Radioactivity in the Risø District January-June 2015

Nielsen, Sven Poul; Andersson, Kasper Grann; Miller, Arne

Publication date:
2015

Document Version
Publisher's PDF; also known as Version of record

Link back to DTU Orbit

Citation (APA):
Radioactivity in the Risø District January-June 2015

Sven P. Nielsen, Kasper G. Andersson and Arne Miller
DTU-Nutech-12(EN)
December 2015
Abstract (max. 2000 char.): The environmental surveillance of the Risø environment was continued in January-June 2015. The mean concentrations in air were: 0.23±0.18 μBq m⁻³ of ¹³⁷Cs, 2.19±0.91 mBq m⁻³ of ⁷Be and 0.13±0.05 mBq m⁻³ of ²¹⁰Pb (±1 S.D.). The depositions by precipitation at Risø in the first half of 2015 were: 0.054±0.015 Bq m⁻² of ¹³⁷Cs, 433±43 Bq m⁻² of ⁷Be, 22.5±4.5 Bq m⁻² of ²¹⁰Pb and <0.5 kBq m⁻² of ³H. The average background dose rate (TLD) at Risø (Zone I) was measured as 63 nSv h⁻¹ compared with 56 ± 3 nSv h⁻¹ (±1 S.D.) in the four zones around Risø.
Contents

Introduction 4

Table 1. Radionuclides in air 5
Table 2.1. Radionuclides in precipitation 6
Table 2.2. Radionuclides in precipitation 6
Table 2.3. Tritium in precipitation 7
Table 2.4. Tritium in precipitation 7
Table 3.1. Radionuclides in sediment samples 8
Table 4.1. Radionuclides in seawater 8
Table 4.2. Tritium in seawater 8
Table 5.1. Radionuclides in grass 9
Table 5.2. Radionuclides in sea plants 10
Table 7.1. Waste water 11
Table 8.1. Background dose rates around the border of Risø (TLD) 12
Table 8.2. Background dose rates around Risø (TLD) 13
Table 8.3. Terrestrial dose rates at the Risø zones (NaI(Tl) detector) 14

Fig. 1. Map of Risø 15
Fig. 1.1. Caesium-137 in air 16
Fig. 1.2. Beryllium-7 and lead-210 in air 16
Fig. 2.3.1 Tritium in precipitation (1 m² rain collector) 17
Fig. 2.3.2 Tritium in precipitation (10 m² rain collector) 17
Fig. 3.1 Caesium-137 in sediment samples 18
Fig. 4.1 Caesium-137 in seawater 19
Fig. 4.2 Tritium in seawater 19
Fig. 7.1 Total-beta radioactivity in waste water 20
Fig. 8.1. Map of Risø with locations for TLD measurements 21
Fig. 8.2. The environment of Risø 22

Materials and methods 23

Conclusions 25
INTRODUCTION

A specific monitoring programme in the vicinity of the nuclear installations at the Risø site is carried out by DTU Nutech on behalf of and as a contractor to Danish Decommissioning (DD). This report presents the analytical results of the monitoring and sampling carried out in the period January-June 2015. The materials and methods used in connection with the monitoring programme are described in pages 25-26.
Table 1. Radionuclides in ground level air collected at Risø (cf. Figs. 1, 1.1 and 1.2), January - June 2015 (Unit: \(\mu\)Bq m\(^{-3}\))

