Spectroscopy for Industrial Applications: High-Temperature Processes

Fateev, Alexander; Grosch, Helge; Clausen, Sønnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spectroscopy for Industrial Applications: High-Temperature Processes

Alexander Fateev*, Helge Grosch, Sønnik Clausen (DTU Chemical Engineering, Denmark) and
Emma J Barton, Sergei N Yurchenko, Jonathan Tennyson (Department of Physics and Astronomy, UCL, UK)

*) e-mail: alfa@kt.dtu.dk
Outline

• Hot flow gas cell and FTIR/UV optical set up
• A road to In Situ measurements:
 o NH₃ spectroscopy at high-temperatures: band assignment and spectra modelling
 o NH₃/H₂O field measurements at a pilot scale 6MW gasifier
 o Phenol – major trace gas from PAH’s in low temperature gasification
 o Temperature-dependent UV absorption cross-sections
 o Why In Situ measurements are important: comparison with “standard” tools
• How planets meet the Earth
• Conclusions
NH3/Phenol: experimental set up

- 3-zones flow gas cell for corrosive gases;
- No internal windows;
- Stable uniform T-profile (±1.8°C);
- Tmax = 525°C
- L = 33.25 cm
- P = 1 bar
- Suitable for UV-FIR optical measurements
- More details: H. Grosch et al. JQSRT 130 (2013) 392–399

- FTIR Spectrometer (Agilent 660), 0.09 cm⁻¹
- An IR light source (up to 1500°C)

- UV spectrometer (Acton 250i/CCD), 0.019 nm
- A highly stable D2-lamp
NH3 FTIR absorption spectra: changes with T

NH3=5% 0.25cm⁻¹ 1027C

NH3=0.983% 0.09cm⁻¹ 500C

NH3=1036 ppm 0.09cm⁻¹ 23C

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
NH3 spectroscopy: line assignments, new results

Table 1: Lines assigned to previously observed bands

<table>
<thead>
<tr>
<th>Band</th>
<th>J_{max}</th>
<th>K_{max}</th>
<th>Frequency Range cm$^{-1}$</th>
<th>Number of Lines</th>
<th>J_{max}</th>
<th>K_{max}</th>
<th>Number of Lines</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_4</td>
<td>17</td>
<td>17</td>
<td>1290 - 1868</td>
<td>277</td>
<td>15</td>
<td>15</td>
<td>1663</td>
<td>Cottaz 2000</td>
</tr>
<tr>
<td>v_2</td>
<td>20</td>
<td>20</td>
<td>634 - 1333</td>
<td>385</td>
<td>23</td>
<td>20</td>
<td>177</td>
<td>Yu 2010</td>
</tr>
<tr>
<td>v_2+v_4-v_2</td>
<td>12</td>
<td>12</td>
<td>1412 - 1818</td>
<td>83</td>
<td>10</td>
<td>20</td>
<td>384</td>
<td>Cottaz 2001</td>
</tr>
<tr>
<td>$2v_2$</td>
<td>16</td>
<td>15</td>
<td>1407 - 1870</td>
<td>43</td>
<td>15</td>
<td>15</td>
<td>403</td>
<td>Cottaz 2000</td>
</tr>
<tr>
<td>$2v_2$-v_2</td>
<td>18</td>
<td>18</td>
<td>607 - 1236</td>
<td>180</td>
<td>10</td>
<td>10</td>
<td>32</td>
<td>Singh 1988</td>
</tr>
<tr>
<td>$3v_2$-v_2</td>
<td>12</td>
<td>12</td>
<td>1104 - 1652</td>
<td>18</td>
<td>10</td>
<td>10</td>
<td>132</td>
<td>Cottaz 2001</td>
</tr>
</tbody>
</table>

Table 2: Lines assigned to previously unobserved bands* with 10 or more lines assigned in this work.

<table>
<thead>
<tr>
<th>Band</th>
<th>J_{max}</th>
<th>K_{max}</th>
<th>Frequency Range cm$^{-1}$</th>
<th>Number of Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_4-v_2</td>
<td>11</td>
<td>11</td>
<td>622 - 1013</td>
<td>20</td>
</tr>
<tr>
<td>$2v_4$-v_4</td>
<td>9</td>
<td>5</td>
<td>1430 - 1792</td>
<td>10</td>
</tr>
<tr>
<td>$2v_4$-v_4</td>
<td>8</td>
<td>5</td>
<td>1420 - 1805</td>
<td>10</td>
</tr>
<tr>
<td>v_2+v_4-v_4</td>
<td>13</td>
<td>13</td>
<td>680 - 1270</td>
<td>77</td>
</tr>
<tr>
<td>$3v_2$-$2v_2$</td>
<td>14</td>
<td>12</td>
<td>628 - 1455</td>
<td>31</td>
</tr>
<tr>
<td>$3v_2$-$3v_2$</td>
<td>12</td>
<td>9</td>
<td>628 - 743</td>
<td>12</td>
</tr>
</tbody>
</table>

*Have not found measurements in published works.
NH3 spectroscopy: line assignments, an example

