

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

�x Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
�x You may not further distribute the material or use it for any profit-making activity or commercial gain
�x You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Feb 21, 2019

AVOCLOUDY: a simulator of volunteer clouds

Sebastio, Stefano; Amoretti, Michele; Lluch Lafuente, Alberto

Published in:
Software: Practice & Experience

Link to article, DOI:
10.1002/spe.2345

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sebastio, S., Amoretti, M., & Lluch Lafuente, A. (2015). AVOCLOUDY: a simulator of volunteer clouds. Software:
Practice & Experience, 46(1), 3-30. DOI: 10.1002/spe.2345

https://doi.org/10.1002/spe.2345
http://orbit.dtu.dk/en/publications/avocloudy-a-simulator-of-volunteer-clouds(fb4d93a3-7ccc-433d-8c5d-169053fea347).html

SOFTWARE: PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2016;46:3–30
Published online 30 July 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2345

AVOCLOUDY: a simulator of volunteer clouds

Stefano Sebastio1,4,* ,†, Michele Amoretti2 and Alberto Lluch Lafuente3,4

1LIMS, London Institute of Mathematical Sciences, London, UK
2Dipartimento di Ingegneria dell’Informazione, University of Parma, Italy
3DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark

4IMT Institute for Advanced Studies, Lucca, Italy

SUMMARY

The increasing demand of computational and storage resources is shifting users toward the adoption of cloud
technologies. Cloud computing is based on the vision ofcomputing as utility, where users no more need
to buy machines but simply access remote resources made available on-demand by cloud providers. The
relationship between users and providers is de�ned by a service-level agreement, where the non-ful�llment
of its terms is regulated by the associated penalty fees. Therefore, it is important that the providers adopt
proper monitoring and managing strategies. Despite their reduced application, intelligent agents constitute
a feasible technology to add autonomic features to cloud operations. Furthermore, the volunteer computing
paradigm—one of the Information and Communications Technology (ICT) trends of the last decade—can
be pulled alongside traditional cloud approaches, with the purpose to ‘green’ them. Indeed, the combination
of data center and volunteer resources, managed by agents, allows one to obtain a more robust and scalable
cloud computing platform. The increased challenges in designing such a complex system can bene�t from a
simulation-based approach, to test autonomic management solutions before their deployment in the produc-
tion environment. However, currently available simulators of cloud platforms are not suitable to model and
analyze such heterogeneous, large-scale, and highly dynamic systems. We propose the AVOCLOUDY simu-
lator to �ll this gap. This paper presents the internal architecture of the simulator, provides implementation
details, summarizes several notable applications, and provides experimental results that measure the simu-
lator performance and its accuracy. The latter experiments are based on real-world worldwide distributed
computations on top of the PlanetLab platform. Copyright © 2015 John Wiley & Sons, Ltd.

Received 3 September 2014; Revised 22 May 2015; Accepted 21 June 2015

KEY WORDS: cloud computing; volunteer computing; autonomic computing; distributed computing;
discrete event simulation

1. INTRODUCTION

Provisioning, using, and maintaining computational resources as services are hard challenges. On
the one hand, there is an increasing demand of such services due to the increasing role of software in
our society, while on the other hand, the amount and variety of computational resources are growing
due to the pervasiveness of computational devices in our lives.

The complexity of such a problem can only be mastered by resorting to suitable technologies
based on well-studied paradigms. Three prominent examples and ICT trends of the last decade,
which can be fruitfully combined, arecloud computing, autonomic computing, and volunteer
computing.
Cloud Computing. Cloud computing is a recent ICT technology based on the concept ofcomput-
ing as utility. In this vision, users do not buy nor maintain their own computational resources but

*Correspondence to: Stefano Sebastio, LIMS, London Institute of Mathematical Sciences, 22 South Audley St. Mayfair,
London W1K 2NY, UK.

†E-mail: stefano.sebastio@alumni.imtlucca.it

Copyright © 2015 John Wiley & Sons, Ltd.

4 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

Figure 1. Cloud computing stack architecture.

rather use services based on their requirements, regardless of where the resources are hosted or how
they are deployed. In the cloud, resources are managed with a multi-tenancy approach, where each
request is bound to a contract between the service provider and the consumer. Such a contract is
speci�ed in terms of service-level agreements (SLAs) and associated to penalty fees, in case of vio-
lation of the required quality of service (QoS). Thus, it is necessary that the cloud is provided with
performance monitoring functions. Another important feature of cloud computing is its ability to
provideelastichigh-performance services, adapting to user and application needs.

Cloud services can be of different nature, from high-level services such as applications to low-
level services such as hardware resources. The reference model of cloud services is illustrated
in Figure 1.

Autonomic Computing and Clouds. One of the greatest challenges of cloud computing is the
ef�cient use of resources, while guaranteeing the ful�llment of SLAs. To this aim, particular atten-
tion is given to autonomic computing techniques, which support the development of clouds as
self-managing systems. Cloud features should automatically adapt to their internal status and the
dynamically changing environment, without human intervention. Self-management may involve
system maintenance, awareness, evolution, con�guration, healing, tuning, and optimization.

Grid Computing and Clouds. Before the advent of the cloud, grid computing has been one
of the most important technologies adopted by researchers to obtain high-performance comput-
ing capabilities at low cost. The grid paradigm assumes the presence of machines deployed in
different domains, running specialized middleware for the aggregation and provision of compu-
tational resources to participants of the same virtual organization (e.g., researchers working in
the same �eld). Grid users are required to have a high level of expertise. For instance, to suit-
ably coordinate the work�ow of a distributed application, a programmer has to be aware of
low-level details such the heterogeneity of computational resources such as processors or net-
work channels. Instead, with the cloud paradigm, all the shared resources are virtualized by
the ‘cloud’ and offered in a homogenous means that hides unnecessary low-level technicali-
ties. A typical example would be resource-as-a-service offering a unique super-computer to the
programmer that does not need to know if such a service is built upon a cluster or a grid or
something else.

Volunteer Computing and Clouds.The aforementioned proliferation of computational resources
in our society (e.g., in smartphones, in vehicles, and in homes) can be turned into an opportunity.
Indeed, the traditional cloud technology can be combined with mechanisms adopted from another
paradigm that has gained popularity and research attention in the last decades:volunteer comput-
ing. The volunteer paradigm considers the willingness of users to donate their spare and unused
computational resources.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 5

Volunteer cloud computing [1] (i.e., the combination of Peer-to-Peer (P2P) and cloud computing
technologies, also referred asP2P cloud) should be considered as a companion force to enhance tra-
ditional clouds in speci�c domains. For example, it is the case of academic institutions and industrial
research centers that share the spared resources of their labs (not used 24 h a day or underused for
browsing and word processing activities) with other sites, to run complex large-scale simulations.

It is worth noting that grid computing envisages volunteer participation as well. However, to
participate in a grid, an institution has to provide machines that must be con�gured and fully
devoted to the purposes of the speci�c virtual organization. A paradigmatic example is the World-
wide LHC Computing Grid [2], whose machines are distributed worldwide, provided by different
research institutes. Conversely, volunteer cloud computing leverages on idle resources of participant
machines.

The volunteer cloud supports both computing- and storage-oriented cloud-based applications.
Thus, Map-Reduce and streaming applications can be successfully implemented in a volunteer cloud
fashion [1]. Instead, service-oriented applications (such as multi-tier Web applications) are not suit-
able for being executed in a volunteer cloud environment, because of the volatile presence of the
nodes participating in the network.

Opportunities for volunteer cloud computing. The bene�ts of combining the cloud and volun-
teer paradigms are the reduction of economic costs and consumed power at data centers [3–6]. The
reduction of economic costs comes from better exploitation of available and unused computational
resources, for the use of those made available free of charge from the volunteer community. More-
over, harnessing the distributed computing power, maintenance costs of massive data centers are
reduced in terms of power supplies and heat dissipation, thus embracing the green computing ini-
tiative. Last but not least, volunteer cloud computing is bene�cial in case of natural catastrophes
that damage data centers, or when governments place restrictions on the location of sensitive data.
Indeed, volunteer cloud computing prevents the presence of a single entity that owns and controls
the cloud, with less risk in the vendor lock-in problem.

To foster the participation of volunteers while respecting the SLAs, it is possible to contemplate
the registration of each volunteer (e.g., through a system of signed certi�cates) and the assignment of
credits for their participation. For example, the PlanetLab platform [7] fosters the participation to the
P2P network, requiring to share a minimum number of machines (with speci�ed minimum system
requirements) to gain access to all other shared machines. We have precisely used this platform in
our experiments aimed at validating the con�dence of our simulator, as we shall discuss later.

In recent years, the volunteer cloud paradigm is gaining attention, alongside to the increased
diffusion of cloud technologies [8]. For example, in France at INRIA (Clouds@Home), in Italy
at the universities of Bologna (peer-to-peer cloud system) and Messina (Cloud@Home), and in
general within the European Community (NaDa—NanoDatacenter [9], EDGI—European Desktop
Grid initiative [10]), the CERN’s volunteer cloud [11], in the USA within the National Science
Foundation, which supports the BOINC project (to date with �ve research grants [12]), HTCondor
(to date with four grants [13]), Seattle (to date with three grants [14]), SETI@home (with support
from the National Science Foundation and NASA [15]), and the Federal University of Campina
Grande in Brasil with the OurGrid initiative [16]. Other works have modeled resource discovery
algorithms in volunteer clouds relying on queueing theory [17, 18] and explored the opportunity for
distributing Matlab simulations in a university volunteer infrastructure [19].

One of the major drawbacks of volunteer cloud computing is the challenge posed by the increas-
ing complexity in the management of heterogeneous and distributed computing resources. Despite
the mentioned considerable amount of research and implementation effort, the current landscape
lacks of a simulator targeting the peculiarities of the volunteer cloud environment, which would
be bene�cial to prototype and analyze new solutions to the management of resources in volunteer
clouds. Our work aims at �lling this gap.

Contribution. Our vision advocates for the realization of a volunteer cloud computing architecture
relying on the autonomic computing approach, realized through intelligent agents. The increased
complexity of such a paradigm demands more attention to the design phase. A simulation-based

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

6 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

approach can alleviate the deployment risk, giving con�dence on the expected performance. To the
best of our knowledge, the most used and affordable cloud simulators [20–22] only consider the
presence of few interconnected data centers and thus cannot scale to the size of a typical volun-
teer network and model the associated challenges. The proposed AVOCLOUDY simulator allows
one to consider richer scenarios with data centers, volunteers, or both types of nodes together.
It is worth to remark that its layered architecture and the use of agents simplify the transition
from the simulator to the production environment. This has facilitated, for instance, the porting of
some case studies from the simulator to the PlanetLab platform used to validate the con�dence of
the simulator.