<table>
<thead>
<tr>
<th>Date</th>
<th>(^{7})Be</th>
<th>(^{137})Cs</th>
<th>(^{210})Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Dec-14 – 06-Jan-15</td>
<td>1860(10%)*</td>
<td>0.159(12%)</td>
<td>84(10%)</td>
</tr>
<tr>
<td>06-Jan-15 – 12-Jan-15</td>
<td>1248(10%)</td>
<td>0.083(13%)</td>
<td>21(10%)</td>
</tr>
<tr>
<td>12-Jan-15 – 19-Jan-15</td>
<td>2001(10%)</td>
<td>0.138(11%)</td>
<td>51(10%)</td>
</tr>
<tr>
<td>19-Jan-15 – 26-Jan-15</td>
<td>1208(10%)</td>
<td>0.417(10%)</td>
<td>133(10%)</td>
</tr>
<tr>
<td>26-Jan-15 – 02-Feb-15</td>
<td>1322(10%)</td>
<td>0.196(10%)</td>
<td>64(10%)</td>
</tr>
<tr>
<td>02-Feb-15 – 09-Feb-15</td>
<td>754(10%)</td>
<td>0.328(10%)</td>
<td>165(10%)</td>
</tr>
<tr>
<td>09-Feb-15 – 16-Feb-15</td>
<td>1509(10%)</td>
<td>0.182(11%)</td>
<td>160(10%)</td>
</tr>
<tr>
<td>16-Feb-15 – 23-Feb-15</td>
<td>1634(10%)</td>
<td>0.469(10%)</td>
<td>158(10%)</td>
</tr>
<tr>
<td>23-Feb-15 – 02-Mar-15</td>
<td>1718(10%)</td>
<td>0.203(10%)</td>
<td>76(10%)</td>
</tr>
<tr>
<td>02-Mar-15 – 09-Mar-15</td>
<td>3705(10%)</td>
<td>0.176(11%)</td>
<td>124(10%)</td>
</tr>
<tr>
<td>09-Mar-15 – 16-Mar-15</td>
<td>1141(10%)</td>
<td>0.348(10%)</td>
<td>125(10%)</td>
</tr>
<tr>
<td>16-Mar-15 – 23-Mar-15</td>
<td>2508(10%)</td>
<td>0.990(10%)</td>
<td>190(10%)</td>
</tr>
<tr>
<td>23-Mar-15 – 30-Mar-15</td>
<td>1327(10%)</td>
<td>0.280(10%)</td>
<td>63(10%)</td>
</tr>
<tr>
<td>30-Mar-15 – 07-Apr-15</td>
<td>1775(10%)</td>
<td>0.200(13%)</td>
<td>101(10%)</td>
</tr>
<tr>
<td>07-Apr-15 – 13-Apr-15</td>
<td>4031(10%)</td>
<td>0.250(12%)</td>
<td>114(10%)</td>
</tr>
<tr>
<td>13-Apr-15 – 20-Apr-15</td>
<td>1881(10%)</td>
<td>0.168(11%)</td>
<td>134(10%)</td>
</tr>
<tr>
<td>20-Apr-15 – 27-Apr-15</td>
<td>4299(10%)</td>
<td>0.243(13%)</td>
<td>233(10%)</td>
</tr>
<tr>
<td>27-Apr-15 – 04-May-15</td>
<td>2779(10%)</td>
<td>0.140(12%)</td>
<td>105(10%)</td>
</tr>
<tr>
<td>04-May-15 – 11-May-15</td>
<td>2298(10%)</td>
<td>0.116(12%)</td>
<td>100(10%)</td>
</tr>
<tr>
<td>11-May-15 – 18-May-15</td>
<td>2632(10%)</td>
<td>0.101(12%)</td>
<td>101(10%)</td>
</tr>
<tr>
<td>18-May-15 – 26-May-15</td>
<td>2259(10%)</td>
<td>0.129(14%)</td>
<td>132(10%)</td>
</tr>
<tr>
<td>26-May-15 – 01-Jun-15</td>
<td>1928(10%)</td>
<td>0.130(13%)</td>
<td>104(10%)</td>
</tr>
<tr>
<td>01-Jun-15 – 08-Jun-15</td>
<td>3652(10%)</td>
<td>0.143(12%)</td>
<td>195(10%)</td>
</tr>
<tr>
<td>08-Jun-15 – 15-Jun-15</td>
<td>3025(10%)</td>
<td>0.150(12%)</td>
<td>216(10%)</td>
</tr>
<tr>
<td>15-Jun-15 – 22-Jun-15</td>
<td>2270(10%)</td>
<td>0.098(13%)</td>
<td>150(10%)</td>
</tr>
<tr>
<td>22-Jun-15 – 29-Jun-15</td>
<td>2189(10%)</td>
<td>0.107(13%)</td>
<td>139(10%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean</th>
<th>2191</th>
<th>0.229</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>912</td>
<td>0.181</td>
<td>50</td>
</tr>
</tbody>
</table>

