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Electrical and Computer Engineering, University of North Carolina, Charlotte, NC, USA,
3Department of Photonics Engineering, Technical University of Denmark, Lygnby, Denmark.
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Abstract. Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the
Brillouin zone center. In this paper, we present a recently derived effective-mass theory
of the band structure in the presence of strain and electric field, based upon group theory.
Band parameters for this theory are computed using a first-principles theory based upon the
generalized-gradient approximation to the density-functional theory. These parameters and
Hamiltonian will be useful for modeling physical properties of phosphorene.

1. Introduction

Two-dimensional nanomaterials are expected to revolutionalize material science and the next
generation devices. The first example was graphene [1] but there are now a few candidates
beyond graphene, particularly MoS2 [2], silicene [3] and phosphorene [4]. Phosphorene is the
latest promising candidate for both electronics and photonics due to the presence of a band gap
(∼ 2 eV) and relatively high electron mobility.

For applications, such as in nanoelectronics, it is necessary to have a band structure model
that is efficient in order to simulate the electrical properties. A widely-used band-structure
model is the k · p model [5], often giving energy bands analytically in the vicinity of extrema
in terms of meaningful parameters such as effective masses and optical matrix elements. For
phosphorene, a few k·pmodels have recently appeared [6, 7, 8]. In our recent paper, we presented
a model in the presence of external fields. Our present goal is to evaluate the parameters of the
model.

2. Theory

2.1. Structure

Phospherene can be viewed as a single layer of black phosphorus. They have the same in-plane
translational symmetry and the nonsymmorphic space group is base-centered orthorhombic [7]
(Fig. 1).

2.2. Effective Hamiltonian

The effective Hamiltonian for phosphorene in the presence of strain and an external electric field
has recently been derived [8]:

H = Hi +He, (1)

He = H
ǫ +H

E , (2)
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Figure 1. Real (left) and reciprocal (right) space drawings of phosphorene. The two atoms
(solid and open circles) are at different vertical heights.
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where k is the two-dimensional wave vector, ǫij is the strain tensor, and E is a homogeneous,
external electric field. The above result is obtained in the absence of spin-orbit interaction.

2.3. Intrinsic band structure

It is known from group theory [8] that all the bands are nondegenerate; thus, the Hamiltonians
give the electronic energies directly. Thus, from Eq. (3), the intrinsic band structure near the
Brillouin zone center is given by

En(k) = a1k
2

x + a2k
2

y +
∑

i≤j

aijk
2

i k
2

j , (6)

for band n. It can be seen that only terms in even powers of ki are allowed. Thus, the linear
dispersion present in graphene and silicene is not present in the band structure of phosphorene
in the neighborhood of the Brillouin zone center. a1 and a2 are band parameters related to the
effective masses. We would expect an anisotropy in the effective masses due to the orthorhombic
symmetry of the crystal lattice.

2.4. Strained band structure

At the Γ point, the band energies are

En(ǫ) = En + e1ǫxx + e5ǫyy + e9ǫzz, (7)

where En are the band edges in the absence of strain. The ei’s are deformation potentials
for a given band. Since the lattice is two-dimensional, a perpendicular strain from continuum
elasticity theory is not defined (nor can it be described within the first-principles software since
the latter uses an artificial superperiodic in the z direction). It can be defined as an internal
deformation potential of the basis atoms inside the unit cell as some are outside the lattice plane.
However, since it is not described by continuum elasticity theory, we will neglect in this work.
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For a finite wave vector, the energies are

En(ǫ) = En(ǫ) + (a1 + e2ǫxx + e6ǫyy + e10ǫzz)k
2
x

(a2 + e3ǫxx + e7ǫyy + e11ǫzz)k
2
y. (8)

2.5. Electric field

Our prediction, from Eq. (5), is that the band gap changes quadratically with an externally-
applied perpendicular electric field. This is in contrast to silicene where the dependence is
linear, whereas there is no gap opening for graphene. At k = 0, the band gap as a function of a
perpendicular field is

∆EΓ(Ez) = EΓ(0) + cE2

z . (9)

3. Results

Our density-functional theory (DFT)-based calculations were conducted using the projector
augmented-wave method [9] and the PBE-GGA exchange-correlation functional [10] as
implemented in the VASP code [11, 12, 13]. The wave functions were expanded using a plane-
wave basis set with an energy cutoff of 1200 eV. Atomic positions were fully relaxed and k-point
sampling was achieved by using a 9×9×1 special-points grid until residual forces were lower than
5meV/Å. The interlayer separation in the z direction was chosen large (∼ 30 Å) to minimize
fictitious interactions. The optimized lattice constants obtained were 3.300 and 4.624 Å.