List of Assigned Lines

<table>
<thead>
<tr>
<th>BYTE Frequency</th>
<th>Experimental Frequency</th>
<th>Obs - Calc</th>
<th>Upper Quantum Numbers*</th>
<th>Lower Quantum Numbers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>968.761998</td>
<td>968.825639</td>
<td>0.063641</td>
<td>-0200001616</td>
<td>+0100001616</td>
</tr>
<tr>
<td>970.332898</td>
<td>970.874628</td>
<td>0.54173</td>
<td>-020000143</td>
<td>+010000133</td>
</tr>
<tr>
<td>971.871137</td>
<td>971.868991</td>
<td>-0.002146</td>
<td>-01000021</td>
<td>+00000011</td>
</tr>
<tr>
<td>972.159794</td>
<td>972.456569</td>
<td>0.296775</td>
<td>+020000142</td>
<td>-010000132</td>
</tr>
<tr>
<td>972.363167</td>
<td>972.60723</td>
<td>0.244063</td>
<td>+0200001717</td>
<td>-0100001717</td>
</tr>
<tr>
<td>972.801729</td>
<td>973.330403</td>
<td>0.528674</td>
<td>-020000141</td>
<td>+010000131</td>
</tr>
<tr>
<td>974.317864</td>
<td>974.354898</td>
<td>0.037034</td>
<td>-01010131</td>
<td>+00010121</td>
</tr>
<tr>
<td>975.511534</td>
<td>975.530054</td>
<td>0.01852</td>
<td>+01010132</td>
<td>-00010122</td>
</tr>
<tr>
<td>976.392929</td>
<td>976.449086</td>
<td>0.056157</td>
<td>-0200001818</td>
<td>+0100001818</td>
</tr>
</tbody>
</table>

*Parity v1, v2, v3, v4, l3, l4, J, K
Lab (Home work) NH3: experiment (0.09cm-1) vs calculations (BYTe)

Can we use BYTe at 500C for practical apps?

- in general a good agreement
- some difficulties with strong line intensities
- some frequency shifts in line positions

More work to do at even higher T (>500C)
From Lab to Field | In Situ measurements on Pyroneer (6MW) gasifier

- Very complex producer gas composition (CO2, H2O, CO, H2, HC, PAH, tars) + particles
- Producer gas is fed into an industrial burner of a power plant

Why to do it? (examples):
- H2O (related to mass balance)
- NH3 (related to NOx formation)

How?: In Situ IR abs measurements: no gas extraction
- Tough: out of the building on a platform (safety) with limited space (practical issues);
- Tgas about 530C;
- optical measurements over 30 cm;
- very strong any (UV-IR) light attenuation.
Lab (Home work)

Phenol UV absorption cross-sections: experimental set up

1. Gas mixing unit
 - N₂ (industrial standard)
 - molten aromatic crystals in tube
 ⇒ concentration unknown
 - admixture of N₂ for different concentration

2. Gas cell and optics

3. Petersen column
 - sampling in acetone
 - Sampling time 30 min
 - analysis with GC/MS

Measurements strategy:

- At each T two phenol concentrations
- At each concentration two sample
- During each sampling three UV spectra and three double concentration determination

DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
Phenol UV absorption cross-sections: temperature effects

- Not too many reference data available even at low T (about 23°C)
- An excellent agreement with published data at low T
- Significant changes in the fine structure of the cross-section spectra with T

Low-temperature abs cross-sections: comparison

Abs cross-sections: from 23°C to 500°C
In Situ measurements on LT-CFB (100kW) gasifier

• Focus on trace gases in low- and high-temperature gasification processes;

• Producer gas issues:
 • corrosion (boilers)
 • reduced gas quality (fuel cells, gas grids)

• Phenol – major trace gas from PAH’s in the producer gas (LT-CFB process);

• \(T_{gas} = 300-500^\circ C \); In Situ UV abs measurements over 3 mm;

• Phenol measurements by various techniques:
 • GC/MS (Petersen column (30 min) 215 ppm (±5%)
 • Gas extraction, 150 C: 407 ppm (±5%) (3 min)
 • In Situ, 306 C (DOAS approach): 7700 ppm (±10%) (3 min)
Industry and Universities | How other planets meets the Earth

• Far away planets on a global scale (e.g. exoplanets, stars) and current Earth’s problems on a local scale (energy, emissions, taxes)

• Spectroscopy of hot planets and high-temperature processes: the same gases/temperatures of interest;

• DTU’s projects about optical measurements in combustion (SO2, SO3, NH3, etc), gasification (trace gases, Cl-compounds) and waste utilization in collaboration with industry (DONG Energy, Vattenfall and Babcock & Wilcox Vølund)

• UCL’s and DTU’s common PhD/postdocs projects: SO3/SO2 and Cl-compounds (KCl, HCl, CH3Cl, CH4, H2CO)
Conclusions

In general
• You can find a lot inspirations for the work on the Earth
• Different research areas can have the same origin
• Scientists can make industry guys happy

In particular:
 o Excellent experimental tools are available for (VUV) UV-FIR optical measurements
 o Temperature range can be also negative (e.g. gases at low T)
 o New data/lines for NH3 BYTe extension and development
 o New data for phenol
 o Try always In Situ and avoid any Ex Situ (extraction) measurements
Industry and Universities

Acknowledgements

- To MST.dk

- To DONG Energy and Vattenfall

- To UCL (Prof. Jonathan Tennyson’s group)