Figures in brackets are relative standard uncertainties
Table 2.1. Radionuclides in precipitation in the 10 m² rain collector at Risø (cf. Fig. 8.1), January - June 2015. (Unit: Bq m⁻²)

<table>
<thead>
<tr>
<th>Month</th>
<th>⁷Be</th>
<th>¹³⁷Cs</th>
<th>²¹⁰Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1077(10%)*</td>
<td>0.105(34%)</td>
<td>79(18%)</td>
</tr>
<tr>
<td>February</td>
<td>1340(10%)</td>
<td>0.278(41%)</td>
<td>113(12%)</td>
</tr>
<tr>
<td>March</td>
<td>1612(10%)</td>
<td>0.324(23%)</td>
<td>131(10%)</td>
</tr>
<tr>
<td>April</td>
<td>1081(10%)</td>
<td>0.251(25%)</td>
<td>98(10%)</td>
</tr>
<tr>
<td>May</td>
<td>1987(10%)</td>
<td>0.475(31%)</td>
<td>127(31%)</td>
</tr>
<tr>
<td>June</td>
<td>1506(10%)</td>
<td>0.334(14%)</td>
<td>110(17%)</td>
</tr>
</tbody>
</table>

*Figures in brackets are relative standard uncertainties

Table 2.2. Radionuclides in precipitation in the 10 m² rain collector at Risø (cf. Fig. 8.1), January - June 2015. (Unit: Bq m⁻²)

<table>
<thead>
<tr>
<th>Month</th>
<th>Precipitation (m)</th>
<th>⁷Be</th>
<th>¹³⁷Cs</th>
<th>²¹⁰Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.069(10%)*</td>
<td>74.6(10%)</td>
<td>0.0072(35%)</td>
<td>5.5(21%)</td>
</tr>
<tr>
<td>February</td>
<td>0.024(10%)</td>
<td>32.2(10%)</td>
<td>0.0067(42%)</td>
<td>2.7(16%)</td>
</tr>
<tr>
<td>March</td>
<td>0.022(10%)</td>
<td>35.4(10%)</td>
<td>0.0042(25%)</td>
<td>2.8(14%)</td>
</tr>
<tr>
<td>April</td>
<td>0.025(10%)</td>
<td>27.3(10%)</td>
<td>0.0063(27%)</td>
<td>2.5(14%)</td>
</tr>
<tr>
<td>May</td>
<td>0.028(10%)</td>
<td>55.6(10%)</td>
<td>0.0133(33%)</td>
<td>3.6(32%)</td>
</tr>
<tr>
<td>June</td>
<td>0.049(10%)</td>
<td>73.7(10%)</td>
<td>0.0164(17%)</td>
<td>5.4(20%)</td>
</tr>
<tr>
<td>Sum</td>
<td>0.217(5%)</td>
<td>432.6(5%)</td>
<td>0.0541(12%)</td>
<td>22.5(9%)</td>
</tr>
</tbody>
</table>

*Figures in brackets are relative standard uncertainties
Table 2.3. Tritium in precipitation collected at Risø (cf. Figs. 1, 2.3.1 and 2.3.2). January - June 2015. (Unit: kBq m⁻²)

<table>
<thead>
<tr>
<th>Month</th>
<th>10 m² rain collector*</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>< 2.1</td>
</tr>
<tr>
<td>February</td>
<td>2.9 (28%)<sup>b</sup></td>
</tr>
<tr>
<td>March</td>
<td>2.5 (32%)</td>
</tr>
<tr>
<td>April</td>
<td>3.0 (24%)</td>
</tr>
<tr>
<td>May</td>
<td>2.3 (33%)</td>
</tr>
<tr>
<td>June</td>
<td>- <sup>a</sup></td>
</tr>
</tbody>
</table>

Double determinations^a.

^a Precipitation sample collected, but not yet analysed, due to illness of key staff.

