Spectroscopy for Industrial Applications: High-Temperature Processes

Fateev, Alexander; Grosch, Helge; Clausen, Sønnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

Publication date:
2014

Document Version
Peer reviewed version

Citation (APA):
Spectroscopy for Industrial Applications: High-Temperature Processes

Alexander Fateev*, Helge Grosch, Sønnik Clausen (DTU Chemical Engineering, Denmark) and Emma J Barton, Sergei N Yurchenko, Jonathan Tennyson (Department of Physics and Astronomy, UCL, UK)

*) e-mail: alfa@kt.dtu.dk

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
From Lab to Field | Spectroscopy for industrial applications

Outline

• Hot flow gas cell and FTIR/UV optical set up
• A road to In Situ measurements:
 o NH₃ spectroscopy at high-temperatures: band assignment and spectra modelling
 o NH₃/H₂O field measurements at a pilot scale 6MW gasifier
 o Phenol –major trace gas from PAH’s in low temperature gasification
 o Temperature-dependent UV absorption cross-sections
 o Why In Situ measurements are important: comparison with “standard” tools

• How planets meet the Earth

• Conclusions

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
NH3/Phenol: experimental set up

- 3-zones flow gas cell for corrosive gases;
- No internal windows;
- Stable uniform T-profile (±1.8°C);
- Tmax = 525°C
- L = 33.25 cm
- P = 1 bar
- suitable for UV-FIR optical measurements
- more details: H. Grosch et al. JQSRT 130 (2013) 392–399

- FTIR Spectrometer (Agilent 660), 0.09 cm⁻¹
- an IR light source (up to 1500°C)

- UV spectrometer (Acton 250i/CCD), 0.019 nm
- a highly stable D2-lamp
NH3 FTIR absorption spectra: changes with T

- NH3=5% 0.25cm$^{-1}$ 1027C
- NH3=0.983% 0.09cm$^{-1}$ 500C
- NH3=1036 ppm 0.09cm$^{-1}$ 23C

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
Lab (Home work) NH3 spectroscopy: line assignments, new results

Table 1: Lines assigned to previously observed bands

<table>
<thead>
<tr>
<th>Lines Assigned This Work</th>
<th>Previously measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>J_{max}</td>
</tr>
<tr>
<td>ν_4</td>
<td>17</td>
</tr>
<tr>
<td>ν_2</td>
<td>20</td>
</tr>
<tr>
<td>$\nu_2+\nu_4-\nu_2$</td>
<td>12</td>
</tr>
<tr>
<td>2ν_2</td>
<td>16</td>
</tr>
<tr>
<td>2$\nu_2-\nu_2$</td>
<td>18</td>
</tr>
<tr>
<td>3$\nu_2-\nu_2$</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2: Lines assigned to previously unobserved bands* with 10 or more lines assigned in this work.

<table>
<thead>
<tr>
<th>Lines Assigned This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
</tr>
<tr>
<td>$\nu_4-\nu_2$</td>
</tr>
<tr>
<td>2$\nu_4-\nu_4$</td>
</tr>
<tr>
<td>2$\nu_4-2\nu_4$</td>
</tr>
<tr>
<td>$\nu_2+\nu_4-\nu_4$</td>
</tr>
<tr>
<td>3$\nu_2-2\nu_2$</td>
</tr>
<tr>
<td>3$\nu_2-3\nu_2$</td>
</tr>
</tbody>
</table>

*Have not found measurements in published works.
Lab (Home work)

NH3 spectroscopy: line assignments, an example

List of Assigned Lines

<table>
<thead>
<tr>
<th>BYTE Frequency</th>
<th>Experimental Frequency</th>
<th>Obs - Calc</th>
<th>Upper Quantum Numbers*</th>
<th>Lower Quantum Numbers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>968.761998</td>
<td>968.825639</td>
<td>0.063641</td>
<td>-0200001616</td>
<td>+0100001616</td>
</tr>
<tr>
<td>970.332898</td>
<td>970.874628</td>
<td>0.54173</td>
<td>-020000143</td>
<td>+010000133</td>
</tr>
<tr>
<td>971.871137</td>
<td>971.868991</td>
<td>-0.002146</td>
<td>01000021</td>
<td>+00000011</td>
</tr>
<tr>
<td>972.159794</td>
<td>972.456569</td>
<td>0.296775</td>
<td>+020000142</td>
<td>-010000132</td>
</tr>
<tr>
<td>972.363167</td>
<td>972.60723</td>
<td>0.244063</td>
<td>+0200001717</td>
<td>-0100001717</td>
</tr>
<tr>
<td>972.801729</td>
<td>973.330403</td>
<td>0.528674</td>
<td>-020000141</td>
<td>+010000131</td>
</tr>
<tr>
<td>974.317864</td>
<td>974.354898</td>
<td>0.037034</td>
<td>-01010131</td>
<td>+00010121</td>
</tr>
<tr>
<td>975.511534</td>
<td>975.530054</td>
<td>0.01852</td>
<td>+01010132</td>
<td>-00010122</td>
</tr>
<tr>
<td>976.392929</td>
<td>976.449086</td>
<td>0.056157</td>
<td>-0200001818</td>
<td>+0100001818</td>
</tr>
</tbody>
</table>

