Synthesis and Characterization of FeNi-/Al2O3 Egg-Shell Catalyst for H2 Generation by Ammonia Decomposition

Silva, Hugo; Nielsen, Morten Godtfred; Fiordaliso, Elisabetta Maria; Damsgaard, Christian Danvad; Gundlach, Carsten; Kasama, Takeshi; Chorkendorff, Ib; Chakraborty, Debasish

Published in:
Book of Abstracts. DTU's Sustain Conference 2015

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The FeNi alloyed nanoparticles are a promising alternative to expensive ruthenium-based catalysts for a real-scale application of hydrogen generation by ammonia decomposition. In practical applications, millimeter-sized extrudates supports are used as catalysts, where the spatial distribution of the active phase should match with the type of reaction. In this work, a novel synthesis route was developed for the preparation of a FeNi/Al₂O₃ egg-shell catalyst. Egg-shell is a preferred profile considering the highly endothermic nature of ammonia decomposition reaction. The high viscosity of glycerol, used as a solvent, prevents the fast migration of the FeNi active phase solution towards the inner-core of Al₂O₃, giving control over the large capillary pressures during impregnation. The distribution profiles were analyzed at macroscopic scale through scanning electron microscopy mapping (SEM-EDX) and optical microscopy. A three-dimensional (3D) reconstruction of the spherical-shaped Al₂O₃ was achieved using x-ray micro tomography and the FeNi egg-shell spatial distribution was inspected throughout the entire volume of the support body. Transmission electron microscopy (TEM) and scanning TEM (STEM) analysis of ultrathin lamellas (< 20 nm) carved from the outer-shell region established the presence of FeNi alloy nanoparticles with a size of approximately 5 nm. The egg shale catalyst showed significant higher activity in ammonia decomposition by converting 3 times more ammonia to equilibrium conversion than either egg-white or catalyst with uniform distribution.