^b Figures in brackets are relative standard uncertainties

Table 2.4. Tritium in precipitation collected at Risø (cf. Fig. 1). January - June 2015. (Unit: kBq m⁻²)

<table>
<thead>
<tr>
<th>Month</th>
<th>Precipitation (m)</th>
<th>10 m² rain collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.069 (10%)<sup>a</sup></td>
<td>< 0.145</td>
</tr>
<tr>
<td>February</td>
<td>0.024 (10%)</td>
<td>0.070 (30%)</td>
</tr>
<tr>
<td>March</td>
<td>0.022 (10%)</td>
<td>0.055 (33%)</td>
</tr>
<tr>
<td>April</td>
<td>0.025 (10%)</td>
<td>0.075 (26%)</td>
</tr>
<tr>
<td>May</td>
<td>0.028 (10%)</td>
<td>0.064 (35%)</td>
</tr>
<tr>
<td>June</td>
<td>0.049 (10%)</td>
<td>- <sup>a</sup></td>
</tr>
</tbody>
</table>

| Sum | 0.217 (5%) |

^a Figures in brackets are relative standard uncertainties
Table 3.1. Radionuclides in sediment samples collected at Bolund in Roskilde Fjord. (cf. Fig. 3.1) January - June 2015. (Unit: Bq kg$^{-1}$ dry)

No samples in this period.

Table 4.1. Radionuclides in seawater collected in Roskilde Fjord (cf. Fig. 4.1) January - June 2015. (Unit: Bq m$^{-3}$)

No samples in this period.

Table 4.2. Tritium in seawater collected in Roskilde Fjord (Risø pier) (cf. Fig. 4.2) January - June 2015.

<table>
<thead>
<tr>
<th>Month</th>
<th>kBq m$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>< 2.1 *</td>
</tr>
<tr>
<td>June</td>
<td>^a</td>
</tr>
</tbody>
</table>

* Double determinations

^a Seawater has been sampled also in June 2015, but not yet analysed, due to illness of key staff.
Table 5.1. Radionuclides in grass (* snow) collected at Risø near the Waste Treatment Station, location I P3, Fig. 1, January - June 2015. (**Measured on bulked ash samples)

<table>
<thead>
<tr>
<th>Week no. or month</th>
<th>Date</th>
<th>K</th>
<th>137Cs</th>
<th>137Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(g kg$^{-1}$ fresh)</td>
<td>(Bq kg$^{-1}$ fresh)</td>
<td>(Bq m$^{-2}$)</td>
</tr>
<tr>
<td>1</td>
<td>1 January</td>
<td><2.0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12 January</td>
<td>2.6(10%)a</td>
<td>0.7(30%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26 January</td>
<td><0.06</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9 February</td>
<td>3.4(11%)</td>
<td><0.6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23 February</td>
<td>2.7(11%)</td>
<td><0.3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9 March</td>
<td>4.9(11%)</td>
<td><0.7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>23 March</td>
<td>5.4(10%)</td>
<td><0.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7 April</td>
<td>6.1(10%)</td>
<td>1.1(30%)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>20 April</td>
<td>5.4(10%)</td>
<td><0.4</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4 May</td>
<td>4.7(10%)</td>
<td><0.5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>18 May</td>
<td>2.8(10%)</td>
<td><0.3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1 June</td>
<td>5.0(10%)</td>
<td><0.5</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>15 June</td>
<td>3.8(10%)</td>
<td>0.4(35%)</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td></td>
<td>0.465(12%)</td>
<td>0.221(15%)</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td>0.265(12%)</td>
<td>0.063(15%)</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td></td>
<td>0.306(13%)</td>
<td>0.042(16%)</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td>0.429(12%)</td>
<td>0.112(15%)</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>0.176(16%)</td>
<td>0.072(19%)</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>0.296(14%)</td>
<td>0.079(17%)</td>
<td></td>
</tr>
</tbody>
</table>

a Figures in brackets are relative standard uncertainties
Table 5.2. Radionuclides in Fucus vesiculosus collected at Bolund in Roskilde Fjord. January - June 2015. (Unit: Bq kg⁻¹ dry)

No samples in this period.
Table 7.1. Waste water collected at Risø (cf. Fig. 1), January - June 2015.