3.1. Intrinsic band parameters

The valence band structure near the Γ point is shown in Fig. 2. The gap is almost direct at the
Γ point and the GGA value is about 0.912 eV; Tran et al. [14] have shown that a GW correction
increases the gap to 2.0 eV. The strong anisotropy in the band structure is evident. We did a fit
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Figure 2. Highest valence band of phosphorene near the Γ point.

to our DFT calculations to obtain the intrinsic band parameters of the k · p theory (Table 1).

Table 1. Band parameters ai (in units of 1/m0) and effective masses (in units of m0) of the
highest valence and lowest conduction bands of phosphorene at the Γ point. The effective mass
of the VB along ΓY is very sensitive to the computation [8].

a1 m∗(ΓY ) a2 m∗(ΓX)
CB 0.808 1.24 5.804 0.173

1.246 [15], 1.16 [16] 0.146 [15], 0.22 [16]
VB 0.106 7.20 −6.263 −0.160

3.24 [16] −0.19 [16]
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3.2. Strain deformation potentials

We present here our results for the strain deformation potentials. Neglecting the e9 deformation
potential, we see that there are six deformation potentials for each band: e1, e2, e3, e5, e6 and
e7. In order to compute the deformation potentials, strain is applied in one direction (e.g., x
direction) while restricting the atomic displacements in the perpendicular direction (i.e., ǫyy) to
be zero. Values obtained by fitting to our DFT calculations are given in Table 2 for the highest
valence band and lowest conduction band. The anisotropy is again clear. Additionally, one of

Table 2. Strain deformation potentials (e1 and e5 in units of eV, all others in units of 1/m0)
of the highest valence and lowest conduction bands of phosphorene.

e1 e2 e3 e5 e6 e7
CB 5.801 -0.678 -27.241 1.584 -0.710 -1.497
VB 0.502 -6.286 28.850 -2.745 -0.435 6.291

the deformation potentials has the opposite sign which can lead to band crossing effects.

3.3. Electric Field

It is fairly straightforward to compute the band structure change in the presence of a
perpendicular electric field Ez. Hence, this is the only electric deformation potential to be
presented here. Using DFT and Eq. (9), for an electric field between 0 and 0.5V/Å, we find

that c = −0.41 eÅ
2
/V.

4. Conclusion

The fundamental band parameters needed to simulate the electronic properties of phosphorene
under the influence of an external in-plane strain and an external perpendicular electric field
have been obtained by comparing a k ·p theory to the band structures computed using a density-
functional theory. Qualitative results are that the properties of phosphorene are expected to
be hightly anisotropic in the plane, and that the electric field dependence of the energy gap is
quadratic rather than the linear behaviour shown by silicene.

Acknowledgment

Lok Lew Yan Voon acknowledges the support of the Traubert Chair. Morten Willatzen would
like to thank The Citadel for travel support. Yong Zhang acknowledges the support of the Bissell
Distinguished Professorship.

5. References
[1] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Reviews of Modern Physics 81

109 (pages 54) URL http://link.aps.org/abstract/RMP/v81/p109

[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[3] Guzmán-Verri G G and Lew Yan Voon L C 2007 Physical Review B (Condensed Matter and Materials

Physics) 76 075131 (pages 10) URL http://link.aps.org/abstract/PRB/v76/e075131

[4] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomnek D and Ye P D 2014 ACS
Nano 8 4033–4041 (Preprint http://pubs.acs.org/doi/pdf/10.1021/nn501226z) URL
http://pubs.acs.org/doi/abs/10.1021/nn501226z

[5] Lew Yan Voon L C and Willatzen M 2009 The k · p Method (Heidelberg: Springer Verlag)
[6] Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112(17) 176801 URL

http://link.aps.org/doi/10.1103/PhysRevLett.112.176801

[7] Li P and Appelbaum I 2014 Phys. Rev. B 90(11) 115439 URL
http://link.aps.org/doi/10.1103/PhysRevB.90.115439

[8] Lew Yan Voon L C, Lopez-Bezanilla A, Wang J, Zhang Y and Willatzen M 2015 New Journal of Physics 17

025004 URL http://stacks.iop.org/1367-2630/17/i=2/a=025004

4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015) IOP Publishing
Journal of Physics: Conference Series 633 (2015) 012042 doi:10.1088/1742-6596/633/1/012042

4
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