AVOCLOUDY is a simulator of volunteer clouds targeted for the evaluation of task distribution
and network management protocols. We do not focus here on the details of such protocols (we refer
to our previous research, summarized in Section 5). Instead, we provide a detailed description of the
simulator, using a tutorial form, as much as possible.

Synopsis.The paper is structured as follows. Section 2 introduces the reference platforms for AVO-
CLOUDY, and in particular the SCIENCECLOUD. Section 3 presents the AVOCLOUDY architecture,
whose implementation details are provided in Section 4. Some works that have already bene�t from
AVOCLOUDY are brie�y described in Section 5, while Section 6 presents a simple experiment and
a performance evaluation. A con�dence validation based on a worldwide distributed application
running on top of the PlanetLab network is presented in Section 7. Finally, Sections 8 and 9 con-
clude the work respectively with an overview of the other available cloud simulators and some
�nal remarks.

2. EXISTING PLATFORMS

The proposed solution has its roots on the architecture of the SCIENCE CLOUD [23], an auto-
nomic and cooperative volunteer cloud computing platformdeveloped within the European project
ASCENS [24]. The SCIENCE CLOUD is a decentralized platform whose goal is the sharing of com-
putational resources among scienti�c communities. Differently from the traditional de�nition of
cloud, the volunteer cloud is characterized by the following: (i) openness and dynamism (i.e., par-
ticipants can join and leave the network at any moment) and (ii) lack of a centralized control
(i.e., participants directly interact in a peer-to-peer fashion). Shared resources are mainly used to
execute distributed applications or services.

In this work, we refer to the abstract entity that shares its resources asnode, volunteer, or par-
ticipant interchangeably. The different types ofagentare the autonomic components that act in the
network at different layers of the architecture to ful�ll certain goals. The physical resources shared
by a volunteer constitute adevice.

There are different types of devices participating to the volunteer network. They can be grouped
into three main categories: (i) dedicated servers and data centers; (ii) desktops and laptops; and (iii)
mobile devices. The groups are characterized by a different amount of available resources (CPU,
memory, and energy) and online presence. Anyhow, also in the same category, nodes arehetero-
geneous(i.e., they may offer different virtual resources) and highlydynamic(i.e., they may enter
or leave the system at any time). Furthermore, load and resources may change during the nodes
execution.

Devices.Dedicated servers and data centers are made available by universities or research centers
to the research community and, except for update or malfunctioning, are always online. Moreover,
generally, they are made of multisocket–multiprocessor architectures, connected to high-bandwidth
network and to power source.

Desktops and laptops are devices willing to share a quote of their resources when not needed
locally. Their online presence is discontinuous and unknown a priori; they are usually connected
to residential networks and have a limited amount of resources that prevent (or make less attrac-
tive) the execution of multiple virtual machines (VMs) at the same time. Mobile devices are

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 7

Figure 2. Agent layer according to the MAPE-K model.

characterized by limited power capacity that affects their online presence duration. Energy con-
straints and limited resources make mobile devices nothing more than generators of service requests
(just like thecloudletsproposed by Microsoft [25]), leaving the network once such requests have
been satis�ed. Examples where mobile devices can bene�t to request the cloud execution are com-
putational intensive applications in which also the latency affects the user-perceived quality of
experience, like in the augmented reality domain.

Volunteer implementations.Nowadays, many concrete implementations of volunteer computing
are available, such as BOINC [26], HTCondor [27], OurGrid [28], Seattle [29], and SETI@home
[30]. These architectures rely on a central server, thenode manager, that is in charge of
receiving presence messages from new nodes in the network. The node manager collects sub-
mitted task execution requests (often in batch mode) and �nds the most promising nodes to
execute them. The centralized control approach presents different kinds of weakness such as
the central point of failure, and it can constitute a bottleneck when many nodes are con-
nected (as it happens in a typical volunteer network). Moreover, a (sub-)optimal decision about
which nodes to involve in the execution of a given distributed application cannot be realized
in practice because it requires a global knowledge of characteristics and load for each node.
The only operations that can be performed in a complete distributed manner are data stor-
age and location in the network, for example, via a distributed hash table implemented in the
P2P network.

Autonomicity. One of the main differences among the mentioned implementations and the SCI-
ENCE CLOUD regards theautonomicaspects. The autonomic behavior of each node can be under
the control of commercial or academic entities. Each entity can have its goal and policies accord-
ing to which its machines must share and use the resources available in the network. Internally, all
the layers are structured according to the IBM’s reference architectureMAPE-Kfor autonomic sys-
tems [31], as illustrated in Figure 2. Brie�y, the agent in each of the node’s layermonitorsitself and
the ones closer (upper, lower, and the corresponding agent layer of other nodes) for applications,
resources, and environment,analyzesits status, devisesplansto improve its behavior (e.g., appli-
cation execution, resources usage), andenacts those plans. Aknowledgebase supports this
cycle of activities.

3. AVOCLOUDY ARCHITECTURE

This section illustrates the architecture of AVOCLOUDY. It starts with a description of the underly-
ing tools then continues with an overall picture of its volunteer network and the main interactions
occurring among its autonomic entities. Finally, a layer-by-layer bottom-up architectural description
is provided.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

8 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

Figure 3. Toolchain: DEUS + MultiVeStA + AVOCLOUDY.

AVOCLOUDY‡ is built on top of a Discrete Event Universal Simulator (DEUS) [32, 33], a general-
purpose, multi-platform, open-source, Java-based, discrete event simulation tool. Despite there are
many free or commercial simulator tools, the �exibility of DEUS to support the analysis of every
kind and size of complex system, such as the one considered in our scenario, have led us to choose
it. There are three main classes in DEUS: (i)nodes, the entities that interact in the system; (ii)
events, that de�ne internal actions and interactions among the nodes, or with the environment; and
(iii) processes, either stochastic or deterministic ones (many already implemented in the common
processes library), that de�ne the timeliness of the events.

DEUS has been enriched with the distributed statistical analysis capabilities offered by Multi-
VeStA [34, 35]. The latter tool provides a language (MultiQuaTEx) to express system properties of
interest in a compact fashion. Such properties are evaluated by performing independent distributed
simulation runs, until the required accuracy is met.

The obtained toolchain is depicted in Figure 3. The cloud model and its scenario are speci�ed
by means of AVOCLOUDY, which in turn relies on DEUS to manage the basic discrete event simu-
lation functionalities (e.g., process generation and events queue). The system properties of interest
are formally speci�ed by means of MultiQuaTEx. Examples of such properties are mean number
of tasks on queue, applications executed successfully, execution requests spread in the network,
and variance of executed tasks per node. MultiVeStA takes the MultiQuaTEx speci�cation as input,
together with the desired accuracy for each property expressed as the size of the CI at a given per-
centage, evaluated according to the Student’st-test. Independent simulation runs are distributed on
different cores or machines and are performed until the required accuracy is met. Finally, Multi-
VeStA provides in output, for each property, the expected value, the CI (which can be larger than
required, if the maximum number of simulation runs is reached) and the variance. If these properties
concern the evaluation of the system at different points in time, a tab-separated output �le is gener-
ated together with a GnuPlot script and the corresponding plot. As the description of the integration
of DEUS with MultiVeStA is out of the scope of this work, we refer to the recent work by Sebastio
and Vandin [34] for a deeper discussion.

The internal architecture of an AVOCLOUDY node is depicted in Figure 4, where the arrows
represent the interactions among agents. It has many similarities with the architecture pro-
posed in the SCIENCE CLOUD. The main architectural difference between SCIENCE CLOUD and
AVOCLOUDY is that the latter has a modularized structure, where each layer is constituted by an
agent that autonomously cooperates with other agents in the same and in other nodes. Each layer in
the proposed stack corresponds to one of the packages according to which the simulator is organized.

It is worth to note that the considered architecture (Figure 4) signi�cantly differs from the one
of a typical cloud (Figure 1). This is due to the different purpose for which they are made: the
volunteer computing is mainly oriented to resource sharing for on-the-�y application remote relo-
cation and execution, while the typical cloud hosts persistent services. In particular, the topmost
layer agent (theACaaS) is in charge to provide autonomicity for the execution of applications in
the volunteer cloud.

‡https://github.com/distributedResearch/avocloudy/wiki

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

https://github.com/distributedResearch/avocloudy/wiki

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 9

Figure 4. The AVOCLOUDY architecture.

Figure 5. Use case diagram of the AVOCLOUDY simulator. VM, virtual machine.

Agent interactions. The UML use case diagramin Figure 5 describes how agents interact
in the system, providing functions and services. Physical resources (Hw) are managed by the
IaaS_DC_Agent or, in its absence, directly by theIaaS_Agent . If the IaaS_DC_Agent is
present, it is in charge to interact with itsIaaS_Agent s to monitor and act on them for VMs
resizing, shutdown, and start. EachIaaS_Agent , cooperating with the other agents of the same
layer, is in charge of managing the P2P overlay network. Load info and nodes knowledge present
in the IaaS_Agent are exchanged with theACaaS_Agent to contact the other agents of the
same layer. Once theApp is generated, it contracts its execution requirements with the respon-
sible ACaaS_Agent . TheACaaS_Agent s organize themselves in ensembles to orchestrate the
application execution. AVOCLOUDY users de�ne how agents interact to ful�ll the goal of the
designed scenario.

Network. Figure 6 illustrates the architecture of the volunteer cloud, representing with squares and
circles, respectively, data centers and personal devices, and where, for sake of simplicity, only two
nodes are represented with their internal layer architecture. The nodes are arranged in different
cloud sites. Each site can be composed by only data centers (the left site in the �gure), only personal
devices (the right site), or both types together (the bottom center site). Regardless from the nodes
participating to the site, the connection is realized with an arbitrary P2P overlay network. With
AVOCLOUDY, it is possible to de�ne scenarios with one or more types of volunteer nodes, by
properly editing the simulator con�guration �le.

EachIaaS_Agent resides on exactly one site. The general organization is a semi-structured
P2P overlay network, where eachsite is organized in an unstructured overlay network and one
IaaS_Agent for each site is thesupernode, in charge of ‘mediating’ the communication between
sites. Every node entering/leaving the network, being it �xed or mobile, signals its action to the
supernode, as usually happens in the protocols used by layered P2P networks. Despite this simple
signaling protocol, it is still possible that a node abruptly leaves the network (e.g., because of a
connection failure). To solve this issue, nodes should periodically ping the peers they know, in order
to check for their aliveness and, if it is the case, to replace them with new contacts, provided by

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

10 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

Figure 6. Network architecture.

a bootstrap server or by other known nodes. Several strategies can be used to select supernodes
of such sites: from classical leader election strategies [36–39] to more speci�c ones. For example,
it is possible to choose the data center and most stable nodes, with the rationale that these nodes
should experience better uptime and resources. Because the mobile devices are either handhelds,
smartphones, or tablets, with limited power and computing capabilities, they will act only as tasks
producers and will never be considered as supernodes. AVOCLOUDY users can easily implement
more sophisticated leader selection strategies [40–43], as described in Section 4.