<table>
<thead>
<tr>
<th>Week number</th>
<th>eqv. mg KCl l⁻¹</th>
<th>¹³⁷ Cs (Bq m⁻³)</th>
<th>¹³¹ I (Bq m⁻³)</th>
<th>²²⁶ Ra (Bq m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34 (12%)</td>
<td><72</td>
<td><121</td>
<td><141</td>
</tr>
<tr>
<td>2</td>
<td>34 (13%)</td>
<td><72</td>
<td><83</td>
<td><143</td>
</tr>
<tr>
<td>3</td>
<td>50 (11%)</td>
<td><68</td>
<td><67</td>
<td><139</td>
</tr>
<tr>
<td>4</td>
<td>66 (10%)</td>
<td><122</td>
<td><130</td>
<td><260</td>
</tr>
<tr>
<td>5</td>
<td>30 (12%)</td>
<td><72</td>
<td><72</td>
<td><147</td>
</tr>
<tr>
<td>6</td>
<td>25 (13%)</td>
<td><126</td>
<td><140</td>
<td><266</td>
</tr>
<tr>
<td>7</td>
<td>40 (14%)</td>
<td><70</td>
<td><69</td>
<td><147</td>
</tr>
<tr>
<td>8</td>
<td>44 (12%)</td>
<td><118</td>
<td><148</td>
<td><250</td>
</tr>
<tr>
<td>9</td>
<td>55 (11%)</td>
<td><111</td>
<td><147</td>
<td><258</td>
</tr>
<tr>
<td>10</td>
<td>74 (11%)</td>
<td><84</td>
<td><81</td>
<td><164</td>
</tr>
<tr>
<td>11</td>
<td>59 (11%)</td>
<td><72</td>
<td><72</td>
<td><162</td>
</tr>
<tr>
<td>12</td>
<td>61 (12%)</td>
<td><119</td>
<td><146</td>
<td><263</td>
</tr>
<tr>
<td>13</td>
<td>57 (12%)</td>
<td><81</td>
<td><73</td>
<td><142</td>
</tr>
<tr>
<td>14</td>
<td>54 (11%)</td>
<td><121</td>
<td><936</td>
<td><270</td>
</tr>
<tr>
<td>15</td>
<td>68 (10%)</td>
<td><126</td>
<td><523</td>
<td><276</td>
</tr>
<tr>
<td>16</td>
<td>78 (12%)</td>
<td><120</td>
<td><526</td>
<td><303</td>
</tr>
<tr>
<td>17</td>
<td>88 (11%)</td>
<td><123</td>
<td><526</td>
<td><298</td>
</tr>
<tr>
<td>18</td>
<td>92 (11%)</td>
<td><125</td>
<td><301</td>
<td><300</td>
</tr>
<tr>
<td>19</td>
<td>89 (11%)</td>
<td><118</td>
<td><220</td>
<td><274</td>
</tr>
<tr>
<td>20</td>
<td>161 (10%)</td>
<td><136</td>
<td>1105 (18%)</td>
<td><325</td>
</tr>
<tr>
<td>21</td>
<td>138 (11%)</td>
<td><126</td>
<td><130</td>
<td><295</td>
</tr>
<tr>
<td>22</td>
<td>115 (10%)</td>
<td>805 (19%)</td>
<td><140</td>
<td><296</td>
</tr>
<tr>
<td>23</td>
<td>132 (10%)</td>
<td>631 (17%)</td>
<td><78</td>
<td><155</td>
</tr>
<tr>
<td>24</td>
<td>111 (10%)</td>
<td>457 (21%)</td>
<td><102</td>
<td><211</td>
</tr>
<tr>
<td>25</td>
<td>112 (10%)</td>
<td>400 (20%)</td>
<td><72</td>
<td><139</td>
</tr>
<tr>
<td>26</td>
<td>123 (10%)</td>
<td>334 (32%)</td>
<td><141</td>
<td><314</td>
</tr>
</tbody>
</table>

| Mean | 76.5 | < 185 | <244 | <228 |

| SD | 37 | 206 |

* Figures in brackets are relative standard uncertainties

¹ Sample measurements for week 14 and to a lesser degree for the following weeks were carried out with a delay, which considerably increased the detection limit of short lived ¹³¹I. The delay was due to extensive laboratory restoration work making analyses impossible for some time.

