Quantifying uncertainty in sustainability assessments: from feedstock to end-of-life

Bisinella, Valentina; Conradsen, Knut; Damgaard, Anders; Christensen, Thomas Højlund; Astrup, Thomas Fruergaard

Published in:
Book of Abstracts. DTU's Sustain Conference 2015

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Quantifying uncertainty in sustainability assessments: from feedstock to end-of-life

V. Bisinella¹, K. Conradsen², A. Damgaard¹, T.H. Christensen¹, T.F. Astrup¹

¹DTU Environment, ²DTU Compute

*Corresponding author email: valenb@env.dtu.dk

Life Cycle Assessments (LCAs) are increasingly being used to quantify the sustainability of technological solutions in decision-making contexts, for product and waste management systems. However, uncertainty in LCAs is widespread, from modelling decisions (methodological uncertainty) and data quality and appropriateness (technical uncertainty) to model representativeness of the system being studied (epistemic uncertainty) (i.a., Spielmann et al., 2005). However, even if practitioners are primarily aware of uncertain inputs in their models and critical modelling choices, results are rarely accompanied with uncertainty quantifications (Laurent et al., 2014; Lloyd and Ries, 2007).

Uncertainty quantification has been addressed in the literature by many authors, mainly suggesting tiered approaches characterized by increasing levels of complexity, where the basic steps are usually contribution, sensitivity, uncertainty analyses (Clavreul et al., 2012; Heijungs et al., 2005). Yet, due to differences and the often high complexity of formulations for uncertainty propagation in the literature, as well as difficulties in representing the input uncertainty, practitioners most often relegate uncertainty quantification to an early sensitivity analysis stage, and to a technology or scenario level (Laurent et al., 2014; Lloyd and Ries, 2007).

Sensitivity represents the evaluation of the robustness of the model only, while uncertainty of parameters and processes represents the connection from the modelled system with real-life variety. Confining uncertainty quantification to sensitivity analysis or worse, propagating uncertainty just for highly sensitive parameters, may result in a severe misinterpretation of results. Moreover, the link with reality is further lost when the environmental sustainability assessments aim at quantifying emissions excluding the connection with the chemical characteristics of the material fractions constituting the feedstock. Only rarely LCA models allow input-specificity (Clavreul et al., 2014), and the importance of substances and chemicals related to the input material is most often not represented.

The presentation wants to provide a clear understanding of how uncertainty propagates in sustainability assessments, especially on the connection between sensitivity and uncertainty, with examples based on model inputs and technologies. The aim is to highlight how uncertainty quantification can help practitioners mastering the knowledge of their models and improving transparency and reliability, which are essential in the context of decision making.

References