Infrastructure layers. Data center machines have anIaaS_DC_Agent that is in charge of mon-
itoring its IaaS_Agent s and, according to its policies and available resources, decides when it is
needed to start (instantiate a new one), resize (scaling-up or down), or shutdown theIaaS_Agent s
that are running on top of it. The knowledge of dynamic information (e.g., CPU load and mem-
ory consumption) and static information (e.g., processor speed and number of cores) on each
IaaS_Agent is used by theIaaS_DC_Agent , where present, to support its decision process.
According to the load monitoring information, it is possible to trigger a request to expand the
resources available on a node, or to start anotherIaaS_Agent if a distributedApp can take advan-
tage from the presence of another node instead that of a single powerful one. When a node is
underloaded for a certain amount of time, it can also perform the reverse action (i.e., reducing the
available resources or shutdown a node), to spare energy.

Differently from the data centers, volunteer devices do not have the chance to run multiple VM
instances if not by consuming many resources. Taking into account that these machines should be
available also for local use, the amount of shared resources is de�ned a priori and no resize policy
is considered.

Regardless of the underlying layer (physical or IaaS_DC), theIaaS_Agent has in charge the
communication with the other nodes to realize the P2P overlay network. Moreover, in addition to
the typical duty of an IaaS cloud layer, theIaaS_Agent is in charge of assigning and sharing the
resources available in its VM (i.e., CPU, memory, and bandwidth). The P2P overlay ensures that
eachIaaS_Agent is able to �nd agents of the same layer and establish connections with them
relying on the underlying network, such as the local area network or the Internet. Moreover, this
layer provides the support for the exchange of the data needed by upper layers (e.g., exchange of
data and applications).

Each volunteer data center node can be modeled as aG=G=m=Kqueue, whereG means that task
arrivals and service times have generic distributions,m is the number ofIaaS_Agent s in each,
andK is the maximum number of tasks in the system (1 being executed,K � 1 waiting in a �rst
come �rst served, queue) [44]. Personal devices are modeled asG=G=1=K queues, because they
cannot resize their resources nor run multipleIaaS_Agent instances.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 11

De�nition 1 (IaaS_Agent resources)
The resources available to theIaaS_Agent are described by a tupleh�; �; � i , where� 2 N C is
the number of processors,� 2 N C is their clock frequency, and� 2 N C is the amount of memory.

Autonomic layer. The ACaaS_Agent is the topmost layer, charged to autonomously coordi-
nate with the other nodes of the same layer, forming aggregations (calledensembles) in order to
orchestrate the application executions and manage their work�ows in a robust and optimized way,
according to the node’s policies and the application’s requirements (e.g., the associated QoS con-
straints). For each application, an isolated execution environment is assigned (like a sandbox or a
VM), to ensure a basic level of security for the user data and the application. Such a layer should
be de�ned by the AVOCLOUDY user to test the designed application distribution protocol. A few
example protocols we implemented in AVOCLOUDY are described in Section 5.

Application layer. The volunteer cloud provides distributed application execution as its main func-
tionality. Applications may range from batch tasks to interactive applications to persistent services,
which may have different requirements in terms of resources (e.g., CPU and memory needed) and
QoS (e.g., deadline). The application (App) can be generated by any node participating to the
network. The node that generates theApp makes use of its own responsibleACaaS_Agent to
autonomously �nd the most promising nodes to distribute and execute the application, while respect-
ing its resources and QoS requirements. When anACaaS_Agent receives a task executionrequest,
it autonomously responds, according to its policies, speci�cations, and load, with a task execution
bid containing the requirements (bothfunctionalandnon-functional) that it is able to satisfy. Several
mechanisms have been investigated in [45–47], but in general, the AVOCLOUDY user is in charge
to de�ne his/her own application dispatch mechanism.

The App can be de�ned as a single task, a set of independent tasks, or arranged in a work-
�ow, with an associate QoS speci�ed by an SLA. TheApp de�nition is taken into account by the
ACaaS_Agent responsible. TheApp typology changes the goal that must be ful�lled; for exam-
ple, when an application is a set of tasks, usually the goal is to minimize, or respect a constraint,
on themakespan(de�ned as the time difference among the task that completes �rst and the one
that completes last in the given set). A simple example of SLA speci�cation can impose a certain
deadline for the execution of each task.

Every task belonging to anApp is de�ned by and carries a description with its duration, required
amount of memory, and maximum degree of parallelism (with the size of the parallelizable fraction)
that it is able to exploit. The declared task execution duration is de�ned on a ‘reference’ architecture,
but its actual duration can be reduced according to the CPU architecture and frequency available on
the executing node. Moreover, the task’s parallelism and the available CPU cores affect the task’s
duration. It is also worth to consider that, when anACaaS_Agent evaluates the task completion
time, in general, it is not able to accurately predict the tasks duration.

De�nition 2 (task)
A taskis a tuplehš; �; f; �; � i , whereš 2 RC is its duration (expressed in cycles),� 2 N C is its
degree of parallelism,f 2 –0; 1�is the parallelizable section,� 2 N C is its memory requirement,
and� 2 RC is its size on secondary (auxiliary) storage.

From the previous de�nition, it follows that1 � f is the task section that needs to be executed
sequentially andf is the fraction that can exploit the maximum machine parallelism.

The execution timee.T; M / required to complete a taskT D hš; �; f; �; � i on a machineM D
h�; �; � i is computed according to some recent extensions of Amdhal’s law [48–50].

De�nition 3 (task execution time)
A taskT with degree of parallelism� and parallelizable sectionf , executed on a machineM whose
cores frequency� , has the following execution time:

e.T; M / D
.1 � f / � š

�
C

f � š
� � min.�; �/

(1)

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

12 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

That is, for the parallelizable sectionf , we divide the duration on one single CPU (š=�) by the
maximum degree of parallelism that can be exploited, which is bounded by both the amount of
available CPUs (�) and the parallelism degree of the task (�). Instead, the task’s sequential section
can only exploit the cores frequency.

A task T D hš; �; f; �; � i can be executed on a machineM D h�; �; � i only if the memory
requirement constraint is satis�ed:

� 6 � (2)

We considered this constraint in our model, assuming that memory-swapping operations could
seriously degrade performance. In Section 4, it is described how to customize or change this
behavior by sub-classing.

A machineM should accept a taskT in its queue only if it can respect the task’s deadline.
The ACaaS_Agent should take care of theApp’s SLA until its execution completes, even in

presence of unforeseen conditions or events that can compromise its execution, such as node dis-
connection, failure, or completion time estimation error. In general, nodes can also be malicious;
that is, they accept tasks even if they know that are not able to satisfy theApp’s requirements. In
these events, the autonomic adaptive logic should act migrating or restarting theApp on another
ACaaS_Agent that is able to execute it satisfying its requirements.

The ACaaS_Agent generates execution requests, based on functional and non-functional
requirements of theApp.

De�nition 4 (task execution request)
A task execution requestis a tuplehš; �; f; �; �; 	 a ; 	 d i , wherehš; �; f; �; � i is a task,	 a 2 RC is
the task arrival date, and	 d 2 RC is its termination deadline.

Task execution requests can be generated by any node participating to the network. As any other
event in AVOCLOUDY, these requests can be generated with an arbitrary time distribution (we refer
the reader to Section 4 for more details).

Requests handling.Application execution requests can be submitted by any node participating to
the network. Figure 7 is a generalization of the centralized control server approach that dispatches
the task load, considered in the concrete implementations mentioned in Section 2. To eachApp is
assigned anACaaS_Agent responsible toprocessit, but not necessarily execute it (Figure 7, step
1). The responsible agent considers its resources and knowledge (Figure 7, step 2) and, if neces-
sary, contacts other nodes that can satisfy the application requirements (Figure 7, step 3). Among
the nodes that can satisfy the requests, the choice falls on the most promising one, according to
the speci�ed optimizationPolicy . Once theACaaS_Agent s able to satisfy the request have
been found, the underlyingIaaS_Agent sends theApp to theexecutornodes (Figure 7, step 4),
waits until they complete the execution, and receives their response. The work�ow depicted in
Figure 7 describes the main steps to manage execution requests. The de�nition of how each step is
accomplished must be de�ned by the AVOCLOUDY user.

In our completely distributed architecture, there is not a single dispatcher (Figure 7). Every node
that generates a task request (task producer) acts according the de�ned task distribution algorithm
(e.g., Ant Colony Optimization algorithm (ACO), reputation, and others).

It is worth noting that all task transfers incur in a transmission cost, which depends on where
destination nodes are located.

De�nition 5 (Link delay
)
Nodesa andb, whose geographical position are respectively.x a; ya/ and.x b; yb/ , are affected by
a communication delay
 [51].

link_lengthD
p

.x a � xb/2 C .y a � yb/2 (3)

 D
link_length

propagation speed in the medium
(4)

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 13

Figure 7. Execution request handling (without central dispatcher).

The transmission cost is evaluated according to the minimum data rate among the two end-points.

De�nition 6 (Transmission cost)
The transmission of a taskT (with size�) between nodesa andb, which have, respectively, data
ratera andrb, is affected by a data overhead :

r D min.r a ; rb/

AND if lana ¤ lanb Wr D min.r internet; r /
(5)

 D
�
r

(6)

The overall delay that affects taskT , when it is transmitted among two nodes, is thus
 C .
Link length and connection type are required only during the simulation of task transmission, and

this is true even for the mobile device. It is assumed that during a task’s transmission, the mobile
device does not signi�cantly change its position or connection type (e.g., switching from cellular to
WiFi network—although DEUS has been used to simulate also this scenario [52]). All other node
displacements do not affect the communication or the volunteer network, which is a logical network.

4. AVOCLOUDY IMPLEMENTATION

AVOCLOUDY is based on DEUS, enriched with MultiVeStA capabilities. For each layer of the
architecture described in Section 3, there is a corresponding Java package.

In addition to the Java classes, as for all DEUS projects, there is an associated XML con�guration
�le. It is parsed before the simulation, and it is used to parametrize the simulation itself. For many
of the classes described in this section, a concrete implementation is provided. Each class can be
used ‘as is’, just parameterizing its behavior via the XML �le.

Package organization. The root package containing the basic classes for the volun-
teer nodes isit.imtlucca.avocloudy . The root class for the node instantiation is
AbstractCloudyNode . It has been already instantiated in two different versions to discern
among data center nodes (DataCenterNode) and volunteers (VolunteerNode). Furthermore,
the same package contains the corresponding birth events.