² The enhanced level of ¹³¹I measured in week 20 coincides with measurement at DTU Nutech of comparatively high levels of ¹³¹I in waste water (50 kBq/l) and sludge (600 Bq/g) from Herlev Hospital.

³ The reason for the enhanced level is not known.
Table 8.1. Background dose rates around the border of Risø (cf. Fig. 8.1) measured with thermoluminescence dosimeters (TLD) in the period November 2014 – April 2015. (Results are normalized to nSv h⁻¹)

<table>
<thead>
<tr>
<th>Location</th>
<th>nSv h⁻¹ (\pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50(10%)(^a)</td>
</tr>
<tr>
<td>2</td>
<td>49(10%)</td>
</tr>
<tr>
<td>3</td>
<td>.*</td>
</tr>
<tr>
<td>4</td>
<td>58(10%)</td>
</tr>
<tr>
<td>5</td>
<td>59(10%)</td>
</tr>
<tr>
<td>6</td>
<td>62(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td>56(5%)</td>
</tr>
</tbody>
</table>

\(^a\) The dosimeter has been lost during the exposure period
\(^\ast\) Figures in brackets in Table 8.1 and 8.2 are relative standard uncertainties
Table 8.2. Background dose rates around Risø (cf. Fig. 8.2 and Fig. 1) measured with thermoluminescence dosimeters (TLD) in the period November 2014–April 2015. (Results are normalized to nSv h$^{-1}$).

<table>
<thead>
<tr>
<th>Risø zone</th>
<th>Location</th>
<th>nSv h$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>48(10%)a</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>56(10%)</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>85(10%)</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>58(10%)</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>67(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>63(5%)</td>
</tr>
<tr>
<td>II</td>
<td>P1</td>
<td>59(10%)</td>
</tr>
<tr>
<td>II</td>
<td>P2</td>
<td>62(10%)</td>
</tr>
<tr>
<td>II</td>
<td>P3</td>
<td>46(10%)</td>
</tr>
<tr>
<td>II</td>
<td>P4</td>
<td>66(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>58(5%)</td>
</tr>
<tr>
<td>III</td>
<td>P1</td>
<td>48(10%)</td>
</tr>
<tr>
<td>III</td>
<td>P2</td>
<td>69(10%)</td>
</tr>
<tr>
<td>III</td>
<td>P3</td>
<td>55(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>57(6%)</td>
</tr>
<tr>
<td>IV</td>
<td>P1</td>
<td>45(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P2</td>
<td>47(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P3</td>
<td>60(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P4</td>
<td>55(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P5</td>
<td>54(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P6</td>
<td>47(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P7</td>
<td>65(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>53(4%)</td>
</tr>
<tr>
<td>V</td>
<td>P1</td>
<td>58(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P2</td>
<td>69(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P3</td>
<td>70(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P4</td>
<td>47(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P5</td>
<td>55(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P6</td>
<td>41(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P7</td>
<td>53(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P8</td>
<td>61(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P9</td>
<td>52(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P10</td>
<td>66(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>57(4%)</td>
</tr>
</tbody>
</table>
Table 8.3. Terrestrial dose rates at the Risø zones (cf. Fig. 8.2 and Fig. 1) January – June 2015. Measured with a NaI(Tl) detector. (Unit: nSv h\(^{-1}\))

