Effect of Fast Pyrolysis Conditions on Structural Transformation and Reactivity of Herbaceous Biomasses at High Temperatures

Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut; Hofmann Larsen, Flemming; Jensen, Peter Arendt; Jensen, Anker Degn; Glarborg, Peter

Publication date:
2015

Document Version
Peer reviewed version

Citation (APA):
Effect of Fast Pyrolysis Conditions on Structural Transformation and Reactivity of Herbaceous Biomasses at High Temperatures

Anna Trubetskaya¹
Markus Steibel²
Professor Hartmut Splethoff²
Associate Professor Flemming Hofmann Larsen³
Senior Researcher Peter Arendt Jensen¹
Professor Anker Degn Jensen¹
Professor Peter Glarborg¹

¹ DTU Chemical Engineering, Green research center, 2800 Lyngby, Denmark
² Department of Energy Systems, TU Munich, 85478, Garching, Germany
³ Department of Food Science, University of Copenhagen
Objectives

- Herbaceous fuels (Danish wheat straw, rice husk)
- Pyrolysis of smaller particle size (0.2-0.4 mm)
- Experimental investigations at fast heating rates ($10^4 \degree C/s$) and at high temperatures (up to 1500$\degree C$)
- Alkali and silicates effect on the char reactivity and morphology

![Pyrolysis and Oxidation Diagram]

(biomass) \rightarrow PYROLYSIS \rightarrow char \rightarrow OXIDATION

- CO, CO$_2$, H$_2$O, C$_n$H$_n$
- salts, tars, volatiles
- CO, CO$_2$
 TU Munich Entrained Flow Reactor (BabiTER)

- Atmosphere: $\text{N}_2, \text{O}_2, \text{H}_2, \text{CO}_2$
- T_{maximal}: 1500°C
- Heating rates: up to $10^4 \degree \text{C/s}$
- Dimensions:
 - $L = 1.4 \text{ m}$
 - $D_{\text{tube}} = 0.04 \text{ m}$

Diagram:
- Feeding gas (N_2)
- Main gas (N_2)
- Pre-heater
- Tube furnace
- Exhaust gas
- Fuel feeding system
- Gas analysis
- Water quench
- Impinger bottle
- Collection probe
- Solid residue char bin
- Metal filter
- Pump (Venturi) Gas analyzer
The shape of the rice husk chars remained preserved

Wheat straw chars obtained different shapes from near-spherical to cylindrical
Particle size analysis (CAMSIZER XT)

1. \(x_{Ma,\text{min}} \) - length of the line which bisects the particle

2. \(x_{Fe,\text{max}} \) - distance between two maximal tangents directed parallel to each other

\[
q_3 = \frac{dQ_3(x_{Ma,\text{min}})}{x(x_{Ma,\text{min}})}
\]
Particle shape analysis (CAMSIZER XT)

1. Ratio width ($x_{Ma,min}$) to length ($x_{Fe,max}$)

$$\frac{b \text{(width)}}{l \text{(length)}}$$

2. Sphericity (SPHT)

$$\frac{4\pi A}{P^2}$$
Particle size analysis

- Particle size of wheat straw chars was significantly reduced compared to the raw fuel.
- Rice husk char kept the particle size of the original fuel.
The rice husk chars showed a high concentration of silicon oxides (> 90 wt.%) along with smaller amounts of potassium, aluminium, iron, sodium and magnesium.

The wheat straw chars contained potassium and calcium along with a high concentration of silicon.
The weak sharp and narrow reflections from crystalline silicon oxides as compared to the broad band of amorphous silicon oxides (2\(\Theta\) = 21.8°) may indicate only partial crystallization under fast heating.

The XRD analysis of wheat straw char between 1000 and 1500°C showed a wide range of inorganic components, mostly present as oxides (SiO\(_2\), CaO, MgO).
29Si solid-state NMR analysis

29Si CP/MAS and SP/MAS NMR spectra

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Spectrum Type</th>
<th>Original Biomass</th>
<th>1000°C</th>
<th>1250°C</th>
<th>1500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP/MAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP/MAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP/MAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ppm</th>
<th>Q<sup>4</sup></th>
<th>Q<sup>3</sup></th>
<th>Q<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>-111±3</td>
<td>-102±3</td>
<td>-92±5</td>
<td></td>
</tr>
</tbody>
</table>

* - index of Q⁴, Q³ and Q² indicates the number of siloxane bonds

- The silicon oxides were most likely present in the amorphous form due to the width of the resonances originating from the Q⁴ sites
- No crystalline silicon compounds were observed
- No significant changes appeared in the 29Si NMR spectra and thereby in the rice husk silicate structure with the increasing temperature
- The shape of the rice husk chars remained preserved even at a higher temperature, due to the low softening temperature of amorphous silicon oxides (\approx730°C)*

Hedler et al. 2004
No ^{29}Si CP/MAS NMR spectra of original wheat straw and its chars were observed compared to rice husk.
Silicon oxides effect on char reactivity

- Reactivities of pinewood and rice husk chars were similar in oxidation, indicating less influence of silica on the char reactivity.

- The alkali rich wheat straw chars were 6, 18 and 50 times more reactive than wood and rice husk chars.

- The reactivity of wheat straw and rice husk chars decreased at high heat treatment temperatures due to annealing of the carbon and loss of catalytically active potassium in the case of straw.

TGA, 5 vol.% O₂ + 95 vol. % N₂
Summary

- The results of the 29Si solid-state NMR study indicated that the silicates in rice husk chars were mainly amorphous.

- No significant changes appeared in the 29Si solid-state NMR for Q^2, Q^3 and Q^4 branches of rice husk chars.

- The presence of silicates in the rice husk affected the obtained char morphology by the formation of a glassy char shell due to the softening of the amorphous silicon oxides.

- Silicates present in rice husk chars did not affect the reactivity in oxidation.

- High alkali content in wheat straw increased the char reactivity.
Acknowledgements

- Department of Energy Systems, Technical University of Munich
- Department of Food Sciences
- Dong Energy and Vattenfall
- Retsch Technology
Thanks for attention!

Anna Trubetskaya
Technical University of Denmark
Chemical Engineering Department
Combustion and Harmful Emission Control Group
Søltofts Plads, Bygning 229
2800 Lyngby, Denmark
email: atru@kt.dtu.dk