The sub-packages are as follows:

� physical (Section 4.1),
� infrastructure (Section 4.2),
� autonomic (Section 4.3),

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

14 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

� infrastructure.dc (Section 4.4),
� application (Section 4.5),
� util (Section 4.6), and
� log (Section 4.6).

The following sections describe the main features of each package.
The �exibility of the AV OCLOUDY architecture allows users to implement the desired behaviors

by means of sub-classing, very simply.
Given that all the layers are constituted by autonomous entities/agents that cooperate (with other

nodes in the same layer and with the ones in upper and lower layer on the same node), the main
class for each layer is represented by an agent. This approach (i.e., layers’ independence) allows
for modularity, which eases the implementation of high-level protocols (e.g., infrastructure, auto-
nomic behavior, and application logic), while several low-level protocols are already provided by
AVOCLOUDY.

4.1. Thephysical layer package

TheFeature class represents the physical characteristics of the underlying node resources, that is,
core number, clock frequency, amount of memory, machine identi�er, type of device (data center,
volunteer, or mobile), network connection, and geo-location.

Because AVOCLOUDY focuses on application-level performance evaluation, considering reason-
able task durations and arrival times, a deep modeling of the network layer is not strictly required
and may constitute a bottleneck for the simulation process. Anyway, despite DEUS is not provided
with a communication package, it does enable the simulation of delays and packet losses, for exam-
ple, leveraging on statistical models obtained with speci�c network simulation tools (such as ns-3,
as experimented by Amorettiet al. [32]).

In AVOCLOUDY, every node is assumed to be linked with each other through a local area or
an Internet connection (customizable through the simulation con�guration �le). Each type of con-
nection is characterized by a data rate, which in turn affects the transmission time of application
messages from task producers to task consumers. We have modeled the most common types of con-
nections (both wired and wireless), but AVOCLOUDY users can specify and add their own ones
(e.g., Fibre Channel and Wi-Max), according to their speci�c needs.

The network connection is speci�ed byAbstractConnection , which provides methods to
obtain lan_id, min/max range (expressed in meters), and effective data rate (expressed in Mbit/s).
Currently, there are a range of implementations already provided for both wired and wireless
connections, that is, LAN, Giga-LAN, 10-Giga-LAN, WiFi, WiFi-g, and WiFi-n. For wired con-
nections, the communication overhead is assumed to be 25% [53–56]; for wireless connections, it
is assumed to be 50% [57, 58]. The Internet data rate has been obtained from the measurement per-
formed by Leeet al. [59]. Other network connection speci�cations can be obtained implementing
theAbstractConnection class.

The node’s geographical position is expressed asx and y coordinates, and it is used
by the evaluateOverheadTime() method. If source and destination lan_id differ, or
they are out of the other node’s range, the model evaluates the time needed to trans-
mit the application among the two nodes in the network also considering their geographi-
cal position. TheevaluateOverheadTime() method callsdelayToOtherPoint() and
taskTransmissionOvehead() and sums their returned values. The former function follows
the communication cost computed by the simple yet realistic network model described by Saino
et al. [51], which assigns link delays proportionally to the estimated link length, evaluated as the
Euclidean distance between the geographical position of the two nodes. We assume a geographical
position expressed in meters, if needed, after an approximate conversion from degrees.

We are currently working to improve the communication model allowing to import, in the ini-
tial stage of the simulation, a description of the underlying network. Loading a network model
(which can be generated by means of other tools [51]) can make the node communication model
more realistic.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 15

4.2. Theinfrastructure layer package

The IaaS_Agent is the ‘logical node’ and it is in charge to interact with the other nodes of the
same layer, to manage the P2P overlay network, and to execute the applications taken in charge by
the previous layer agent, usingHwor IaaS_DC_Agent resources.

In this layer, theBehavior class provides the methods to manage the overlay network:
connect() , join() , signalPresenceToOtherNode() , disconnect() , death() ,
and getNodesInZone() . Besides the basic signaling messages mentioned in the previous
text, and used in any P2P overlay network, AVOCLOUDY users can specify how the nodes
interact and how their knowledge of the network is kept updated, for example, adopting
heartbeat messages. For what concerns hardware resource management, it provides informa-
tion about the time needed to execute a given application (evaluateTaskDuration())
and to estimate the network overhead that must be taken into account during the applica-
tion transmission (estimateNetOverhead()). According to the estimated network over-
head, execution time, memory, and QoS requirements of the application, it is possible to
estimateTaskAcceptance() .

The current implementation takes the time estimation obtained when the executing machine fol-
lows theRough Settechnique proposed by Selviet al. [60]. Assuming that, because of the boot,
the node has a database to start the Rough Set techniques, and thus, it can estimate the exact run-
time execution with a uniform error committed (e.g., of� 13%). From the XML con�guration �le,
it is possible to set a different percentage error. Different estimation techniques can be obtained by
sub-classing theestimateAppExit() function.

Policy refers to theVmCriteria andNetworkCriteria mentioned in the Iaas_DC layer,
for example, to specify the node connection and the cloud site assignment.

Knowledge maintains the information about neighbors, supernodes, and the presence of other
cloud sites.

The IaaSFeature s are speci�ed as VM resources (i.e., core number and clock frequency, main
and local memory, and network bandwidth) and overlay network (i.e., online status, cloud site
identi�er, node identi�er, and if it is acting as a supernode).

Moreover, all the events that allow the basic overlay network operations (i.e., join, reconnection,
death, and disconnection) are implemented.

As for theHwlayer, in the future, we will add an option to load a pre-generated overlay network. In
addition, we are evaluating the implementation of an option allowing users to express the messages
exchanged in the network. This feature will be optional, because, despite it does improve the model’s
realism, at the same time, it inevitably brings to a great simulation performance decay.

4.3. Theautonomic layer package

An ACaaS_Agent interacts with the other nodes of the same layer to manage the application
work�ow (askFinishEstimation()), and it is charged by theApp to manage the application
(setNewApp()).

When a local or a remoteACaaS_Agent accepts to execute the application, the
SendTaskToExec event is added in the DEUS event queue, to submit the application in the corre-
sponding node’s queue. The time at which the event will be triggered is de�ned according to the time
needed to transmit the application on the network. When the application execution is completed, the
ExecutionEndEvent is triggered, thenotifyAppExecutionEnded() is called, and the
performance statistics (e.g., hit, miss, and sojourn time) are updated accordingly.

Also, this package has aBehavior class, which is in charge to manage the application once
a node is made responsible (manageApplication()). The main logic according to which an
agent looks for other volunteers is de�ned by thesearchExecutingNodes() . In the recent
past, our research has focused onself-* algorithms for distributed tasks execution in the volunteer
cloud [45–47]. Thus, it has been suf�cient to re-implement that function to specify different node
behaviors. In some scenarios, it may be necessary to specify the order according to which other
nodes must be asked for the execution of the application, through theaskExecToNodeList()
method, which takes as argument the list of all the nodes that must be contacted.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

16 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

The interaction with the other node agents that can execute the application takes place through
the methodsreqFinishEstimation() , appExecReq() , andsendTaskForExec() .

The Policy class de�nes theAppCriteria according to which a node should look for
collaborations with other nodes and should accept remote requests; for example, the maximum
number of attempts (maxNumOfAttempt()) that must be performed before marking the task
as missed; the miss rate tolerance, over which no more external requests should be considered
(missRateTolerance()); and whether the cooperation of other nodes should be considered
(askToVolunteer()).

TheKnowledge class is to collect historical information about application executions and inter-
actions with other nodes.
AppTypeStatistics stores, by application type, the information on hit, miss, received/unmet
requests, and queue statistics (waiting and sojourn times).WorldHistory is in charge to record
a summary of the interactions with other nodes, during an application’s execution: ack, nack, and
total number of requests.

TheFeature class maintains the information on the applications on the node’s queue to allow
the node to compute the actual load and respond to the external requests accordingly.

The AVOCLOUDY user is encouraged to design and evaluate its own application distribution
protocols. In our previous works, we have designed some protocols that have been brie�y described
in Section 5 and that can be freely downloaded, studied, and modi�ed.

4.4. Theinfrastructure.dc layer package

Data center nodes differ from volunteer nodes, as they are, in general, more powerful in terms of
CPU, memory, and storage, which makes them able to host much more VMs. Thus, functionalities
to monitor and manage such VMs are provided in this layer.

IaaS_DC_Agent is the main class that refers to its components (i.e.,Knowledge ,
Behavior , andPolicy), to the underlyingHwlayer and to all theIaaS_Agent s instantiated
on the same node.

This layer’s Behavior class manages all the previousIaaS_Agent s using the avail-
able hardware resources, via the methods:manageStartup() , manageShutdown() , and
manageResize() . In the same package are also provided theeventsthat check if it is needed to
call the aforementioned functions. These abstract class events can be sub-classed to customize the
check functions, for example, to implement more sophisticated VMs management strategies [61].

TheKnowledge class collects load history information usingLoadRecord s. If needed (e.g., to
personalize the behavior of data center nodes), it records information about execution time, RAM
utilization, number of cores, and clock frequency.

The Policy class is used to manage the available resources in response to the environ-
ment. It refers to theNetworkCriteria andVmCriteria classes, which specify the policies
used to manage the network and the VM resources assigned to theIaaS_Agent . In particular,
VmCriteria de�nes the quote of resources that must be assigned to each VM, if its resources
can be changed during the operation and optionally a ‘stability factor’. The latter can be a measure
to de�ne possible causes that bring a node down.VmCriteria can be instantiated with resource
usage values, to trigger the startup, shutdown, or resize of one of the managedIaaS_Agent ’s
resources. A �ag that allows the VM to be re-sizable is provided. Moreover, it is possible to spec-
ify the percentage of hardware resources that should be assigned or increased during the startup or
resize of one of the previousIaaS_Agent ’s resources.

4.5. Theapplication layer package

The application layer de�nes the application characteristics, requirements, and execution
details.

An application (App) is generated when theAppBirthEvent is triggered, and as �rst action,
it assigns itself to the node that has generated the application (setReferringAgent()).

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 17

Figure 8. Sequence diagram of the AVOCLOUDY simulator for task execution.

The Behavior class is used to ask the execution of the whole application (using
askWorkflowExecution()) and, if needed, negotiates (contract()) with the
ACaaS_Agent before assigning the execution.

A Policy speci�es the QoS and non-functional requirements. The non-functional requirements
can be used, for example, to restrict the geographical zone in which anApp can be executed.

The Knowledge class provides information about the nodes that are currently executing the
application and some statistics about the application’s performance (e.g., a counter for the remote
requests that have been performed or the nodes on which it is being executed).

