdoes not have a sexual
cycle, which is normally used to obtain segregants, we employed the

parasexual cycle ofA. nigerto generate segregants (Pontecorvoet al.
1953). For bulk segregant analysis, a pool of 78 nonacidifying segre-
gants was used. The size of the pool turned out to be suf� cient to
narrow down the homozygous SNPs to a 1.6 Mb DNA region on
chromosome II. This region contained only three fully homozygous
SNPs (Table S4). Three other SNPs on chromosome II were clearly
genetically coupled to the three fully conserved SNPs, but the coupling
up to 97 to 98% indicated the occurrence of mitotic recombination in
the diploid or during haploidization of the diploid. Since the occurrence
of mitotic recombination is low, a mitotic cross-over involving the
SNPs on chromosome II in a 1.4-MB region probably occurred only
in a single segregant (out of 78). To further narrow down the number of
relevant SNPs, a larger pool of segregants or the use of chemicals such
as neomycin or 5-azacytidine (van de Vondervoortet al.2007) to in-
duce mitotic recombination might be used. However, in view of the
relatively low number of SNPs found in the D15 mutant (52 in total),
we were left with only a few candidate genes. It is interesting to note that
the mutation at position 1762101 at chromosome II is located in gene
An01g06900. This gene encodes a Zn(II)2Cys6 transcription factor
(FumR), which is located in the fumonisin gene cluster. In the orthol-
ogous fumonisin gene cluster inFusarium verticillioides, this transcrip-
tion factor is required for fumonisin production (Brownet al.2007).
Secondary metabolite analysis of the AB1.13 and D15 revealed the
absence of fumonisin in the AB1.13 and D15 mutants, and its presence
in N402 andDlaeA (Table S5). It is tempting to speculate that the
mutation in the intron sequence of An01g06900 (already present in
the AB1.13 mutant and its derivative D15) affects proper processing of
mRNA, leading to a truncated and inactive FumR protein and an in-
ability to produce fumonisin.

The roleofLaeAinorganicacidproduction,asshown in thispaper, is
not completely unprecedented. InA. oryzaeit has been shown that
deletion of thelaeAhomolog results in the loss of kojic acid production
(Odaet al.2011). The gene cluster likely to be involved in the synthesis
of kojic acid production (AO09113000136, FDA-dependent oxidore-
ductase; AO09113000137, transcription factor; and AO09113000138,
transporter protein) is severely down-regulated in theDlaeAmutant
of A. oryzae. A role for LaeA in citric acid production inA. nigeris
supported by the observation that overexpression ofA. nidulans laeA
in A. nigerresults in a 40% increase in citric acid production (Dai and
Baker 2015). The increased production of citric acid uponlaeAover-
expression, and the reduced production in thelaeAdeletion strain, offer
interesting possibilities to identify genes directly involved in citric acid
production by transcriptomic or proteomic studies. Whether LaeA di-
rectly regulates genes involved in citric acid production, or whether its
role is more indirect,e.g., by affecting fungal morphology or by sensing
the triggers that induce citric acid formation (low manganese, high
glucose, etc.), is still not clear.

LaeA was initially identi� ed as a regulator of secondary metabolism
in A. nidulans(Bok and Keller 2004). Deletion oflaeAin A. nidulans
blocks the expression of several metabolic gene clusters, including gene
clusters involved in sterigmatocystin, penicillin, and lovastatin biosyn-
thesis, as grown on minimal media (Bok and Keller 2004). Its role as a
global regulator of secondary metabolism has been established in var-
ious� lamentous fungi, includingA. � avus(Kaleet al.2008),A. oryzae
(Odaet al.2011),A. fumigatus(Perrin et al.2007; Suguiet al.2007),
Penicillium chrysogenum(Kosalkováet al.2009),P. citrinum(Xing
et al. 2010),F. fujikuroi (Wiemann et al. 2010),F. verticillioides
(Butchko et al. 2012), Trichoderma reesei(Karimi-Aghchehet al.
2013) andCochliobolus heterostrophus(Wu et al.2012). Yet another,
but probably related function of LaeA, has to do with its role in
A. nidulansas a member of the Velvet Complex, which consists of

n Table 6 Identi � ed secondary metabolites under different
growth condition in A. niger and the effect of laeA inactivation
on their production

Secondary metabolite Remark

Aurasperone B Production not affected by LaeA
Funalenone Production not affected by LaeA
Kotanina Production of end product (Kotanin)

not affected
Demethylkotanina Not present in DlaeA
Orlandina Not present in DlaeA
Asperrubrol Production in subMM and CYA

requires LaeA
Fumonisin B2/B4b Production not affected by LaeA
Pyranopyrrol A Production not affected by LaeA
Tensidol B Production on CYA requires LaeA;

production not affected in D15
Nigerazine Production not affected by LaeA
Fungisporin A Production not affected by LaeA