*Parity v1, v2, v3, v4, l1, l2, J, K
Can we use BYTe at 500C for practical apps?

- in general a good agreement
- some difficulties with strong line intensities
- some frequency shifts in line positions

More work to do at even higher T (>500C)
From Lab to Field | In Situ measurements on Pyroneer (6MW) gasifier

• Very complex producer gas composition (CO2, H2O, CO, H2, HC, PAH, tars) + particles
• Producer gas is fed into an industrial burner of a power plant

Why to do it? (examples):
 • H2O (related to mass balance)
 • NH3 (related to NOx formation)

How?: In Situ IR abs measurements: no gas extraction
 • Tough: out of the building on a platform (safety) with limited space (practical issues);
 • Tgas about 530C;
 • optical measurements over 30 cm;
 • very strong any (UV-IR) light attenuation.
1. Gas mixing unit
 - N_2 (industrial standard)
 - molten aromatic crystals in tube
 ⇒ concentration unknown
 - admixture of N_2 for different concentration

2. Gas cell and optics

3. Petersen column
 - sampling in acetone
 - Sampling time 30 min
 - analysis with GC/MS

Measurements strategy:
- At each T two phenol concentrations
- At each concentration two sample
- During each sampling three UV spectra and three double concentration determination
Lab (Home work) | Phenol UV absorption cross-sections: temperature effects

- Not too many reference data available even at low T (about 23°C)
- An excellent agreement with published data at low T
- Significant changes in the fine structure of the cross-section spectra with T

Low-temperature abs cross-sections: comparison
Abs cross-sections: from 23°C to 500°C
From Lab to Field

In Situ measurements on LT-CFB (100kW) gasifier

- Focus on trace gases in low- and high-temperature gasification processes;
- Producer gas issues:
 - corrosion (boilers)
 - reduced gas quality (fuel cells, gas grids)
- Phenol – major trace gas from PAH’s in the producer gas (LT-CFB process);
- $T_{gas} = 300-500^\circ C$; In Situ UV abs measurements over 3 mm;
- Phenol measurements by various techniques:
 - GC/MS (Petersen column (30 min) 215 ppm (±5%)
 - Gas extraction, 150 C: 407 ppm (±5%) (3 min)
 - In Situ, 306 C (DOAS approach): 7700 ppm (±10%) (3 min)
Industry and Universities | How other planets meets the Earth

• Far away planets on a global scale (e.g. exoplanets, stars) and current Earth’s problems on a local scale (energy, emissions, taxes)

• Spectroscopy of hot planets and high-temperature processes: the same gases/temperatures of interest;

• DTU’s projects about optical measurements in combustion (SO2, SO3, NH3, etc), gasification (trace gases, Cl- compounds) and waste utilization in collaboration with industry (DONG Energy, Vattenfall and Babcock & Wilcox Vølund)

• UCL’s and DTU’s common PhD/postdocs projects: SO3/SO2 and Cl-compounds (KCl, HCl, CH3Cl, CH4, H2CO)
Conclusions

In general

• You can find a lot inspirations for the work on the Earth
• Different research areas can have the same origin
• Scientists can make industry guys happy

In particular:

- Excellent experimental tools are available for (VUV) UV-FIR optical measurements
- Temperature range can be also negative (e.g. gases at low T)
- New data/lines for NH3 BYTe extension and development
- New data for phenol
- Try always In Situ and avoid any Ex Situ (extraction) measurements
• To Energinet.dk: projects No. 2013-12027, 2011-1-10622, 2010-1-10422

• To MST.dk

• To DONG Energy and Vattenfall

• To UCL (Prof. Jonathan Tennyson’s group)