TheFeature class allows to describe the application’s characteristics (generation, start and end
times, fraction and degree of parallelism, and type). Moreover, it maintains the status [62] for each
of the tasks that compose the application.

Figure 8 shows the UML sequence diagram for a task’s execution. The application is generated
(setReferringAgent()) by theACaaS_Agent X. Eventually, agent X checks if it can locally
satisfy its execution (estimateAcceptance() on step 3) and then, according to its applica-
tion distribution algorithm, cooperates with otherACaaS_Agent s (e.g., Y and Z) to satisfy the
request. It is worth to note that, within the application management (manageApplication()),
the responsible agent (X) checks its own and its peers’ (Y and Z) availability
(reqFinishEstimation()), considering the resources that are available on theIaaS_Agent
node (estimateAcceptance()). Once one or more agents that can satisfy the execution
request have been found, it is possible to contract the non-functional requirements (contract()).
Then, theApp is sent to the chosen agent (appExecReq()), and �nally, its execution is
performed (execution()).

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

18 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

4.6. Theutil andlog packages

These packages provide some basic mathematical functions, through theIFunction interface,
and logging performance indicators (e.g., task hit rate, performed requests and refused rate, and
queue statistics). Basic performance statistics can be obtained also using MultiVeStA.

Every event in the simulator (e.g., task arrival, node departure) can be scheduled according to an
arbitrary distribution, provided to the simulator by means of a con�guration �le. DEUS includes its
own statistical distribution library, which we further extended while implementing AVOCLOUDY

(currently available distributions are exponential, lognormal, uniform, Weibull, periodic, Poisson,
rectangular, and Pareto).

Finally, network logging capabilities for Pajek [63] and Gephi [64] (in GraphML �le format) are
provided, respectively, in theLogCloudyForPajek andLogCloudyForGraphml classes.

It is worth to note that a single problem can be tackled from different layers of the architecture.
For example, it is possible to manage the volunteer node that goes down while it is executing an
application in different ways: (i) merely restarting the application on another volunteer, if the exe-
cution is not completed within a reasonable time-frame, or using a proactive approach, by running
application replicas in parallel on different volunteers (autonomic layer); or (ii) using heart-
beat messages to monitor the online presence and the progress of the execution in a remote node
(infrastructure layer). In some of our previous works [46, 47], we have used AVOCLOUDY

to model self-* approaches capable to deal with nodes that leave the volunteer network.

5. CASE STUDIES

Our simulator has been validated over several case studies [45–47] developed within the ASCENS
project [24]. This section describes some exemplifying aspects of their implementation, in order to
provide guidelines for using AVOCLOUDY.

5.1. Random task distribution

In designing a task distribution approach, the most simple algorithm that can be evaluated is the
Randomdistribution. This section describes the random algorithm as implemented in [46]. For each
App, the responsibleACaaS_Agent generates a random list with otherACaaS_Agent s in the
network, to whom it can submit an execution request.

To include this simple behavior in AVOCLOUDY, we have only re-implemented the
searchExecutingNode() function in theAcaasNodeBehavior class, to shuf�e the list of
knownACaaS_Agent s before calling the built-in functionaskExecutionToNodeList() .

5.2. Cooperative task distribution

The impact of a cooperative behavior in the distributed execution ofApps for volunteer nodes has
been evaluated in [45]. This scenario assumes that volunteer nodes want to contribute to the net-
work with their resources but, at the same time, want to ensure that a certain amount of resources
are available for local use without using pre-reservation techniques. The exploited approach con-
siders apartial volunteer to ensure that theACaaS_Agent avoids overloading situations. An
ACaaS_Agent receiving an execution request accepts only if the miss rate that it perceives locally
is under a speci�ed threshold:

currentMissRate6 MissRateTolerance (7)

The implementation of this approach is quite straightforward using AVOCLOUDY.
The AcaasNodeFeature computes theactualMissRate() , which is used by the
AcaasPolicy upon theACaaS_Agent receives anappExecReq() .

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 19

5.3. Reputation-Based task distribution

In scenarios where node resources are unknown or when nodes do not want to disclose their status,
a valuable approach in the choice of theACaaS_Agent s to targetappExecReq() is repre-
sented by a reputation-based system [47]. Such a system provides a ranked list ofACaaS_Agent s,
according to the feedback received about the interactions among theACaaS_Agent s. For example,
feedback can be provided once anACaaS_Agent accepts, rejects, completes, or fails to execute a
remoteApp.

The key points modeling such scenario in AVOCLOUDY are registration with the rep-
utation system and feedback request/report. The reputation system itself can be modeled
as a node created in the early stage of the simulation. Node registration is per-
formed by theAbstractVolunteerNodeBirthEvent . In particular, the abstract method
specifyAcaasNode() has been used to contact the reputation system registering the presence
of the new node in the network.

When an ACaaS_Agent is made responsible for anApp, its �rst action is to con-
tact the reputation system to obtain a ranked list of nodes, which is then used with
askExecutionToNodeList() .

5.4. A computational �eld for task distribution

Given the high complexity and heterogeneity of volunteer cloud computing, a centralized solution
to distribute the workload seems to be far from optimal. This is mainly due to impossibility to
obtain a global knowledge of node resources and especially of node loads. In a recent work [46],
we proposed a collaborativecolored computational �eldto allow an agent-based tasks distribution
inspired by the ant colony optimization and gradient-based approaches.

Aside from the algorithmic details of the proposed solution, which are out of the scope of the pre-
sented work, our approach has requested a more articulated implementation, with respect to what
has been performed for the other algorithms presented in this section. In particular, it has been nec-
essary to implement new events for the periodic execution of agents that are in charge of building
the aforementioned computational �eld. These mobile agents are created when theACaaS_Agent
is generated, that is, inspecifyAcaasNode() . Each node stores a portion of the distributed
computational �eld; thus, theAcaasNodeKnowledge has been extended to this purpose, tak-
ing in memory the pheromone values. The policies according to which theACaaS_Agent
sends the mobile agent to explore the network are de�ned in theAcaasNodePolicy includ-
ing information such as time-to-live, timeout, component weights, and considered resources.
Finally, to be able to exploit the information stored in theAcaasNodeKnowledge , also the
searchExecutionNode() has been modi�ed.

Our ACO technique allows to distribute the workload in a way that every task execution request
is completed as soon as possible, while minimizing the amount of resources that are reserved but
not used, on a given node. The overall behavior brings to an increased probability to satisfy task
requests, while respecting their SLAs (e.g., deadlines).

5.5. Case Studies Final Remarks

It is worth to note that all the aforementioned case studies would not be easily implemented in
the available cloud simulators (as described in Section 8). Instead, as shown in this section, with
AVOCLOUDY, the implementation effort has been limited and targeted only to the architecture layer
involved in the evaluation of the proposed algorithms (theACaaS layer in our case studies). For
example, the validation of a P2P overlay protocol would affect only theIaaS layer, while, for all
other layers, the basic implementations could be used without any further effort.

Finally, the performed integration with MultiVeStA allows AVOCLOUDY users to decouple the
de�nition of the system properties of interest from the model speci�cation.

Examples of performance parameters that have been evaluated during these works, and whose
de�nition is already provided with AVOCLOUDY, are successfully executed tasks, refused remote
execution requests, total amount of addressed execution requests, mean task waiting and sojourn
times, and mean number of tasks executed on each node. For each of these parameters, the size of
the con�dence interval and the variance are also provided.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

20 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

6. EXPERIMENT AND EVALUATION

This section describes an experiment for evaluating the effectiveness and performance of
AVOCLOUDY in simulating a volunteer cloud environment. The modeled scenario is quite real-
istic, considering the use of the Google workload and the characterization of data center and
volunteer nodes.

A reliable AVOCLOUDY validation to assess its level of accuracy requires to develop accu-
rate monitor techniques distributed over all the volunteers (that should be at least in the order of
1000 nodes for a realistic volunteer environment) and an evaluation of distribution and execution
approaches over a wide range of task types. Instead, the validation using manyACaaS_Agent s on
the same machine would have been a less cumbersome activity but, at the same time, would have
signi�cantly affected its accuracy not being able to test the network layer.

6.1. Simulated scenario

We have designed a scenario where some research institutions participate to the volunteer cloud
with their data centers, while other universities and volunteers participate with their desktops
(e.g., the labs machines unused during night) and laptops. The laptops are connected to the Internet
through a WiFi-g, while the data centers are wired connected via a 10-Gbit Ethernet. To use real-
istic characteristics for the data centers, we have considered the speci�cation of the Google Cloud
Platform [65] (assuming the CPU frequency according to the currently available CPUs for the
server). For desktops and laptops, we have assumed a reasonable amount of shared resources, con-
sidering common commercial devices. Node attributes are summarized in Table I, where values are
uniformly distributed within the proposed intervals.

Concerning the workload characterization, we have considered the Google Cloud Backend [66]
described in [67]. There, tasks are characterized by duration, CPU, and memory requirements; basi-
cally, it is possible to discern two task categories:smallandlarge. Examples of long-running tasks
are compute-intensive ones such as scienti�c simulations. Short-running tasks are instead highly
parallel operations, such as index lookups, searches, and Map-Reduce. Usually,small tasks have
a more stringent deadline, not to loose the advantage of the parallelism. It is worth to mention
that the volunteer cloud paradigm has been adopted in the BOINC prototype (BOINC-MR) to sup-
port Map-Reduce jobs [1]. Table II summarizes the task attributes according to the description
in [67].

The duration of the simulated scenario is 7 h (with a granularity of milliseconds), the same of the
Google Cloud Backend traces dataset [66].

6.2. Con�guration �le snippets

As an example, Listing 1 shows an excerpt of how the simulator has been con�gured, via its XML
�le, to describe the volunteer desktop characteristics reported in Table I. For each parameter, it is
possible to specify a range of values with which each volunteer is characterized.

Table I. Node attributes.

Type of node CPU frequency (GHz) CPU (cores) RAM (GBs) Number of nodes

Desktops and laptops 1–2 1–6 0:1–4 1000–10 000
Data centers 1–3:73 1–16 3:75–60 7 .in different sites/

Table II. Task attributes.