<table>
<thead>
<tr>
<th>Risø zone</th>
<th>Location</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>P1</td>
<td>40(10%)</td>
</tr>
<tr>
<td>I</td>
<td>P2</td>
<td>51(10%)</td>
</tr>
<tr>
<td>I</td>
<td>P3</td>
<td>346(10%)</td>
</tr>
<tr>
<td>I</td>
<td>P4</td>
<td>45(10%)</td>
</tr>
<tr>
<td>I</td>
<td>P5</td>
<td>50(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>106(5%)</td>
</tr>
<tr>
<td>II</td>
<td>P1</td>
<td>44(10%)</td>
</tr>
<tr>
<td>II</td>
<td>P2</td>
<td>48(10%)</td>
</tr>
<tr>
<td>II</td>
<td>P3</td>
<td>40(10%)</td>
</tr>
<tr>
<td>II</td>
<td>P4</td>
<td>42(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>43(4%)</td>
</tr>
<tr>
<td>III</td>
<td>P1</td>
<td>46(10%)</td>
</tr>
<tr>
<td>III</td>
<td>P2</td>
<td>48(10%)</td>
</tr>
<tr>
<td>III</td>
<td>P3</td>
<td>51(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>48(6%)</td>
</tr>
<tr>
<td>IV</td>
<td>P1</td>
<td>35(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P2</td>
<td>43(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P3</td>
<td>43(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P4</td>
<td>48(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P5</td>
<td>31(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P6</td>
<td>44(10%)</td>
</tr>
<tr>
<td>IV</td>
<td>P7</td>
<td>53(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>42(4%)</td>
</tr>
<tr>
<td>V</td>
<td>P1</td>
<td>58(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P2</td>
<td>57(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P3</td>
<td>57(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P4</td>
<td>48(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P5</td>
<td>48(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P6</td>
<td>70(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P7</td>
<td>44(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P7a</td>
<td>52(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P8</td>
<td>45(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P9</td>
<td>53(10%)</td>
</tr>
<tr>
<td>V</td>
<td>P10</td>
<td>39(10%)</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>52(4%)</td>
</tr>
</tbody>
</table>

Figures in brackets are relative standard uncertainties

The higher value of external radiation at location P3 in Risø zone I is caused by enhanced level of low-energy gamma radiation from the DD Waste Treatment Station, where barrels contain radioactive waste from, e.g., industry. The stored barrels are shielded on the sides, but not upwards, leading to increased contributions to dose rate from low-energy gamma radiation scattered in air. The NaI detector is particularly sensitive to low energy gamma radiation, which means that the dose rate is overestimated by about 40% at this location.
Fig. 1. Locations for measurements of gamma-background radiation Zone I and II (cf. Tables 8.2 and 8.3)
Fig. 1.1. Caesium-137 in ground level air collected at Risø in January-June 2015. (Unit: µBq m$^{-3}$)

Fig. 1.2. Beryllium-7 and Lead-210 in ground level air collected at Risø in January-June 2015. (Unit: µBq m$^{-3}$)
Fig. 2.3.1. Tritium in precipitation collected at Risø (1 m² rain collector) 1980 - 2013. (Unit: kBq m⁻³; DL = detection limit. This rain collector was taken out of operation in 2013.

Fig. 2.3.2. Tritium in precipitation collected at Risø (10 m² rain collector) 1980 - 2015. (Unit: kBq m⁻³; DL = detection limit)
Fig. 3.1. Caesium–137 in sediment samples collected at Bolund in Roskilde Fjord, 1980 – 2015. (Unit: Bq kg$^{-1}$ dry matter)
Fig. 4.1. Caesium–137 in seawater collected in Roskilde Fjord 1980 - 2015. (Unit: Bq m$^{-3}$)

Fig. 4.2. Tritium in seawater collected in Roskilde Fjord 1980 - 2015. (Unit: kBq m$^{-3}$; DL = detection limit)
Fig. 7.1. Total-beta radioactivity in waste water collected at Risø 1994 - 2015. (Unit: eqv. mg KCl l$^{-1}$)
Fig. 8.1. Locations (1-6) for TLD measurements around the border of Risø (cf. Table 8.1).
Fig. 8.2. Locations for measurements of background radiation around Risø in Zones III, IV and V.
MATERIALS AND METHODS

External gamma dose rate monitoring

Monitoring of external gamma dose rate is carried out with the following devices

- Thermoluminescence dosimeters TLD: LiF, measurement frequency annually from May to April. TLD equipment manufacturer: ALNOR/RADOS
- NaI detector: 3x3 inch, SAM 935 Surveillance and Measurement System, Berkeley Nucleonics Cooperation, USA, visual read-out

Calibration of TLD is carried out by irradiation of dosimeters at a calibration irradiator. Traceability of delivered doses is ensured through calibration of the dose rate of the calibration irradiator by the National Institute of Radiation Protection (SIS). Calibration has been verified by measurement with ionisation chamber from NPL, UK. The NaI detector is calibrated periodically vs. a Reuter Stokes high-pressure ionisation chamber.