Expressed only on agar conditions
Atromentin Production on CYA requires LaeA
Pyranonigrin S Production not affected by LaeA
Pestalamide C Production not affected by LaeA
JBIR86 Production on CYA requires LaeA
Nigragilin Production not affected by LaeA

Expressed only on YES
Pyrophen Production not affected by LaeA
Aspernigrin B Production on CYA detected

in DlaeA
Expressed only in subMM

BMS-192548c Production 1000x increased in
SubMM in DlaeA and detected
in CYA

Expressed only in DlaeA
Aspernigrin A Production on CYA detected

in DlaeA
a

Considered as one group of secondary metabolites.
b

Fumonisin not detected in AB1.13, possibly because of mutation in the Fum
gene cluster.

c
Minor amount detected in N402 on YES agar, not detected in AB1.13.
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the LaeA, VeA, and VeB proteins, and controls asexual and sexual
developmental pathways (Bayram and Braus 2012). Under light, LaeA
is required for reduction of the VeA and VeB levels in order to stimu-
late asexual development. Conversely, in the absence of LaeA, VeA and
VeB, protein levels are not repressed, leading to sexual development
and the formation of cleistothecia (Bayram and Braus 2012). The role of
LaeA in controlling gene expression is not necessarily restricted to
secondary metabolites and development. Transcriptome analysis of
the laeAmutant in T. reeseirevealed that LaeA also controls the ex-
pression of extracellular enzymes (Seibothet al.2012), while LaeA in
P. chrysogenumwas found to affect chitinase expression (Kamerewerd
et al.2011). Whether and to what extent LaeA is involved in extracel-
lular protein production inA. nigerremains to be determined. As many
of the extracellular enzymes inA. nigerare highly expressed in an acidic
environment, it is important to conduct these studies under pH-
controlled conditions. It is further important to establish to what
extent the differences in secondary metabolite production inA. niger
are directly caused bylaeA deletion, or whether the differences in
secondary metabolite production are an indirect consequence of a
different ambient pH.

Deletion oflaeAin A. nigeraffects the production of several sec-
ondary metabolites. From the seventeen identi� ed secondary metabo-
lites, the production of six secondary metabolites was affected. Three
compounds (aperrubrol, atromentin and JBIR86), from three very dif-
ferent pathways (aperrubrol is from the mixed polyketide-terpene path-
way, atromentin from the shikimic acid pathway, whereas JBIR86 is
amino acid-derived), were found to be produced in lower amounts in
the laeAmutant, in agreement with the role of LaeA as a global regu-
lator required for the biosynthesis of secondary metabolites (Bok and
Keller, 2004; Boket al.2006, 2009). Interestingly, deletion oflaeAalso
leads to increased production of two secondary metabolites (BMS-
192548 and aspernigrin A). A similar role for LaeA as a negative reg-
ulator of the production of some secondary metabolites has also been
reported forC. heterostrophusand F. fujikuroi, in which deletion of
laeA results in increased melanin and bikaverin production, respec-
tively, (Wuet al.2012; Wiemannet al.2010).

The linkbetween LaeAand the productionofcitricacid or secondary
metabolites changes our view of citric acid production inA. nigeras a
process belonging to primary metabolism. Both citrate and the oxalic
acid precursor oxaloacetate play essential roles in the tricarboxylic acid
cycle and are, therefore, genuine primary metabolites. However, our
results point to a possible uncoupling of citric acid and oxalic acid
production by alternative, LaeA-controlled metabolic pathways. Since
growth of theDlaeAmutant is not severely reduced, it is clear that
primary metabolism inDlaeAis not dramatically affected. LaeA’s spe-
ci� c role in citric acid production further suggests a need to consider
the production of citric acid inA. nigeras a process belonging to
secondary metabolism. Oxalic acid production from oxaloacetate, with-
out involvement of the tricarboxylic acid cycle, has also been previously
reported (Kubiceket al.1988). The chelating properties of both oxalic
acid and citric acid and the corresponding ecological role of these acids
in their natural habit, as well as the highly speci� c stress conditions that
are required for citric acid production, support such a view. In addition,
gene clusters are frequently involved in the production of secondary
metabolites. Interestingly, gene clusters responsible for the production
of itaconic acid and kojic acid have been found inA. terreus(Li et al.
2011) andA. oryzae, respectively (Odaet al.2011), and this has sup-
ported the view that itaconic acid and kojic acids are secondary me-
tabolites. With thelaeAmutant and thelaeA-overexpressing strain now
available, we can search further for LaeA target genes involved in
organic acid production inA. nigerand other fungi.
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