Size Duration (h) CPU (cores) RAM (GBs) Deadline offset (percentage) Poisson mean arrival (ms)

Small 0–0.4 1 0–0.5 0.2 200
Large 1–12 1–4 1–4 0.4 600

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 21

Listing 1. Volunteer desktops
1 <aut:node id="desktop" handler="it.imtlucca.cloudyscience.VolunteerNode">
2 <aut:params>
3 <aut:param name="typeOfDevice" value="volunteer" />
4 <aut:param name="minPhysCore" value="1" />
5 <aut:param name="maxPhysCore" value="6" />
6 <aut:param name="minPhysCoreFreq" value="1" />
7 <aut:param name="maxPhysCoreFreq" value="2" />
8 <aut:param name="minPhysRAM" value="128" />
9 <aut:param name="maxPhysRAM" value="4096" />

10 <aut:param name="connection" value="WiFiG" />

Listing 2. Small tasks characteristics
1 <aut:node id="applicationSmall" handler="it.imtlucca.cloudyscience.applicationLayer.Application">
2 <aut:params>
3 <aut:param name="minDeadlineOffsetToDuration" value="0.2" />
4 <aut:param name="maxDeadlineOffsetToDuration" value="0.2" />
5 <aut:param name="taskMinDegreeOfParallelism" value="1" />
6 <aut:param name="taskMaxDegreeOfParallelism" value="1" />
7 <aut:param name="paralFractionMin" value="1" />
8 <aut:param name="paralFractionMax" value="1" />
9 <aut:param name="taskMinDuration" value="0" />

10 <aut:param name="taskMaxDuration" value="144000" />
11 <aut:param name="taskMinRAM" value="0" />
12 <aut:param name="taskMaxRAM" value="512" />
13 </aut:params>
14 </aut:node>

Listing 2 reports another excerpt of the same XML con�guration �le, describing the attributes of
the small tasks reported in Table II, where the task duration is expressed in tens of milliseconds and
the deadline is expressed as offset percentage with respect to the task duration.

For sake of brevity, neither the whole XML con�guration �le nor the random task distribution
protocol written in Java (and brie�y described in Section 5) are shown here.

6.3. Simulation results

As an example of possible performance parameters that can be obtained with AVOCLOUDY, we
have considered the overall number of tasks successfully executed or running, and the queue waiting
time perceived by thesmalltasks varying the number of volunteer nodes that are participating to the
network. The following plots show the mean and the con�dence interval values for each number of
volunteers that have been considered.

Figure 9(left) shows that, as many volunteers participate, the percentage of tasks executed within
their deadline increase almost linearly. Modulo the assumptions and simpli�cation considered in our
simulation, even a simple random task distribution protocol using 10 000 nodes can successfully
execute about 70% of the tasks workload.

The waiting time for thesmall tasks is shown in Figure 9(right). It is possible to observe that, as
the number of volunteers increases, even the small tasks, which are the most deadline-dependent,
perceive a reduced waiting time in the execution queue.

Figure 9. Overall hit rate (left) and waiting time for small tasks (right).

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

22 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Number of servers

with 1000 volunteers
with 2000 volunteers
with 3000 volunteers

Figure 10. Performance scaling varying the number of running servers.

AVOCLOUDY provided other performance parameters for the described scenario, which are not
shown here, such as the number of execution requests sent and refused, waiting, and sojourn time
overall and discerned by task class.

6.4. Performance assessment of the simulator

All the experiments have been performed on a laptop equipped with a 2.0 GHz Quad Core CPU
(with Hyper-threading) and 16 GB of RAM, running Windows 7 64-bit and Java 1.7.0_71-b14
64 bit.

Recalling the toolchain depicted in Figure 3, it is worth to remark that MULTI VESTA allows
to execute multiple simulation runs in parallel. Each run performed in parallel requires a
MULTI VESTA server: a Java process that executes the simulation. To evaluate the performance
scaling of AVOCLOUDY, we ran the simulated scenario different times, while varying the MUL-
TIVESTA servers. Results are shown in Figure 10, where each server requires about 1.5 GB of
RAM. Once the required con�dence interval (evaluated with the Student’st-test) is speci�ed by
means of percentage and radius, MULTI VESTA automatically runs other simulations until the
desired accuracy is reached. In our simulation, we have requested a 95% con�dence interval with a
radius of 0.1.

As many servers are used in parallel to perform simulations, the overall time to obtain the results
is considerably reduced. It is worth to note that the performance scaling is affected by the statistical
nature of the analysis with a Monte Carlo simulation. Each simulation run is initialized with a
different seed, thus affecting the sample variance of the considered simulation result (e.g., the hit
rate), requiring a different number of simulation runs. Moreover, it is worth to note that the actual
number of events increase the number of volunteers, for example, due to signaling messages to
manage the P2P overlay.

Finally, it should be taken into account that our CPU has four physical and eight logical cores.
When the simulation time increases and more than four cores are used, the CPU is not able to use the
turbo boost technology to speed up the cores’ frequency, and thus, we do not perceive a performance
bene�t by increasing the parallelism with our machine.

The reader interested in a deeper analysis of the performance scaling that can be achieved
integrating MULTI VESTA with a discrete event simulator can refer to the recent work by
Pianiniet al. [68].

6.5. Lesson fearned and �nal remarks

Through the use of a simple experiment, this section has illustrated the use and the performance
achievable modeling a volunteer cloud environment with AVOCLOUDY.

The section has begun showing the experiment that in turn has proved the usefulness of the volun-
teer cloud to run execution-oriented tasks, such as Google workload. The modeling of the volunteer

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 23

cloud started with a straightforward parametrization of the AVOCLOUDY XML con�guration �le,
to characterize tasks and nodes.

Among the many cloud performance parameters that can be automatically obtained from
AVOCLOUDY, we chose to show two plots that point out the scaling that can be obtained by increas-
ing the number of participating nodes. AVOCLOUDY provided as output several Gnuplot data �le,
from which it was possible to draw the plots in Figure 9.

Despite the performance assessment has taken into account only few cores, is, however, possible
to appreciate the performance scaling that can be achieved executing simulation runs in parallel.

It is worth to remark that the AVOCLOUDY layered architecture and modularity (thanks to the
MAPE-K model) helped us to perform step-by-step correctness evaluation of our code, separately
validating each layer. This approach proved its effectiveness not only during the development of
AVOCLOUDY itself, but also for every task distribution protocol we have de�ned and analyzed
by means of AVOCLOUDY (summarized in Section 5). Some more work has to be performed to
improve the network layer, to allow for importing user-de�ned topologies.

Differently from a cloud simulator focused on the accurate modeling of the characteristics of a
real physical machine, a volunteer cloud simulator is focused on the modeling of a large number
of heterogeneous machines that are not always available (entering and leaving the network). The
complexity is then shifted to the overlay network, to the autonomic layer functionalities, and to the
choice of the signi�cant aspects in the volunteer environment to allow the simulator to scale up to
manage thousands of nodes.

7. A WORLDWIDE CONFIDENCE VALIDATION

This section presents our experiments aimed at validating the con�dence of our simulator. Our simu-
lator is able to deal with large-scale scenarios with several thousands of volunteers and beyond, thus
accommodating to the size of a real-world volunteer cloud platform. However, performing a vali-
dation over such large-scale scenarios is dif�cult and challenging due to the need of keeping track
of different performance measures for huge number of entities. In fact, as we report in the previous
text, the worldwide platform we have used did not allow us to scale the scenarios to thousands of
volunteer nodes. In our experiments, we therefore focused on mid-scale scenarios with several hun-
dreds of volunteer nodes deployed in the worldwide PlanetLab platform, of which the University of
Parma is a member.

7.1. PlanetLab, Experience and Testbed

PlanetLab [7] is a network of worldwide distributed machines, which are shared by academic insti-
tutions and industrial research labs. PlanetLab is mainly used to test new technologies for distributed
storage and processing.

The network currently consists of 1335 machines, each one running a minimal Fedora Core 8
Linux installation. PlanetLab users get secure shell (ssh) access to the remote machines, where they
receive a reserved isolated environment that they can con�gure and adapt to their needs.

To validate the simulator, we have developed simplebots that replicate the behavior of the
AVOCLOUDY agents, where tasks are randomly dispatched. The deployment effort in PlanetLab is
alleviated byCoDeploy[69], a network of high-performance proxy servers used to collectively pro-
vide a fast and robust Web content delivery service. In our experiments, CoDeploy allowed us to
deploy and start the bots on all the PlanetLab nodes.

The PlanetLab Web interface allows one to add the nodes that take part in the experiments. Unfor-
tunately, the use of PlanetLab is not smooth as it seems, and running our testbed has required a
signi�cant effort. Among the 1335 nodes participating in the network, at the time of our experiments,
only 665 nodes were reported as online and available by the PlanetLab Web interface. Among them,
some nodes were not actually online or reachable with ssh, and some were miscon�gured (for �re-
wall rules, absence of user disk space, and other wrong permissions). The third issue encountered
deploying our testbed was the absence of a Java runtime framework in all the machines that, for the
great part of the nodes, was not even available for installation, because the Fedora repositories were

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

24 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

Table III. Task attributes for validation.

Poisson mean arrival (sec) Duration (min) Deadline offset (percentage) size (MB) RAM (GB)

50 0 � –0:125� 8� 0.2 0–10 0–0.5

Figure 11. Hit rate (left) and sojourn time (right) comparison between PlanetLab and AVOCLOUDY.

of�ine for end-of-life distributions (Fedora 8 was marked for end-of-life on 2009). Recovering as
many nodes as possible for our testbed has therefore required a signi�cant time-consuming effort,
in order to manually recon�gure the Linux repository on each machine and to install Java 5. With
the best of our effort, we have been able to build a volunteer cloud network of 233 bots.

After an initial idle period (used to stabilize the network and to propagate thestart validationcom-
mand), the bots (each one running on a different node) generate tasks with characteristics reported
in Table III. The maximum task duration has been changed during the experiments, from 8 min and
then halving six times (up to 7.5 s).

Each bot emulates the task payload generating a stub text �le, which is transferred from the
generating volunteer node to the one that accepts the task execution. To manage multiple execution
requests at the same time, the bots have been developed as multithread applications, where a new
thread is generated for each incoming task execution request. Tasks are processed with a single core
fed from a First-In, First-Out (FIFO) queue. The task execution has been emulated through a thread
sleep for a length equivalent to the task duration.

A �nal issue encountered during the validation was the apparently signi�cant discrepancy of
waiting and sojourn times measured in PlanetLab with the ones obtained from the simulator, while
the other performance metrics where consistent enough. This was due to a misalignment of system
times among the nodes. The problem has been resolved revising the bot code, in order to take times
relative to the local starting time of the experiment instead of absolute values.

The scenario was executed for 1 h. Given the length of each real experiment, we have repeated
the execution of each scenario only for three times, and averaged the results, without requiring a
speci�c con�dence interval.

7.2. Validation Results and Comments

The results obtained from the volunteer network deployed in PlanetLab have been compared with
the ones obtained with AVOCLOUDY. The following plots show the comparison of AVOCLOUDY

and the real testbed, while varying the maximum task duration.
In Figure 11, it is possible to observe that, when the scenario considers very short tasks, the accu-

racy of the results provided by the simulator decreases, in particular for what concerns the sojourn
times (and similarly for the tasks waiting times). This behavior is expected, because, working with a
coarser time granularity, the AVOCLOUDY choice to ignore the time required to transmit each task

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 25

Figure 12. Class diagram of the AVOCLOUDY simulator.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

26 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

execution request becomes less signi�cant. For reasonably long tasks, AVOCLOUDY allows us to
achieve a good accuracy. Moreover, it should be considered that, having expressed the task deadline
as percentage, shorter tasks implies less network delay tolerance.