Air sampler

The sampler at Risø is manufactured by DTU. Air is drawn through a polypropylene filter at a rate of about 2000 m3/h. The filter is normally changed weekly. The flow rate is monitored by a gas meter connected to a shunt. The gas meter reading is compared to that of a reference gas meter intermittently.

DTU analyse the filters by gamma spectrometry shortly after filter change to check for the presence of short-lived man-made radionuclides. The air filters are subsequently stored for a minimum of one week to allow for decay of short-lived naturally occurring radionuclides before repeated gamma analysis. Filters are analysed for 137Cs, 7Be and 210Pb and other gamma emitters.

Deposition collector

The Risø site operates a large rain collector of 10 m2. The collector is heated and water is passed through an ion exchange column to a large tank. The 10 m2 collector provides monthly samples of rain water analysed for tritium and ion exchange resin which is analysed by gamma spectrometry for 7Be, 137Cs and 210Pb and other gamma emitters.

Water and sediment

A waste water sample from the Waste Treatment Station is collected weekly and analysed for total beta radioactivity and the radionuclides 131I, 137Cs and 226Ra. Water samples from Roskilde Fjord are collected each quarter and analysed for tritium, annually for 137Cs. A sediment sample is collected annually from Roskilde Fjord and analysed for 137Cs.

Terrestrial and aquatic biota and flora

Grass samples are collected weekly at the Risø site and analysed by gamma spectrometry. Samples are bulked to monthly samples which are analysed for 137Cs.

Seaweed samples are collected annually from Roskilde Fjord at Risø and analysed for 137Cs.
Sample reception and preparation

Sample identification numbers are entered in log books. Sample preparation methods include drying, freeze drying, ashing, sorting and sieving. Selected samples are archived.

Sample measurements

Radioactivity in samples is measured by total beta counting and gamma spectrometry.

Measurement devices

- Ge detectors for gamma spectrometry. Calibration of detectors is based on mixed-nuclide standards used occasionally. Monthly checks are made of detector efficiency and energy resolution. Background measurements of gamma systems are made a few times per year.
- Low-level Geiger-Müller counters for total beta counting, manufactured by DTU. Calibration based on standards of KCl. Counting efficiency and background are checked monthly.
- Liquid scintillation spectrometer for analysis of tritium in water. Samples are analysed with a calibration standard.

Analytical results, data handling and reporting tools

Analytical results are printed on paper, recorded in log books and stored in a database on intranet. Results below detection limits recorded as such. Spreadsheets are used for calculating results from raw data.

Quality assurance, laboratory accreditation and intercomparison exercises

Analytical results are checked by experienced staff and discussed with senior scientists if questions arise.

DTU is accredited to testing for radioactivity by DANAK according to the international standard ISO 17025. The accreditation covers testing for certain non-gamma emitting radionuclides but not for radionuclides occurring in the environment and food in general.

DTU participate regularly in international intercomparisons on laboratory analyses of radionuclides.
CONCLUSIONS

This report shows the results of the environmental surveillance monitoring programme carried out at and around the Risø site in January-June 2015. The mean concentrations in air were: 0.23±0.18 μBq m⁻³ of 137Cs, 2.19±0.91 mBq m⁻³ of 7Be and 0.13±0.05 mBq m⁻³ of 210Pb (±1 S.D.). The depositions by precipitation at Risø in the first half of 2015 were: 0.054±0.015 Bq m⁻² of 137Cs, 433±43 Bq m⁻² of 7Be, 22.5±4.5 Bq m⁻² of 210Pb and < 0.5 kBq m⁻² of 3H. The average background dose rate (TLD) at Risø (Zone I) was measured as 63 nSv h⁻¹ compared with 56 ± 3 nSv h⁻¹ (±1 S.D.) in the four zones around Risø. None of the recorded levels of radioactivity and radiation have given rise to concern. A number of samples for June have not yet been analysed due to illness, but the results will be reported in the next biannual report.
Center for Nuclear Technologies is Denmark’s national competency center for nuclear technology. With roots in research in the peaceful use of nuclear power, DTU Nutech works with the applications of ionizing radiation and radioactive substances for the benefit of society.