Chemically Modified Hierarchical Metal Oxide Nanostructures for Excellent Lithium Storage

Sun, Hongyu; Mujtaba, Jawayria ; Zhu, Jing ; Mølhave, Kristian

Published in:
Book of Abstracts. DTU's Sustain Conference 2015

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Chemically Modified Hierarchical Metal Oxide Nanostructures for Excellent Lithium Storage

Hongyu Sun1,2,*, Jawayria Mujtaba 2, Jing Zhu 2, Kristian Mølhave 1,*

1: DTU Nanotech; 2: Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China

*Corresponding author email: hsun@nanotech.dtu.dk, Kristian.molhave@nanotech.dtu.dk

The overall performance of lithium-ion batteries (LIBs) is highly dependent on the inherent electrochemical properties of the electrode materials.1, 2 Specifically, three-dimensional complex hierarchical architectures assembled by low-dimensional nano-sized building blocks usually possess enhanced LIB performance.3, 4 Herein, by employing post chemical modification, we obtain novel hierarchical metal oxide nanostructures: crystalline@amorphous core/shell Co3O4 nanoparticles decorated ultrathin Co3O4 nanosheets; NiO nanowires decorated NiO nanosheets. The concentration of oxygen vacancies can be well controlled in the nanostructures, which is of importance because the conductivity can be tuned accordingly. The lithium storage properties of the chemically-modified hierarchical electrodes are found to be strongly correlated with oxygen vacancy concentration. It is believed that the excellent electrochemical performance can be attributed to the unique designed hierarchical nanostructures. The presented facile synthesis route can be applied to other metal oxides with desirable nanostructures, which provides a novel way to optimize their functions.