In particular, it is worth noting that, while the real testbed has required to re-execute the exper-
iment spending an overall time of 21 h, AVOCLOUDY has required less than 1 min to simulate
the same scenario, and obviously, this advantage becomes more signi�cant as the scenario of inter-
est concerns a larger time window. A similar bene�t is re�ected in the number of volunteers,
signi�cantly limited in PlanetLab, while possibly unlimited in AVOCLOUDY. Obviously, the last
two consideration are not strictly related to AVOCLOUDY, but more generally applicable to every
simulator versus a real testbed approach.

Threats to Validity. The limitation to some basic scenarios does not allow us to draw fully de�ni-
tive conclusions. A more accurate validation could be performed, which would require the design
of rather sophisticated bots able to generate and execute real applications, even exploiting all the
cores available on each machine. Furthermore, different types of application should be evaluated.
Nonetheless, we believe that our validation experiments are promising and increase our con�dence
in the simulator.

8. RELATED WORK

In its early days, the cloud has been mainly simulated through the already available grid computing
simulators, for example, GangSim [70], GridSim [71], OptorSim [72], and SimGrid [73]. The huge
popularity gained by cloud computing in the subsequent years has encouraged the development of
new simulator tailored for the cloud such as CloudSim [20], GreenCloud [21], iCanCloud [22], and
GloudSim [74].

CloudSim [20] has been developed in the CLOUDS Lab at University of Melbourne. Its layered
architecture enables the modeling of data center environments, providing supports to network topol-
ogy, VMs provisioning, CPU and memory allocation, and application execution. The main focus
of CloudSim is the evaluation of resource allocation policies, also with respect to costs, both from
users’ and providers’ perspectives. CloudSim proves to be a solid simulator to accurately model the
behavior of few interconnected data centers.

GreenCloud [21] is an extension of ns-2 [75] to simulate energy-aware data centers, focusing on
cloud communications (i.e., it is a packet-level simulator). Its peculiarity is a detailed modeling of
the energy consumption of the different components that constitute the data center equipment, for
example, computing server, network switches, and communication links.

iCanCloud [22] has been developed on top of OMNeT++ [76], by the University of Madrid. It
aims at predicting the cost-performance trade-off when a set of applications is executed on a speci�c
hardware architecture. It is sealed with many pre-built con�gurations for the storage and hypervisor
functionalities, which can be directly used through its GUI. Moreover, the simulation framework
includes instance types provided by Amazon.

GloudSim [74] is a distributed cloud simulator based on virtual machines, originally aimed
at reproducing the Google cloud environment departing from the same workload data we have
used in our experiments [66]. Its main features are the ability to deal with dynamically changing
computational resources and several types of events (e.g., killing or hibernating jobs).

It is available under the GNU GPL v3 license, and it has been applied to the optimization of
checkpoint intervals in Google tasks.

For all the aforementioned simulators, the detailed characterization of the data center behavior
prevents them to simulate heterogeneous, large-scale, complex, cooperative environments such as
volunteer clouds. Moreover, the AVOCLOUDY architecture facilitates the transition of the simulated
solution to the production environment.

A direct point-to-point comparison [21] among the mentioned simulators and AVOCLOUDY

cannot be performed, because, as already discussed, their purposes are different.
In the recent past, the SimBOINC [77] project has been developed to realize a simulator to test

scheduling strategies for the BOINC architecture. But later, the French INRIA decided to hold off

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 27

the project, due to rapid changing in the BOINC architecture, which prevented them to maintain the
simulator updated. To the best of our knowledge, the only other effort to build a volunteer simulator
can be found in a paper by Byrskiet al. [78]. However, such a tool has no website, no research
projects that use or have used it, and no information other than the referenced paper.

9. CONCLUSION

Volunteer cloud computing platforms present a more complex environment with respect to tra-
ditional clouds, mainly due to their heterogeneity and dynamism. The increasing complexity in
managing such systems demands for an accurate evaluation of new solutions, before their actual
deployment in the production environment. A simulation-based approach can provide a statistical
comfort on the expected performance. The available cloud simulators are not amenable to the design
and study of such systems, but only to accurately characterize the behavior of few interconnected
data centers, whose characteristics are well-known a priori.

In this work, we propose a volunteer cloud computing architecture and a simulator that has its
roots on agents, and the autonomic and volunteer paradigms. Our generalized cloud architecture
allows us to consider highly heterogeneous environments where both data center and volunteer
nodes cooperate. In the study of such kind of systems, it is worth to take into account that the
layered and agent-based architecture of AVOCLOUDY allows for a smooth transition from the
simulated model to a concrete implementation. The usefulness of the proposed AVOCLOUDY

has been demonstrated with a set of case studies that have already bene�ted from its highly
modular and �exible architecture [45–47]. The con�dence of the simulator has been validated
over a set of real-world experiments based on worldwide distributed computations on top of the
PlanetLab platform.

We plan to extend the AVOCLOUDY in many directions, in particular to support the loading of a
network structure at boot time. Moreover, to increase the realism, we are evaluating the introduction
of an option to specify each network request as an event.

APPENDIX

A class diagram with all the main classes and methods of AVOCLOUDY is depicted in Figure 12.
The state diagram for the task status and its transitions is taken from [62] and depicted in Figure A.1.

Figure A.1. State diagram for the task status transitions.

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their useful comments and suggestions that have sig-
ni�cantly helped us to further improve our simulator and its presentation in the manuscript. Research
partially supported by the EU through the HOME/2013/CIPS/AG/4000005013 project CI2C, FP7-ICT
Integrated Project 257414 ASCENS, STReP project 600708 QUANTICOL, and the Italian PRIN
2010LHT4KM CINA. The contents of the paper do not necessarily re�ect the position or the policy of
funding parties.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

28 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

REFERENCES

1. Costa F, Silva L, Dahlin M. Volunteer cloud computing: MapReduce over the Internet.2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and PhD Forum (IPDPSW), Shanghai, May 2011;
1855–1862.

2. Worldwide LHC computing grid. Available from: http://wlcg.web.cern.ch/ [last accessed 9 February 2015].
3. Montresor A, Abeni L. Cloudy weather for P2P, with a chance of gossip.2011 IEEE International Conference on

Peer-to-Peer Computing (P2P), Kyoto, August 2011; 250–259.
4. Kavalionak H, Montresor A. P2P and cloud: a marriage of convenience for replica management. InSelf-Organizing

Systems, vol. 7166, Kuipers F, Heegaard P (eds)., Lecture Notes in Computer Science. Springer, 2012; 60–71.
5. Kavalionak H, Carlini E, Ricci L, Montresor A, Coppola M. Integrating peer-to-peer and cloud computing for

massively multiuser online games.Peer-to-Peer Networking and Applications2013;8:1–19. DOI: 10.1007/s12083-
013-0232-4.

6. Babaoglu O, Marzolla M, Tamburini M. Design and implementation of a P2P cloud system. InProceedings of the
27th Annual ACM Symposium on Applied Computing, SAC ‘12. ACM: New York, NY, USA, 2012; 412–417.

7. PlanetLab: an open platform for developing, deploying, and accessing planetary-scale services. Available from:
https://www.planet-lab.org/ [last accessed 9 February 2015].

8. Babaoglu O, Marzolla M. The people’s cloud.IEEE Spectrum2014;51:44–49.
9. European Integrated Project 223850 NaDa (Nano Datacenters). Available from: http://www.nanodatacenters.eu/

[last accessed 9 February 2015].
10. European Project RI-261556 EDGI (European Desktop Grid Initiative). Available from: http://edgi-project.eu/

[last accessed 9 February 2015].
11. Segal B, Buncic P, Quintas DG, Gonzales DL, Harutyunyan A, Rantala J, Weir D. Building a volunteer cloud, CERN,

2009. Available from: http://ben.web.cern.ch/ben/Ven_abs.pdf [last accessed 9 February 2015].
12. BOINC: a system for public-resource computing and storage. Available from: http://boinc.berkeley.edu/ [last

accessed 9 February 2015].
13. HTCondor. Available from: http://research.cs.wisc.edu/htcondor/ [last accessed 9 February 2015].
14. Seattle: a platform for educational cloud computing. Available from: https://seattle.poly.edu/html/ [last accessed 9

February 2015].
15. SETI@home: an experiment in public-resource computing. Available from: http://setiathome.ssl.berkeley.edu/

[last accessed 9 February 2015].
16. OurGird. Available from: http://www.ourgrid.org/ [last accessed 9 February 2015].
17. Ghafarian T, Deldari H, Javadi B, Yaghmaee MH, Buyya R. CycloidGrid: a proximity-aware P2P-based resource

discovery architecture in volunteer computing systems.Future Generation Computer Systems2013; 29(6):
1583–1595. DOI:10.1016/j.future.2012.08.010. Including Special sections: High Performance Computing in the
Cloud & Resource Discovery Mechanisms for P2P Systems.

18. Ghafarian T, Deldari H, Javadi B, Buyya R. A proximity-aware load balancing in peer-to-peer-based volunteer
computing systems.The Journal of Supercomputing2013;65(2):797–822. DOI:10.1007/s11227-012-0866-7.

19. Caton S, Rana O. Towards autonomic management for cloud services based upon volunteered resources.Concurrency
and Computation: Practice and Experience2012;24(9):992–1014. DOI:10.1002/cpe.1715.

20. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a toolkit for modeling and simula-
tion of cloud computing environments and evaluation of resource provisioning algorithms.Software: Practice and
Experience2011;41(1):23–50. DOI:10.1002/spe.995.

21. Kliazovich D, Bouvry P, Khan SU. GreenCloud: a packet-level simulator of energy-aware cloud computing data
centers.The Journal of Supercomputing2012;62(3):1263–1283.

22. Núñez A, Vázquez-Poletti JL, Caminero AC, Castañé GG, Carretero J, Llorente IM. iCanCloud: a �exible and
scalable cloud infrastructure simulator.Journal of Grid Computing2012;10(1):185–209.

23. Mayer P, Kroiss C, Velasco J. ASCENS technical report: TR20120500 - the science cloud case study overview
and scenarios, ASCENS, 2012. Available from: http://www.pst.i�.lmu.de/~mayer/papers/2012-05-00-TR-SCP-1.
pdf [last accessed 9 February 2015].

