Centrifugal Microfluidic Platform Using Supported Liquid Membrane Extraction for Combined Sample Clean-Up and Enrichment of Trace Analytes

Andreasen, Sune Zoëga; Burger, Robert; Emnéus, Jenny; Boisen, Anja

Publication date:
2015

Document Version
Peer reviewed version

Citation (APA):
Poster Submission Form

Please complete and return to scott@globalengage.co.uk (.doc or .docx format)

<table>
<thead>
<tr>
<th>Congress Attendee</th>
<th>Sune Zoëga Andreasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributing Author(s)</td>
<td>Robert Burger, Jenny Emneus, Anja Boisen</td>
</tr>
<tr>
<td>Organisation</td>
<td>Technical University of Denmark, Department of Micro- and Nanotechnology</td>
</tr>
<tr>
<td>Email Address</td>
<td>sunez@nanotech.dtu.dk</td>
</tr>
<tr>
<td>Include your email address in poster abstract book?</td>
<td>Y</td>
</tr>
<tr>
<td>Telephone</td>
<td>+45 6029 1030</td>
</tr>
</tbody>
</table>

Poster Title

Centrifugal Microfluidic Platform Using Supported Liquid Membrane Extraction for Combined Sample Clean-Up and Enrichment of Trace Analytes

Abstract (300 words approx.)

In this poster we present a pump-less microfluidic platform which performs sample clean-up and enrichment in a single step, by integrating Supported Liquid Membrane (SLM) extraction [J. Å. Jönsson and L. Mathiasson, J. Sep. Sci., 2001, 24, 497–507]. Our platform offers a simple, yet very efficient, method for achieving sample pre-treatment and enrichment of trace analytes in an easy to use and highly efficient device.

The proof-of-principle experiments presented here showcase the effectiveness and robustness of this method by extracting and enriching theophylline from tea samples. Theophylline is also a common drug used in treatment of asthma and other lung conditions, and is therefore found as a trace analyte in blood samples from such patients.

The sample clean-up and enrichment is achieved in a single extraction step, by simply passing a donor liquid (in this case 1 mL of tea, adjusted to pH 2.5 with sulphuric acid) slowly on top of the acceptor solution (30 µL of ammonium buffer, pH 10.3), separated by an oil soaked nanoporous polymer membrane, the SLM. This sandwich structure can be seen as a two times (or double) liquid-liquid extraction (LLE), taking place simultaneously: A normal LLE extraction of analytes from the donor phase to the organic phase immobilized in the membrane, followed by back extraction into the acceptor solution. Once in the basic acceptor phase the target analyte, a weak acid (pKa ~ 8), is charged. Since charged molecules are practically insoluble in the organic phase, the theophylline cannot diffuse back into the donor phase and the concentration gradient is unaffected. In this way both sample clean up and high enrichment (~24 times original concentration) can be obtained.

SLM extraction is a fairly well established technique in analytical chemistry for extracting and enriching trace analytes from complex matrices, such as for instance saliva or surface water. However, the work presented here is, to the best of our knowledge, the first example of integrating SLM extraction with centrifugal microfluidics, with the obvious benefits of automation and parallelization of the otherwise time consuming extraction process, as well as being easy to operate.

Posters should be sized A0 (841mm x 1189mm) in portrait orientation.

We must receive the abstract on or before 2nd October 2015*. **Abstracts received after this time may not be accepted so please submit your abstract at your earliest opportunity.**

Global Engage will provide boards and fixings. Delegates are responsible for bringing the copy of their poster to be presented. If you wish a pdf copy of your poster to be distributed after the meeting to all attendees, please send the file to scott@globalengage.co.uk

*Please note – Global Engage reserves the right to change the date for submission without notice if all available poster spaces are filled prior to 2nd October 2015.