24. European Integrated Project 257414 ASCENS (Autonomic Service Component ENSembles). Available from: http://
www.ascens-ist.eu/ [last accessed 9 February 2015].

25. Satyanarayanan M, Bahl P, Caceres R, Davies N. The case for VM-based cloudlets in mobile computing.IEEE
Pervasive Computing2009;8(4):14–23.

26. Anderson DP. BOINC: a system for public-resource computing and storage. InProceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, GRID ’04. IEEE Computer Society: Pittsburgh, USA, 2004; 4–10.

27. Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the Condor experience.Concurrency - Practice
and Experience2005;17(2-4):323–356.

28. Brasileiro F, Araiijo E, Voorsluys W, Oliveira M, Figueiredo F. Bridging the high performance computing gap: the
OurGrid experience.Seventh IEEE International Symposium on Cluster Computing and the Grid, 2007. CCGRID
2007, Rio De Janeiro, 2007; 817–822.

29. Cappos J, Beschastnikh I, Krishnamurthy A, Anderson T. Seattle: a platform for educational cloud computing. In
SIGCSE. ACM: Chattanooga, TN, USA, 2009; 111–115.

30. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@home: an experiment in public-resource
computing.Communications of the ACM2002;45(11):56–61.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 29

31. Kephart JO, Chess DM. The vision of autonomic computing.Computer2003;36:41–50.
32. Amoretti M, Picone M, Zanichelli F, Ferrari G. Simulating mobile and distributed systems with DEUS and ns-3.

HPCS, Helsinki, Finland, 2013; 107–114.
33. Distributed Systems Group, DEUS project homepage. Available from: http://code.google.com/p/deus/ [last accessed

9 February 2015].
34. Sebastio S, Vandin A. MultiVeStA: statistical model checking for discrete event simulators.VALUETOOLS, Torino,

Italy, 2013; 310–315.
35. MultiVeStA:code.google.com/p/multivesta.
36. Baset S, Schulzrinne H. An analysis of the Skype peer-to-peer Internet telephony protocol.Proceedings INFOCOM

2006. 25th IEEE International Conference on Computer Communications, Barcelona, Spain, April 2006; 1–11.
37. Montresor A. A robust protocol for building superpeer overlay topologies.2004. Proceedings. Proceedings. Fourth

International Conference on Peer-to-Peer Computing, Zurich, Switzerland, August 2004; 202–209.
38. Pyun YJ, Reeves DS. Constructing a balanced, (log(N)/loglog(N))-diameter super-peer topology for scalable P2P

systems.IEEE International Conference on Peer-to-Peer Computing2004;0:210–218.
39. Amoretti M. A modeling framework for unstructured supernode networks.IEEE Communications Letters2012;

16(10):1707–1710.
40. Koo SG, Lee CSG, Kannan K. A genetic-algorithm-based neighbor-selection strategy for hybrid peer-to-peer

networks. 13th International Conference on Computer Communications and Networks, 2004. ICCCN 2004.
Proceedings, Chicago, IL, October 2004; 469–474.

41. Huang K, Wang L, Zhang D, Liu Y. Optimizing the BitTorrent performance using an adaptive peer selection strategy.
Future Generation Computer Systems2008;24(7):621–630.

42. D’Acunto L, Andrade N, Pouwelse J, Sips H. Peer selection strategies for improved QoS in heterogeneous BitTorrent-
like VoD systems.2010 IEEE International Symposium on Multimedia (ISM), Taichung, December 2010; 89–96.

43. Koo SG, Kannan K, Lee CG. On neighbor-selection strategy in hybrid peer-to-peer networks.Future Generation
Computer Systems2006;22(7):732–741.

44. Bolch G, Greiner S, de Meer H, Trivedi KS.Queueing Networks and Markov Chains(2nd edn). Wiley-Interscience:
Wiley Hoboken, New Jersey, 2006.

45. Amoretti M, Lluch Lafuente A, Sebastio S. A cooperative approach for distributed task execution in autonomic
clouds.2013 21st Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP), Belfast, 2013; 274–281.

46. Sebastio S, Amoretti M, Lluch Lafuente A. A computational �eld framework for collaborative task execution in
volunteer clouds. InProceedings of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2014. ACM: New York, NY, USA, Hyderabad, India, 2014; 105–114.

47. Celestini A, Lluch Lafuente A, Mayer P, Sebastio S, Tiezzi F. Reputation-based cooperation in the clouds. In
Trust Management VIII, vol. 430, Zhou J, Gal-Oz N, Zhang J, Gudes E (eds)., IFIP Advances in Information and
Communication Technology. Springer: Berlin Heidelberg, 2014; 213–220.

48. Hill MD, Marty MR. Amdahl’s law in the multicore era.Computer2008;41(7):33–38.
49. Sun X-H, Chen Y. Reevaluating Amdahl’s law in the multicore era.Journal of Parallel and Distributed Computing

2010;70(2):183–188.
50. Woo DH, Lee HH. Extending Amdahl’s Law for energy-ef�cient computing in the many-core era.Computer;

41(12):24–31. DOI:10.1109/MC.2008.494.
51. Saino L, Cocora C, Pavlou G. A toolchain for simplifying network simulation setup. InProceedings of the 6th

International ICST Conference on Simulation Tools and Techniques, SIMUTOOLS ‘13. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering): ICST, Brussels, Belgium, Belgium, 2013;
82–91.

52. Picone M, Amoretti M, Zanichelli F. Evaluating the robustness of the DGT approach for smartphone-based vehicular
networks.2011 IEEE 36th Conference on Local Computer Networks (LCN), Bonn, October 2011; 820–826.

53. Shoch JF, Hupp JA. Measured performance of an Ethernet local network.Communications of the ACM1980;
23(12):711–721.

54. Boggs DR, Mogul JC, Kent CA. Measured capacity of an Ethernet: myths and reality, Digital, Western Research
Laboraroty, 1988.

55. Lian FL, Moyne JR, Tilbury DM. Performance evaluation of control networks: Ethernet, ControlNet, and DeviceNet.
IEEE Control System Magazine2001:66–83.

56. networks DSS.The Gigabit Experts. Available from: http://www.dssnetworks.com/v3/FAQs.asp#Performance
[last accessed 9 February 2015].

57. Fritz! Transmission speed of wireless connections is low. Available from: http://en.avm.de/nc/service/fritzbox/fritzbox-
7390/knowledge-base/publication/show/514_Transmission-speed-of-wireless-connections-is-low/ [last accessed 9
February 2015].

58. Wikipedia. IEEE 802.11. Available from: http://en.wikipedia.org/wiki/IEEE_802.11 [last accessed 9 February 2015].
59. Lee SJ, Sharma P, Banerjee S, Basu S, Fonseca R. Measuring bandwidth between PlanetLab nodes. InProceedings

of the 6th International Conference on Passive and Active Network Measurement, PAM’05. Springer-Verlag: Berlin,
Heidelberg, 2005; 292–305.

60. Thamarai Selvi S, Kumari MSS, Prabavathi K, Kannan G. Estimating job execution time and handling missing
job requirements using rough set in grid scheduling.2010 International Conference on Computer Design and
Applications (ICCDA), Vol. 4, Qinhuangdao, June; V4–295–V4–299. DOI: 10.1109/ICCDA.2010.5541135.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

30 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

61. Casolari S, Colajanni M, Tosi S, Presti FL. Real-time models supporting resource management decisions in highly
variable systems.IPCCC, Albuquerque, NM, 2010; 247–254.

62. Silberschatz A, Galvin PB, Gagne G.Operating System Concepts(8th edn). Wiley Publishing: Wiley Hoboken,
New Jersey, 2008.

63. Pajek. Available from: vlado.fmf.uni-lj.si/pub/networks/pajek/ [last accessed 9 February 2015].
64. Gephi. Available from: gephi.org/ [last accessed 9 February 2015].
65. Google Cloud Platform - Machine Type. Available from: https://cloud.google.com/compute/#us [last accessed 9

February 2015].
66. Wilkes J.More Google cluster data. Google research blog. Posted at, 2011. Available from: http://googleresearch.

blogspot.com/2011/11/more-google-cluster-data.html [last accessed 9 February 2015].
67. Mishra AK, Hellerstein JL, Cirne W, Das CR. Towards characterizing cloud backend workloads: insights from

Google compute clusters.ACM SIGMETRICS Performance Evaluation Review2010;37(4):34–41.
68. Pianini D, Sebastio S, Vandin A. Distributed statistical analysis of complex systems modeled through a chemical

metaphor.2014 International Conference on High Performance Computing Simulation (HPCS), Bologna, Italy, July
2014; 416–423.

69. CoDeploy: a scalable deployment service for PlanetLab. Available from: http://codeen.cs.princeton.edu/codeploy/
[last accessed 9 February 2015].

70. Dumitrescu C, Foster IT. GangSim: a simulator for grid scheduling studies. InCCGRID, Vol. 2. IEEE Computer
Society: Cardiff, UK, May 2005; 1151–1158.

71. Buyya R, Murshed M. GridSim: a toolkit for the modeling and simulation of distributed resource manage-
ment and scheduling for grid computing.Concurrency and Computation: Practice and Experience (CCPE)2002;
14(13):1175–1220.

72. Bell WH, Cameron DG, Capozza L, Millar AP, Stockinger K, Zini F. OptorSim - a grid simulator for study-
ing dynamic data replication strategies.International Journal of High Performance Computing Applications2003;
17:403–416.

73. Legrand A, Marchal L, Casanova H. Scheduling distributed applications: the SimGrid simulation framework. In
Proceedings of the 3st International Symposium on Cluster Computing and the Grid, CCGRID ‘03. IEEE Computer
Society: Washington, DC, USA, 2003; 138–.

74. Di S, Cappello F. Gloudsim: Google trace based cloud simulator with virtual machines.Software: Practice and
Experience2014:n/a–n/a. DOI:10.1002/spe.2303.

75. Issariyakul T, Hossain E.Introduction to Network Simulator NS2(1st edn). Springer Publishing Company,
Incorporated: Springer US, 2008.

76. Varga A, Hornig R. An overview of the OMNeT++ simulation environment. InProceedings of Simutools ‘08, Simu-
tools ‘08. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering): ICST,
Brussels, Belgium, Belgium, 2008; 60:1–60:10.

77. SimBOINC. Available from: simboinc.gforge.inria.fr/ [last accessed 9 February 2015].
78. Byrski A, Felus M, Gawlik J, Jasica R, Kobak P, Jankowski G, Nawarecki E, Wroczynski M, Majewski P, Krupa T,

Strychalski J. Volunteer computing simulation using RePast and MASON.Compure Science2013;14:153–172.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper.2016;46:3–30
DOI: 10.1002/spe

	AVoCloudy: a simulator of volunteer clouds
	SUMMARY

